COMBINED X-RAY AND NMR ANALYSIS OF THE STABILITY OF THE CYCLOTIDE CYSTINE KNOT FOLD THAT UNDERPINS ITS INSECTICIDAL ACTIVITY AND POTENTIAL USE AS DRUG SCAFFOLD

Conan K. Wang¹, Shu-Hong Hu¹, Jennifer L. Martin¹, Tove Sjögren², Janos Hajdu², Lars Bohlin³, Per Claeson³, Ulf Göransson³, K. Johan Rosengren^{1,2}, Jun Tang⁴, Nin-hua Tan⁴, and David J. Craik¹

From The University of Queensland¹, Institute for Molecular Bioscience, Brisbane, Queensland, 4072, Australia, Molecular Biophysics², Department of Cellular and Molecular Biology, Biomedical Centre, Uppsala University, P.O. Box 596, SE-75124 Uppsala, Sweden, Pharmacognosy³, Department of Medicinal Chemistry, Biomedical Centre, Uppsala

University, P.O. Box 574, SE-75123 Uppsala, Sweden, and

Kunming Institute of Botany⁴, Chinese Academy of Sciences, Kunming 650204, Yunnan, China Running head: cyclotide structure and stability

Address correspondence to: David J. Craik, Institute for Molecular Bioscience, University of Queensland, Brisbane, Qld, 4072, Australia. Tel: 61-7-3346 2019. Fax: 61-7-3346 2029. E-mail: d.craik@imb.uq.edu.au

Supplemental Data

Table of Contents

<u>Table S1.</u> Hydrogen Bond Interactions with Water Molecules in varv F	bage S2
Fig. S1. TOCSY and NOESY spectra of varv F	S 3
Fig. S2. Amino acid composition of cyclotide sequences and sequences from the PDB	S4

					temperature					distance	temperature
residue		WAT ^a	distance (Å)	factor	residue		WAT ^a	(Å)	factor		
CYS	1	Ν	49	2.81	23.13	TYR	11	OH	59	2.75	53.20
CYS	1	Ο	39	3.17	36.31	THR	12	0	38	2.79	25.76
CYS	1	Ν	43	3.42	36.33	THR	12	Ογ1	39	2.67	36.31
GLY	2	Ν	49	2.89	23.13	ALA	13	Ν	41	3.11	30.25
GLY	2	Ν	43	2.74	36.33	GLY	14	0	34	2.72	22.98
GLY	2	Ο	69	2.63	39.47	GLY	14	Ν	55	2.97	42.83
GLU	3	Ν	49	3.46	23.13	CYS	15	0	38	3.35	25.76
GLU	3	Oe1	35	2.95	28.42	CYS	15	0	71	2.91	44.86
THR	4	Ο	32	3.32	18.64	CYS	15	0	65	2.67	51.00
THR	4	Ογ1	32	2.72	18.64	SER	16	Ν	34	3.35	22.98
THR	4	0	35	2.98	28.42	SER	16	Ογ	34	2.84	22.98
THR	4	Ογ1	54	2.60	39.52	SER	16	0	61	3.39	34.96
THR	6	Ν	32	3.08	18.64	CYS	17	Ν	30	3.30	5.44
THR	6	Ογ1	32	2.83	18.64	CYS	17	0	47	2.70	34.20
LEU	7	0	37	2.64	29.94	SER	18	Ογ	61	2.74	34.96
LEU	7	Ν	52	3.14	32.44	SER	18	Ογ	62	2.69	44.46
GLY	8	0	51	2.75	39.76	TRP	19	0	42	2.65	27.88
GLY	8	0	48	3.45	41.24	TRP	19	0	68	3.40	35.93
GLY	8	0	74	3.14	43.54	CYS	22	0	49	2.70	23.13
THR	9	0	35	3.24	28.42	THR	23	0	31	3.41	16.83
THR	9	Ογ1	37	2.66	29.94	THR	23	Ογ1	31	3.02	16.83
THR	9	0	52	3.26	32.44	THR	23	0	34	3.22	22.98
THR	9	Ογ1	45	3.42	38.35	THR	23	Ογ1	61	3.09	34.96
THR	9	Ογ1	48	2.84	41.24	THR	23	Ογ1	62	3.33	44.46
CYS	10	Ν	30	3.29	5.44	ASN	25	Ν	46	2.90	36.67
CYS	10	0	38	3.07	25.76	ASN	25	Οδ1	46	3.49	36.67
CYS	10	0	44	2.81	29.39	GLY	26	Ν	31	3.13	16.83
CYS	10	0	71	3.05	44.86	GLY	26	0	33	2.81	33.46
TYR	11	OH	40	3.14	28.64	PRO	28	0	43	2.90	36.33
TYR	11	0	53	2.78	44.43	ILE	29	0	50	3.13	35.76

Table S1. Hydrogen Bond Interactions with Water Molecules in varv F

^aWater molecules

<u>Fig. S1.</u> TOCSY and NOESY spectra of varv F. Fingerprint regions of a 80 ms TOCSY spectrum (A) and a 200 ms NOESY spectrum in 90% H_20 and 10% D_20 at 298K. Spin systems are shown in the TOCSY spectrum and the sequential connectivities in the NOESY spectrum. The one-letter code for amino acids as well as the residue number is used for the sequence assignments. Tyr-15 has a NH chemical shift of 11.61 ppm and is not included in the diagram to improve visibility of the other peaks. Some peaks that are only visible at lower threshold levels are indicated by boxes.

Fig. S2. Amino acid composition of cyclotide sequences and sequences from the PDB. Amino acid CyBase; calculated for cyclotides (extracted from compositions were http://research1t.imb.uq.edu.au/cybase) and are shown on the left of the figure. Amino acid compositions for non-redundant compilation of the PDB (from PISCES; а http://dunbrack.fccc.edu/Guoli/PISCES.php) are shown on the right of the figure.