
1 Periodic stimulations of the Incoherent Feedforward Loop net-

work

In this Additional file, we give more details about the mathematical analysis of the periodic acti-
vation of the IFFL network by a train of square pulses [cf. eqs. (4)-(5) in the main text]:

Ẏ = β S(t) − αY (1)

Ż = β S(t)H(θ − Y ) − αZ (2)

The activation of this differential system by a T -periodic train of square pulses S(t) gives rise to
periodic solutions for Y (t) and Z(t) having the form of piecewise exponential functions of the time.
The periodic evolution of Y (t) can be analytically computed. In particular, eqs. (2) in the main
text give analytical expressions for the maximal and minimal values of Y , denoted by Ymax and
Ymin, as well as for 〈Y 〉T denoting the mean value of Y averaged over one period T .

The rate of synthesis of Z is ruled by the regulation function S(t)H(θ − Y (t)). This function
has again the form of a square wave of period T , but now with a shorter duration of the on-
phase, denoted by τ ′. Therefore, the behaviour of Z(t) has again the same evolution than a simple
regulation but now stimulated by a periodic train of pulses with temporal pattern (τ ′, T − τ ′),
representing respectively the pulse and of the inter-pulse intervals. Consequently, the observables
Zmax, Zmin and 〈Z〉T can be computed as for Y (t), but replacing τ by τ ′ and σ by T − τ ′ in the
eqs. 2 of the main text.

Figures 1(a)-(b) show the profiles of Zmax and 〈Z〉T in function of σ for a fixed pulse duration τ .
Two cases must be distinguished, according to the size of the pulse duration τ compared with the
“proper” pulse duration τθ. This time interval, defined also in the main text, characterises the time
needed by Y to reach its repression threshold θ after the onset of S(t). It can be simply computed

as (with κ =
β

α
):

τθ = −
1

α
log(1 − θ/κ) (3)

Let us consider a periodic train of pulses with a fix duration τ , and analyse the behaviour of 〈Z〉T
in function of the inter-pulse interval σ. Figures 1(a)-(b) show that when σ is close to zero, the
lowest value of the repressor Ymin is above θ, and so Y represses Z permanently. This situation
holds for a non-zero range of σ, in fact as long as Ymin keeps higher than θ. Let us denote by σ0

the first inter-pulse interval for which Ymin = θ. This can be explicitly be computed as:

σ0 =
1

α
log

(

1 +
κ

θ
(eατ − 1)

)

− τ (4)

For larger inter-pulse intervals, σ > σ0, the repressor Y oscillates with minimum values lower than
θ and gives rise to small intervals of time, say τ ′, where the regulatory function of Z is turned
on. Therefore Z starts also to oscillate, with maximum, minimum and mean values increasing
in function of σ. In fact the duration of this new on-phase, during which Z is activated, can be
computed by considering the time taken by Y to pass from Ymin to θ, i.e:

τ ′ =
1

α
log

(

κ − Ymin
κ − θ

)

(with Ymin < θ) (5)
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This result makes sense only if τ ′ > 0, i.e. Ymin < θ, otherwise we define τ ′ = 0. On the other
hand, from eq. (2) above, it is clear that the duration of the activation of Z(t) lasts at most τ , so
τ ′ ≤ τ . Using this condition, the expression of Ymin as a function of (τ, σ) can be substituted in
the last equation, to obtain:

τ ′ = min

(

τ,
1

α
log

(

1 − e−ασ

(1 − e−α(τ+σ))(1 − θ/κ)

))

(6)

The case of long pulses, τ > τθ

Figure 1(a) illustrates this case. Here Ymax stays always above its repression threshold θ, and
τ ′ < τ is always true. In this case Zmax and 〈Z〉T are computed in function of (τ, σ) by using
eqs.(2) of the main text, giving:

Zmax = κ(
1

1 − e−α(τ+σ)
− (1 −

θ

κ
)

1

1 − e−ασ
) (7)

〈Z〉T =
κ

α(τ + σ)
log

(

1 − e−ασ

(1 − e−α(τ+σ))(1 − θ/κ)

)

(8)

with again the assumption σ ≥ σ0 (eq.(4)), otherwise Zmax = 〈Z〉T = 0. In this case Zmax is a
monotonous and increasing function of σ. On the contrary, 〈Z〉T has a maximum which in principle
can be calculated by differentiation of 〈Z〉T with respect to σ.

