Supplemental material accompanying

The DExD/H-box RNA helicase DDX19 is regulated by an α -helical switch

Ruairi Collins, Tobias Karlberg, Lari Lehtiö, Patrick Schütz, Susanne van den Berg, Lars-Göran Dahlgren, Martin Hammarström, Johan Weigelt & Herwig Schüler

From the Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-17177 Stockholm, Sweden.

TABLE S1. DDX19 crystal structures: Data collection and refinement statistics.

Values for the highest resolution shell are shown in parentheses.

Structure	apo enzyme	RNA complex
Ligand	ADP	ADPNP
PDB entry	3EWS	3G0H
Beamline	BL14-2	ID-29
Wavelength (Å)	0.91841	0.97931
Space group	P2 ₁	$P2_{1}2_{1}2_{1}$
Cell dimensions		
<i>a</i> , <i>b</i> , <i>c</i> (Å)	81.6, 47.6, 124,7	41.6, 81.1, 124.7
β (°)	90.0, 95.4, 90.0	90.0, 90.0, 90.0
Resolution (Å)	20.0 - 2.7 (2.8-2.7)	30.0-2.7 (2.8-2.7)
R _{merge} [§]	0.067 (0.40)	0.145 (0.55)
I / (\vec{qI})	14.5 (4.3)	9.1 (2.5)
Completeness (%)	99.1 (99.5)	99.3 (99.7)
Redundancy	4.7 (4.9)	3.3 (3.2)
Refinement		
Resolution (Å)	19.9 – 2.7	29.6 - 2.7
$R_{work}^{\dagger}/R_{free}^{\ddagger}$	0.188/0.260	0.220/0.275
No. atoms		
Protein	6428	3225
Ligands	54	163
Water	26	-
<i>B</i> -factors ($Å^2$)		
Protein	70.0	13.8
Ligands	46.5	26.5
Water	42.8	-
R.m.s deviations		
Bond lengths (Å)	0.004	0.007
Bond angles (°)	0.77	1.1
Ramachandran plot		
Favored (%)	96	96.8
Additionally allowed (%)	4	3.2

 $R_{\text{merge}} = \Sigma_i |I_i - \langle I \rangle| / \Sigma \langle I \rangle$, where I is an individual intensity measurement and $\langle I \rangle$ is the average intensity for this reflection with summation over all data.

 $\dagger R_{work}$ is defined as $\Sigma ||F_{obs}| - |F_{calc}|| / \Sigma |F_{obs}|$, where F_{obs} and F_{calc} are observed and calculated structure-factor amplitudes, respectively.

 $\ddagger R_{\text{free}}$ is the R factor for the test set (5-10 % of the data).

FIGURE S1. Comparison of DDX19 with other DEAD-box helicases. Sequence alignment of human DDX19, DDX25, DDX48, and *Drosophila* Vasa. The conserved domains and motifs are indicated below the alignment (1). The cleft insertion helix $\alpha 1$ is emphasized in light green. Residues that interact with the cleft-inserted helix are indicated by green upward arrowheads, and helix $\alpha 1$ residues that interact with those residues in other parts of the protein are indicated by green downward arrowheads. RNA interacting residues are indicated by blue arrowheads.

FIGURE S2. Superposition of the DDX19 (pdb entry 3G0H) and Vasa RNA complexes (2DB3). DDX19 is shown in red (conserved domain-1) and yellow (conserved domain-2) with the poly(U) ssRNA in green and the N-terminal helix (indicated) in green. Vasa is shown in blue, with the poly(U) ssRNA in blue and the N-terminal helix (indicated) in gold.

FIGURE S3. ATPase activities of DDX19 proteins used in this study. *A*, influence of double stranded RNA on the ATPase rates of DDX19. Left, full-length protein: Rates measured (from left to right) with 0.05 and 0.5 mg/ml dsRNA, and in the simultaneous presence of 0.05 mg/ml ssRNA and 0, 0.005 and 0.5 mg/ml dsRNA. Center, $E^{54} - E^{475}$: Rates measured (from left to right) with 0.05 and 0.5 mg/ml dsRNA. Renter, $E^{54} - E^{475}$: Rates measured (from left to right) with 0.05 and 0.5 mg/ml dsRNA. Right, $K^{92} - E^{475}$: Rates measured (from left to right) with 0.05 and 0.5 mg/ml dsRNA. Right, $K^{92} - E^{475}$: Rates measured (from left to right) with 0.05 and 0.5 mg/ml dsRNA. Right, $K^{92} - E^{475}$: Rates measured (from left to right) with 0.05 and 0.5 mg/ml dsRNA *B*, ATPase rates in the presence of varying amounts of ssRNA. Results are those shown in Fig. 2*B* of the main text, but with the addition of RNAse-treated controls. The concentration of ssRNA present is indicated for each column. As in the main text, all activities are relative to the value measured for full-length DDX19 in the presence of 0.5 mg/ml ssRNA (0.77 ± 0.2 min⁻¹).

References

1. Cordin, O., Banroques, J., Tanner, N. K., and Linder, P. (2006) Gene 367, 17-37