

**Supplemental Figure 1.** Schematic drawing of the layered structure of the shell of *P. fucata* and its relationship with the mantle tissue. *OF*, outer fold; *MF*, middle fold; *IF*, inner fold. In the lower panel, the mantle tissue is artifically divided into two regions: the mantle edge corresponding to the prismatic calcite shell layer and the mantle pallial corresponding to the nacreous aragonite layer.



**Supplemental Figure 2.** Characterization of the total glycoproteins in different shell extracts by Alcian Blue staining (*left panel*), combined Alcian Blue/silver nitrate staining (*middle panel*) and periodic acid-Schiff staining (*right panel*). *Lane 1*, EDTA-soluble matrix of the nacre; *Lane 2*, the denatured fraction of the EDTA-insoluble matrix of the nacre; *Lane 3*, EDTA-soluble matrix of the calcitic prisms; *Lane 4*, the denatured fraction of the EDTA-insoluble matrix of the calcitic prisms; *Lane 5*, recombinant Prisilkin-39.

Annotation: the prism EISM extracts showed a heavily stained profile after being incubated with the Alcian Blue reagent (*left panel, lane4*). Similarly, total glycoproteins in the prism EISM extracts were visualized at higher sensitivity and staining ability using a combined Alcian Blue/silver staining method (*middle panel, lane 4*). No positive staining results were obtained in our attempts to stain the shell matrix extracts with PAS (*right panel*), both on gels and on blots. Moreover, although recombinant Prisilkin-39 failed to stain blue with the normal Alcian Blue reagent (*left panel, lane 5*), it could be clearly detected using the more sensitive Alcian Blue/silver staining method (*middle panel, lane 5*).