The case of short pulses, τ < τθ

The second case, illustrated in Fig.1(b), concerns pulse durations smaller than τθ Then there is a
time lapse σ1 between the pulses for which the maximal value of the repressor Ymax is below its
repression threshold θ for all σ > σ1. This inter-pulse interval can be computed by the condition
Ymax(σ1) = θ, which is equivalent to:

σ1 = −
1

α
log

(

1 −
κ

θ
(1 − e−ατ )

)

− τ (9)

Consequently for σ > σ1 the repressor is no longer functional and only the regulation by the
activator signal S has an effect. Thus for σ > σ1, one reaches the value τ ′ = τ in eq.(6), and
therefore Zmax = Ymax, and 〈Z〉T = 〈Y 〉T , as illustrated in Fig.1(b). In this situation a maximal
value appears also for the maximum Zmax when the inter-pulse interval takes the value σ = σ1.
The same interval of time gives an optimal value for 〈Z〉T 〈Z〉T is computed in function of (τ, σ)
by using eqs.(2) of the main text, giving:

〈Z〉T =
min

(

max
(

0, log
(

1−e−ασ

(1−e−α(τ+σ))(1−θ/κ)

))

, σ
)

(τ + σ)
(10)

2



0 100 200 300 400
0

20

40

60

80

100

C
on

ce
nt

ra
tio

n 
(in

 n
M

)

σ (in min)

θ

<Z>T

Zmax

σ0

YL

Y

<Y>

Y

max

T

min

(a)

3



0 100 200
0

20

40

60

80

100

C
on

ce
nt

ra
tio

n 
(in

 n
M

)

σ(in min)

θ

<Z>T

Z max

σ0

YL

Y

<Y>

Y

max

T

min

σ1

(b)

Figure 1: Response of the IFFL to a periodic stimulation in function of σ. < Z >T

the mean concentration averaged over one period T and Zmax the maximum value reached by Z
are represented in function of the inter-pulse interval σ with a fixed pulse duration τ for an IFFL
motif stimulated by a pulsatile signal. The evolution of the extreme values of the repressor Y are
also shown: Ymax the maximum value reached by the protein, < Y >T the mean concentration of
the protein averaged over one period T and Ymin the minimal value reached by the protein. κ =
β

α
(dotted line) represents the stationary state that the protein Y would attain if the stimulation

was constant and YL (dashed line) is the asymptotic value reached by Ymax when the inter-pulse
interval σ becomes very large. σ0 is the minimal inter-pulse interval for the system to respond
and the inter-pulse interval σ1 gives the optimum average response for the system. The numerical
simulation was done with the following parameters: α = 0.01 min−1, β = 1 nM.min−1, θ = 50nM ,
τθ = 70 min. (a) with τ > τθ, τ = 100 min, we have σ1 ∼ 145 min. (b) with τ < τθ, τ = 20 min,
we have σ1 ∼ 25 min.
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Response of the Incoherent Feedforward Loop with the use of Hill functions

In the main text, we used the logic approximation to represent genetic regulations because it allowed
us to obtain some analytical estimations for Zmax and 〈Z〉T . However, such approximation is not
appropriate for many biological systems which display graded responses and do not behave in an
“all-or-none” way. We show in this section two numerical simulations of the Incoherent Feedforward
Loop (IFFL) with the use of classical Hill functions. The equations of this modified model are the
following:

