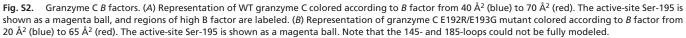

Supporting Information


Kaiserman et al. 10.1073/pnas.0811968106

PNAS PNAS

hGzmA	1	IIGGNEVTPHSRPYMVLLSLDRKTICAGALIAKDWVLTAAHONLNKRSQVILGAHSITREEPTKQI
hGzmB	1	IIGGHEAKPHSRPYMAYLMIWDQK-SLKRCGGFLIQDDFVLTAAHO-WGSSINVTLGAHNIKEQEPTQQF
mGzmC	1	IIGGNEISPHSRPYMAYYEFLKVGGKKMFCGGFLVRDKFVLTAAHO-KGRSMTVTLGAHNIKAKEETQQI
hGzmA	67	MLVKKEFPYPCYDPATREGDLKLLQLTEKAKINKYVTILHLPKKGDDVKPGTMCQVAGWGRTHNSASWSD
hGzmB	69	IPVKRPIPHPAYNPKNFSNDIMLLQLERKAKRTRAVQPLRLPSNKAQVKPGQTCSVAGWGQTAPLGKHSH
mGzmC	70	IPVAKAIPHPDYNPDDRSNDIMLLKLVRNAKRTRAVRPLNLPRRNAHVKPGDECYVAGWGKVTPDGEFPK
hGzmA hGzmB mGzmC	139	TLREVNITIIDRKVCNDRNHYNFNPVIGMNMVCAGSLR GGRDSC~ NGDSGSPLLCEGVFRGVTSFGLENK TLQEVKMTVQEDRKCESDLRHYYDSTIELCVGDPE IKKTSF~ KGDSGGPLVCNKVAQGIVSYGRN TLHEVKLTVQKDQVCESQFQSSYNRANEICVGDSK ~IKGASF EEDSGGPLVCKRAAAGIVSYGQT
hGzmA hGzmB mGzmC	202	CGDPRGPGVYILLSKKHLNWIIMTIKGAV NGMPPRACTKVSS-FVHWIKKTMKRY- DGSAPQVFTRVLS-FVSWIKKTMKHS-

Fig. S1. Register shift in granzyme C. Structural alignment of granzyme C with human granzyme A and granzyme B. Amino acids are colored by hydrophobicity: orange, hydrophobic; green, polar; blue, basic; red, acidic; magenta, cysteine. Residues involved in the gzmC register shift are background colored and are aligned based on the structure. Arrow indicates the direction of register shift.

Other Supporting Information Files

Table S1 (PDF)