SUPPLEMENTAL

Methods:	
Cloning:	
Human IP6K2	and 3 were cloned from IMAGE clones using the primers listed below:
IP6K2	5'-GCATGAATTCATGAGCCCAGCCTTCAG-3'
	5'- TGAGGCAGTGGGGAGTGAGCGGCCGCAGC-3'
IP6K3	5'-GCATGAATTCATGGTTGTGCAAAACAGCG -3'
	5'-GCATGTCGACTCATTCTCCCTCTTGGAT-3'
IFORS	

The primers include the recognition sequences for EcoRI and SalI respectively. The gene was amplified using PCR and cloned into the mammalian vector pEGFP (Clontech). Plasmid DNA was transfected into HeLa cells and stably expressing clones were selected as explained in Materials and Methods.

In vitro kinase assays:

The purification of all enzymes used in the protein kinase panel and the conditions for the *in vitro* assays have been enlisted and reviewed in the references (27-29).

LEGENDS TO SUPPLEMENTAL FIGURES AND TABLES

Figure S1:

A Structure of the compound used in this study

N2-(*m*-(<u>T</u>rifluoromethyl)benzyl), N6-(*p*-<u>n</u>itrobenzyl)<u>p</u>urine (TNP)

B and C Molecules structurally related to TNP.

B N2-(m-(Trifluoromethyl)benzyl), N6-(p-aminobenzyl)purine (TAP) and

C N2-(*m*-(Trifluoromethyl)benzyl), N6-benzyl purine (TBP), see discussion.

Figure S2: Inhibition of InsP₇ synthesis by TNP in cells over-expressing IP6K1, 2 and 3.

Bar chart depicting change in $InsP_7$ as a percentage of $InsP_6$ in HeLa cells expressing GFP-IP6K1, GFP-IP6K2 and GFP-IP6K3 in absence or presence of 10 μ M TNP. In each case, cells were labeled with [2-³H] inositol and inositol phosphates were extracted as explained under Materials and Methods. Data are average of triplicate experiments and error bars represent the standard deviation of the data.

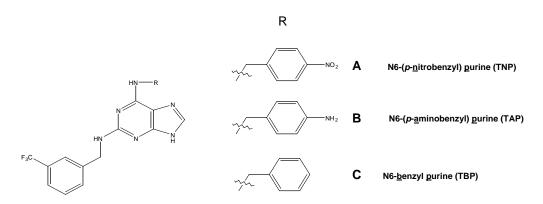
Figure S3: HPLC analysis of inositol phosphates extracted from yeast cells.

Yeast cells were labeled with [³H]inositol. Cells were treated with DMSO or TNP (10 μ M). The soluble inositol phosphates were extracted and separated as explained in Materials and Methods. The HPLC of InsP₆ and InsP₇ from Wt, Wt+TNP and *kcs1*\Delta;*vip1*\Delta cells, *vip1*\Delta+TNP and *kcs1vip1*\Delta\Delta cells and *ddp1*\Delta, *ddp1*\Delta+TNP and *ddp1kcs1*\Delta\Delta cells.

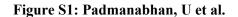
Padmanabhan, U et al - Inhibitor for IP6Ks

Table S1: Effect of TNP on protein kinase activity

The panel of protein kinases was tested for loss of activity against 3 concentrations of the TNP *viz.*, 100 μ M, 10 μ M and 1 μ M. Results are presented as kinase activity as a percentage of that in control incubations (average of duplicate determinations). For each concentration, left hand column shows the percentage activity with respect to controls and right hand column shows % variation in the activity within duplicates.


		Concentration of TNP					
Kinase Name	<u>1</u> μ	1 μM		10 µM		100µM	
	%	+/-	%	+/-	%	+/-	
MKK1	92	0	110	2	131	0	
ERK1	75	5	87	5	86	5	
ERK2	88	7	97	2	99	1	
JNK1	81	3	86	2	82	4	
JNK2	87	4	94	2	78	1	
JNK3	78	8	87	2	83	3	
Ρ38αΜΑΡΚ	143	6	139	2	139	1	
Ρ38βΜΑΡΚ	125	4	119	8	108	7	
р38у МАРК	81	3	90	4	88	1	
р38бМАРК	73	2	84	2	85	9	
ERK8	88	3	99	6	113	0	
RSK1	99	6	120	5	90	7	
RSK2	103	7	91	1	94	3	
PDK1	83	1	85	5	91	2	
ΡΚΒα	117	0	123	1	114	1	
ΡΚΒβ	80	2	89	4	94	4	
SGK1	105	3	117	9	122	6	
S6K1	119	9	110	1	101	2	
РКА	78	1	82	3	92	4	
ROCK 2	86	4	95	2	86	2	
PRK2	93	3	102	7	109	1	
РКСа	80	5	87	0	83	3	
PKC zeta	79	3	96	6	94	6	
PKD1	86	6	93	3	92	7	
PKD1	86	6	93	3	92	7	
MSK1	93	4	101	2	112	2	