{ .
Y = β1

Xn

θn

1 +Xn
− αY

.
Z= β2

Xn

θn

1 +Xn

θn

2
θn

2 +Y n
− αZ

(11)

where X(t) is an external square signal. The first figure (Fig.2(a)) shows the response with the Hill
exponent n = 2, which is common in transcriptional regulations where the proteins often dimerise
before interacting with the binding site. This graph, which is presented with a logarithmic scale,
clearly shows that this system significantly responds only for specific off-phases durations. A similar
example using a Hill exponent n = 4 is presented in Fig.2(b). The result is close to the response
curve discussed in the the main text (Fig.5(b)). Again the durations between the periodic pulses
must have a minimal value to induce a significant response in the system.

2 Comparison with the model of frequency coding proposed by

Goldbeter et al. [1]

In the main text, we showed that a square signal can increase the average response of a signaling
cycle modeled with linear equations. Here we report that this result is also valid in the case of
nonlinear equations proposed by Goldbeter et al. in [2] [1]. This model was studied to demonstrate
the possibility of a frequency encoding phenomenon by intracellular Ca2+ oscillations. A substrate
protein W is phophorylated thanks to a kinase that is sensitive to Ca2+ oscillations. The fraction
of W in the phosphorylated form is denoted W ∗. The equations of this model are the following:

.

W ∗= (νP /WT )

[

νK/νP
1 − W ∗

K1 + 1 − W ∗
−

W ∗

K2 + W ∗

]

(12)

with :

νK = VMK
Z

Ka + Z
(13)

We have performed numerical simulations of this system with a square signal Z(t), where the
duration σ of the off-phase is varied. By increasing the inter-pulse interval, the average response of
the fraction of phosphorylated protein W ∗ decreases, which agrees with the prediction found in [1],
when the frequency is decreased.

Our study corroborates a conclusion which was already pointed out in [3], namely that what is
crucial in the oscillations encoding is not only the frequency but also the form of the signal and in
particular the ratio τ/σ of the on/off phases. As a matter of fact in the case of Ca2+ oscillations,
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Figure 2: Response of the IFFL to a periodic stimulation in function of σ simulated

with the use of classical Hill function. < Z >T the mean concentration averaged over one
period T is represented in function of the inter-pulse interval σ with a fixed pulse duration τ for an
IFFL motif stimulated by a pulsatile signal. The numerical simulation was done with the equations
(11) of Additional material and the following parameters: α = 0.01 min−1, β1 = 10 nM.min−1,
β2 = 1000 nM.min−1, θ1 = 50 nM, θ2 = 50 nM, τ = 100 min. (a) with a Hill coefficient n = 2, we
have σ1 ∼ 360 min. (b) with a Hill coefficient n = 4, we have σ1 ∼ 420 min.
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Figure 3: Average value of the fraction of the phosphorylated protein < W ∗ > in re-

sponse of a pulsatile signal for two different values of the Michaelis constants K1 and

K2. This graph shows the average value of the fraction of the phosphorylated protein < W ∗ > over
one period when the system of equ (12-13) is submitted to a pulsatile signal with an on phase of
duration τ and off duration σ. The simulation was done with the same parameters of [1]: νP = 5
µM.s−1, VMK = 40 µM.s−1, Ka = 2.5, WT = 1 µM and with K1 = K2 = 0.01 µM.s−1 or K1 =
K2 = 10 µM.s−1. The frequency encoding is more efficient in the case of small Michaelis-Menten
constants.

the level of the stimulus mainly varies the off phase between the Ca2+ spikes but the latter have
roughly a constant duration. For example in [1], the Ca2+ oscillations could be roughly modelled
by square oscillations with τ ∼ 0.2 sec and σ varying from 0 to 3 sec. We find that the coding
is indeed allowed in this range of pulse patterns. Furthermore, as shown in Fig.3, we retrieve the
property that the frequency coding should be more efficient when the cycle is in the “zero-order
ultrasensivity” regime (small Michaelis Menten constants) as compared with the linear regime.
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