SUPPLEMENTAL DATA

<u>FIG. S1.</u> Sumoylation of long isoform NFATc1/C is very labile and the short isoform NFATc1/A is only weakly sumoylated. (A) During preparation sumoylated NFATc1/C has to be protected by NEM. As in Fig. 2*A*, except in parallel, a lysate was prepared in the absence of N-ethylmaleimide (NEM). (B) Plasmids encoding NFATc1/A, wild type or K349R, were transfected into 293T HEK cells, either with those expressing Flag-SUMO1 or Flag. After 6 hrs of T/I treatment, immunoprecipitation with anti-Flag and immunoblot by anti-HA were performed for the immunoprecipitated as well as the lysate proteins. (C) A luciferase reporter assay was performed as documented in Fig. 4A, but the short isoform NFATc1/A and NFATc1/AK349R were subjected to analysis.

<u>FIG. S2</u>. Exogenous short, long and K349/702/914R isoforms of NFATc1 exhibit an equal expression. Retrovirally infected A3.01 cells expressing mock-, c1/A-, c1/C- or K349/702/914R-ER (Fig. 3 and 4), were taken to check exogenous NFATc1 expression (anti-ER α) by confocal microscopy and western blot.

<u>FIG. S3.</u> Colocalization with SUMO/PML-bodies depends on its C-terminal modification with SUMO. 293T HEK cells were transfected with plasmids encoding pHA-NFATc1/C or the different Δ SUMO mutants along with pcFlag-SUMO1, and stimulated with T/I+CaCl₂ for 1 hr. (A) Nuclear translocation is unaffected by (non-) sumoylation of NFATc1/C. IF was performed with anti-NFATc1 and anti-SUMO1 followed by confocal microscopy. The expression pattern of approximately 100 cells was determined for each DNA transfected. Mean values of three independent experiments are represented as mean +/- SD. (B) Transient transfection is sufficient to sumoylate NFATc1/C and to direct it into PML-nbs. IF was performed with anti-NFATc1, anti-SUMO1, and anti-PML. Triple localization of NFATc1, SUMO1 and PML-nbs was analyzed by confocal microscopy. The scale bar represents 10 µm. (C) The position and amount of sumoylation dictates the degree of colocalization with SUMO-bodies. Experimental setup as in *A*.

<u>FIG. S4</u>. Exogenous Ubc9 does not enhance sumoylation of NFATc1, but exogenous PIAS1 supports recruitment to PML-nb. (A) Cotransfection of NFATc1/C and SUMO1 with Ubc9 in 293 T HEK cells, followed by IP and IB as before. (B) Cotransfection of NFATc1/A, NFATc1/C or the Δ SUMO-mutant and SUMO1 with PIAS1 in 293 T HEK cells, followed by IF as before. The amount of merging with SUMO1 or with PML-nbs was evaluated and given as a graph showing the percentage of cells merging with SUMO and PML, respectively (calculation from three independent experiments).

<u>FIG. S5.</u> Nuclear translocation and function of NFATc1-ER constructs are not regulated properly by TPA/Ionomycin (T/I) alone. (A) Human A3.01 cells, retrovirally infected with NFATc1/C-ER, selected by zeocin, were stimulated by T/I or Tm+T/I for 4 hrs. IF was performed with anti-ER α antibody and DAPI to detect exogenous NFATc1 and nuclei, respectively, followed by laser scanning confocal microscopy. (B) A3.01 cells expressing HA-(mock)-, NFATc1/A-, c1/C- and K349/702/914R-ER and selected by zeocin, were left unstimulated, stimulated with Tm, T/I or Tm+T/I for 16 hours. 5 µg RNA were subjected to RNase protection assay using the hCK1 template set. Out of that panel tested A3.01 cells only express IL2.

FIG.S1

Nayak et al.

FIG. S2

FIG. S4

FIG. S5