Padmanabhan, U et al - Inhibitor for IP6Ks


MNK1	106	5	125	1	148	1
MNK2	81	4	94	7	85	9
МАРКАР-К2	77	0	83	5	95	4
МАРКАР-КЗ	80	8	93	1	104	14
PRAK	117	8	126	3	126	8
САМККа	151	6	162	1	138	2
САМККЬ	89	2	95	4	101	2
CAMK1	77	3	93	0	90	6
SmMLCK	77	3	83	8	73	6
РНК	103	4	123	4	110	1
СНК1	69	1	67	2	86	2
СНК2	77	2	100	0	95	7
GSK3b	96	2	128	3	120	7
CDK2-Cyclin A	110	6	108	2	111	1
PLK1	117	1	112	2	111	7
PLK1 (Okadaic Acid)	94	2	107	6	99	2
AURORA B	42	2	67	7	69	1
AURORA C	91	3	101	13	106	1
AMPK	87	2	97	9	99	1
MARK3	100	8	117	12	111	6
BRSK2	80	8	92	3	93	1
MELK	94	3	109	12	105	9
CK1	96	1	89	1	90	8
CK2	92	1	94	5	98	7
DYRK1A	100	6	118	7	115	1
DYRK2	99	8	103	2	100	2
DYRK3	80	2	88	4	92	2
NEK2a	101	1	108	5	110	9
NEK6	88	2	85	6	81	5
NEK7	71	8	83	6	87	9
IKKb	97	3	102	1	93	3
PIM1	76	2	92	8	98	4
PIM2	103	2	107	1	107	6
PIM3	89	2	110	1	109	2

Padmanabhan, U et al - Inhibitor for IP6Ks

SRPK1	133	2	137	1	131	1
MST2	99	9	101	1	111	7
EFK2	82	1	90	2	95	2
HIPK2	99	1	100	1	104	2
HIPK3	96	1	100	8	103	3
PAK4	101	2	108	1	111	2
PAK5	98	1	95	1	100	2
PAK6	94	5	94	1	90	7
Src	77	2	83	9	87	6
Lck	73	2	108	1	115	1
CSK	100	2	95	6	99	2

N2-(*m*-(<u>T</u>rifluoromethyl)benzyl)

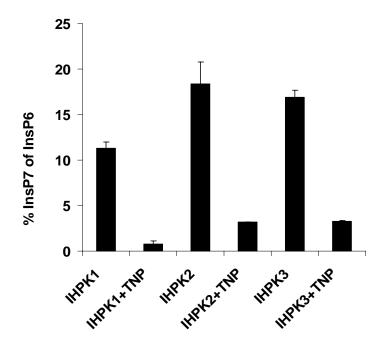


Figure S2: Padmanabhan, U et al.

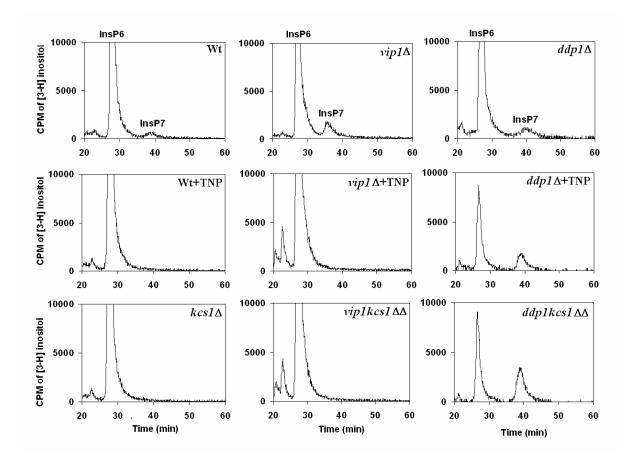


Figure S3: Padmanabhan, U et al.