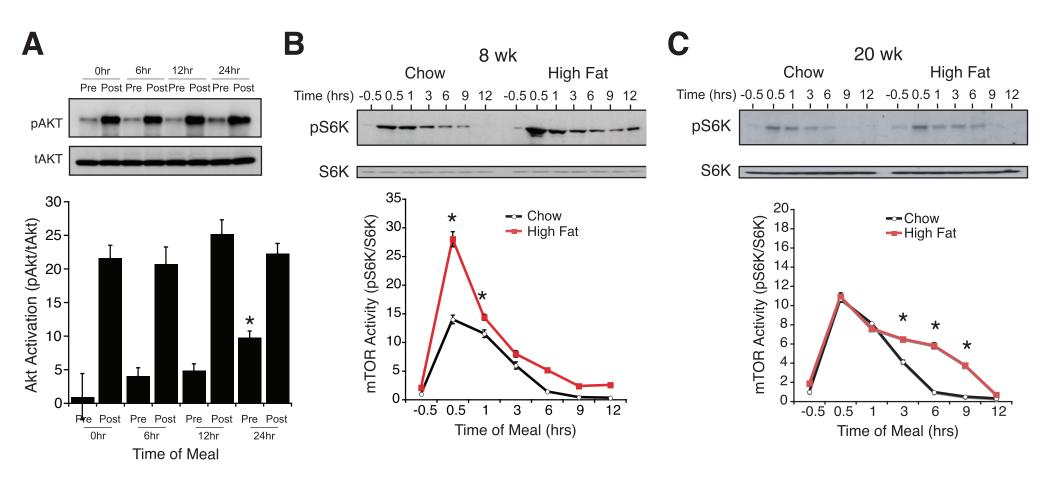
## Supplementary Materials for

### Obesity Increases Vascular Senescence and Susceptibility to Ischemic Injury Through Chronic Activation of Akt and mTOR

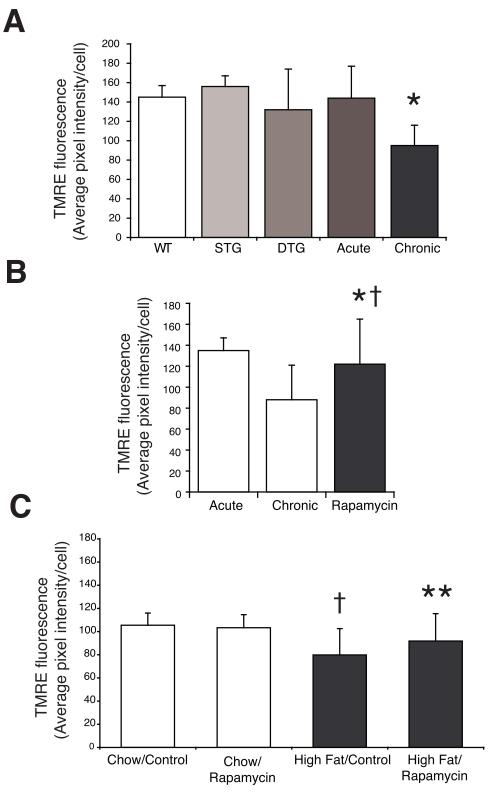
Chao-Yung Wang, Hyung-Hwan Kim, Yukio Hiroi, Naoki Sawada, Salvatore Salomone, Laura E. Benjamin, Kenneth Walsh, Michael A. Moskowitz, James K. Liao\*


\*To whom correspondence should be addressed. E-mail: jliao@rics.bwh.harvard.edu

Published 17 March 2009, *Sci. Signal.* **2**, ra11 (2009) DOI: 10.1126/scisignal.2000143

#### This PDF file includes:

Fig. S1. Increased Akt and mTOR activation following a high-fat diet. Fig. S2. Endothelial mitochondrial membrane potential.


# Figure S1



#### Fig. S1. Increased Akt and mTOR activation following high-fat diet.

(A) Akt is activated to a greater extent after each high-fat diet meal. Aortic tissues were isolated from mice trained to receive 3 high-fat diet meals a day at 0, 6 or 12 hours. Akt phosphorylation was determined before (Pre) or after (Post) each meal. Each group contained 3 mice. \*P<0.05 when compared to value at 0 hr. (**B&C**) Immunoblots showing time-dependent effects of high fat or chow diet on S6K phosphorylation and pS6K/S6K ratio following feeding at 8 and 20 weeks. \*P<0.05 when compared to chow diet. Densitometric analyses of the ratio for each blot are shown in the bottom panels. Results are presented as mean ± SD. Each lane represents one or two mice. Each experiment was performed three times.

# Figure S2



### Fig. S2. Endothelial mitochondrial membrane potential.

Mitochondrial membrane potentials were analyzed in aortic endothelial cells from **(A)** WT, wild-type; STG, single transgenic mice (tet-myrAkt); DTG, double transgenic mice (VE-cadherin-tTA/tet-myrAkt) without induction and with short-term (ST) or long-term (LT) Akt induction. (\*P<0.05 when compared to DTG and DTG-ST), **(B)** Double mutant Akt mice (DTG) with short-term (DTG-ST) or long-term Akt activation with vehicle (DTG-LT) or rapamycin (DTG-LT/Rapa) treatment (\*P<0.05 when compared to DTG-LT, †P=0.23 when compared to DTG-ST) and **(C)** Chow diet or High fat diet fed mice receiving rapamycin or vehicle (control) treatment (\*P<0.05 when compared to high fat fed group without rapamycin; †P=0.017 when compared to chow diet fed group). Experiments were performed three times using the fluorescence probe, tetramethylrhodamine ethyl ester (TMRE, Molecular probes).