Supporting Information

10.1073/pnas.0812715106

Fig. S1. *Iys2* Δ *A746-NR* reversion spectra in repair-defective backgrounds. The sequence of the \approx 150-bp reversion window is shown. The site of the 1-nt deletion that defines the allele is indicated by a dash and additional changes from the WT sequence are in lowercase. Simple insertions are indicated by "+" below the sequence and other mutation types are indicated above the sequence. The positions of HS1 and HS2 are indicated by light gray shading; complex insertions ("cins") at these positions are shaded dark gray. "Large DEL" refers to 95-nt deletions with endpoints in 10-nt direct repeats; "cdel" corresponds to -2 events associated with nearby base substitutions. The number ("n") of independent revertants sequenced from each background is indicated.

Table S1. Yeast strains

Strain	Relevant repair genotype	Construction
SJR1472	msh2∆::hisG-URA3-hisG	OST of SJR1467 with AatII/Xbal-digested GC1914 (1)
SJR2645	rad14∆::kan	OST of SJR1467 with PCR fragment amplified from pFA6a-kanMX6 (2)
SJR2672	rad14∆::kan msh2∆::hisG-URA3-hisG	OST of SJR2645 with AatII/Xbal-digested GC1914 (1)
SJR2733	rad52∆::kan	OST of SJR1467 with PCR fragment amplified from pFA6a-kanMX6 (2)
SJR2734	msh2∆::hisG-URA3-hisG rad52∆::kan	OST of SJR1472 with PCR fragment amplified from pFA6a-kanMX6 (2)
SJR2773	rad14∆::kan pms1∆::hyg	OST of SJR2645 with PCR fragment amplified from hphMX4 (3)
SJR2778	rad14∆::kan rad52∆::hyg	OST of SJR2645 with PCR fragment amplified from hphMX4 (3)
SJR2779	rad14∆::kan msh2∆::hisG-URA3-hisG rad52∆::hyg	OST of SJR2672 with PCR fragment amplified from hphMX4 (3)
SJR2808	rad14∆::kan pms1-G128A,I854M	Sequential TST of SJR2645 with pSR760 [<i>pms1-I854M</i> allele (4)] and pYI-pms1-128 [<i>pms1-G128A</i> allele (5)]

OST, 1-step allele transplacement; TST, 2-step allele transplacement. All strains were derived from SJR1467 (MATα ade2-101_{oc} his3Δ 200 ura3Δ Nco lys2Δ A746-NR) by transformation.

Greene CN, Jinks-Robertson S (1997) Frameshift intermediates in homopolymer runs are removed efficiently by yeast mismatch repair proteins. *Mol Cell Biol* 17:2844–2850.
Longtine MS, et al. (1998) Additional modules for versatile and economical PCR-based gene deletion and modification in *Saccharomyces cerevisiae*. *Yeast* 14:953–961.
Goldstein AL, McCusker JH (1999) Three new dominant drug resistance cassettes for gene disruption in *Saccharomyces cerevisiae*. *Yeast* 15:1541–1553.
Welz-Voegele C, et al. (2002) Alleles of the yeast *PMS1* mismatch-repair gene that differentially affect recombination- and replication-related processes. *Genetics* 162:1131–1145.
Tran PT, Liskay M (2000) Functional studies on the candidate ATPase domains of *Saccharomyces cerevisiae* MutLα. *Mol Cell Biol* 20:6390–6398.

	Total	21	14	9	S	4	m	2	2	m	-	1	٢	-	-	-	-	1	-	-	70
Number of events	rad52∆ msh2∆			-	-																2
	rad52∆	-	-	2			-						-						-	-	∞
	rad14∆ pms1-GA,IM	1	1		1		1			1								1			9
	rad14∆ pms1∆		-																		1
	rad14∆ rad52∆ msh2∆	ĸ	1	2	1			1							1	1	1				11
	rad14∆ rad52∆	m	2		2	1		1	2	2		1		1							15
	rad14∆ msh2∆																				0
	rad14∆	11	80			m	1				1										24
	msh2∆																				0
	M	7		-																	m
			 	I I	1		 	I.	I I	 		I I	I	I.	l J	I I	⊢ ~	ڻ ،		ڻ '	
t 1 position	5	-		I	Ļ	-		I	- 4	-		I	I	I	I	I	-	I	T	Ē	
	т т Т		J	_1		J	J	J	J	J		J	J	J	J	J		J	J		
	F	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
	U U		U 1	U 1	I I	I I	-	⊢ ⊥	I I	I I	U 1	⊢ IJ	-	U 1	Α	 ▼	I I	I I	I I	1	
Hotspo	U		I	I	I	I	I	F	I	I	I	F	I	 *	I		I	Ļ	I	I	Total

The 3T run where the selected frameshift occurs is italicized and bold; the G where base substitutions most frequently occur is bold and underlined. A base substitution outside of the core hotspot sequence is indicated by an asterisk. *pms1-GAIM=pms1-G128A*, 1854M.

Lehner and Jinks-Robertson www.pnas.org/cgi/content/short/0812715106

PNAS PNAS

	∆ Total	37	7	4	m	2	2	2	2	-	-	-	-	-	-	-	-	-	1	-	-	-	72
ts	rad52∆ msh2.	m			1			-															5
	rad52∆	6	-	٢			-		-												-	-	15
	rad14∆ pms1-GA,IM	~		-		-																	ĸ
	rad14∆ pms1∆																						0
Number of eve	rad14∆ rad52∆ msh2∆	5	1	1				1											1	1			10
	rad14∆ rad52∆	11	m	-			-		-			-	1	1	1	-	-	-					24
	rad14∆ msh2∆										1												1
	rad14∆	7	2		2	-				-													13
	msh2∆																						0
	WT	-																					-
	ד ט פ	- - -	 - L	- T -	– – – –	A	 0	 	T – T	T	 	 - 	T A –	– A A	T – C	- - L	 	т т -	- T -	T	T	T – C	
on	T T	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
tspot 2 positio	GACT		T	 	 	- G Т	 	T	A	A	A	- G Т	I I I	- G Т	A	ן ק ו	A	 	T	- T T -	– G Т	 	al
Ч										*	*			*	*								Tot

indicated by an asterisk.

Table S3. Distributions of hotspot 2 complex events in different strain backgrounds

PNAS PNAS