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S1 Mathematical Solutions and Analysis of the Models

Studied in the Main Text

S1.1 Two-Population Model

S1.1.1 Solutions

We begin with Eqs. 2 and 3 from the main text, with the addition of time-independent inputs

I± = IE ± II :

τ
dr+
dt

= −(1 + w+)r+ + wFF r− + I+ (S1)

τ
dr−
dt

= −r− + I− (S2)

Recall that w+ = w(kI − 1) and wFF = w(kI + 1).

To express the solutions, it is helpful to define the following pulse function:

gw+(t) =
e−

t
τ − e−(1+w+) t

τ

w+

(S3)

We will see that wFFgw+(t) represents the characteristic response in r+ to input to r−: an

initial condition of r−(0) produces a response in r+ of r−(0)wFFgw+(t), while input to r− is

filtered by (convolved with) 1
τ
wFFgw+(t) to produce response in r+. gw+(t), as a difference of

exponentials, is a pulse response: it is 0 at t = 0, goes to 0 as t→∞, and peaks in between.



Murphy and Miller – February 10, 2009 3

It peaks at tpeak = τ log(1+w+)
w+

, which decreases monotonically with increasing w+ from τ for

w+ → 0 (which represents perfectly balanced excitation and inhibition, kI → 1) to 0 for

w+ → ∞. The value at the peak is
(

1
1+w+

)w++1

w+ which decreases monotonically from 1 for

w+ = 0 to 1/w+ for w+ →∞. Thus, the peak of gw+(t) becomes smaller and occurs earlier

as the eigenvalue associated with the sum mode becomes increasingly negative. After the

peak, the decay to zero occurs essentially with timecourse e−
t
τ . For w+ → 0, gw+(t)→ t

τ
e−

t
τ ,

while as w+ →∞, gw+(t)→ e−
t
τ /w+. We can think of gw+(t) as interpolating between t

τ
e−

t
τ

and e−
t
τ /w+ with increasing w+.

The amplification in r+ of the response to a steady-state input to r− is equal to the integral

of 1
τ
wFFgw+(t) (section S2). This amplification factor is wFF

1+w+
. For fluctuating inputs with

no temporal correlations (white noise), the amplification in r+ of input to r− can be thought

of as proportional to the square root of the integral of 1
τ
(wFFgw+(t))2, while amplification for

input with finite temporal correlations is likely to lie in between the amplification for white

noise and the amplification for steady state inputs (section S2). This amplification factor

for white noise inputs is wFF√
(1+w+)(2+w+)

.

More generally, wFFgw+(t) represents the characteristic response in the postsynaptic

pattern with eigenvalue −w+ to a unit initial condition in a presynaptic pattern with eigen-

value 0 that projects a feedforward connection of strength wFF . Later, in Eq. S26 and

section S3.4, we will see that the generalization of gw+(t) to the case when the presynap-

tic pattern has eigenvalue −w− is gw+;w−(t) = e−(1+w−) tτ −e−(1+w+) tτ

w+−w− . The amplification of

wFFgw+;w−(t) for steady-state input is wFF
(1+w−)(1+w+)

, while its amplification for white noise

input is wFF√
(1+w−)(1+w+)(2+w−+w+)

.

We define β+ = 1 + w+. The solutions to Eqs. S1-S2 are

r+(t) = r+(0)e−β+
t
τ +

I+ + wFF I−
β+

(
1− e−β+

t
τ

)
+wFF (r−(0)− I−) gw+(t) (S4)

r−(t) = (r−(0)− I−)e−
t
τ + I− (S5)

The terms multiplied by wFF represent the effects of the feedforward connection from r− to

r+. wFF scales the size of the amplification without affecting its time course or stability.

The E and I firing rates are rE = 1
2
(r+ + r−) and rI = 1

2
(r+− r−). Then from Eqs. S4-S5

we can solve for rE(t) and rI(t), each as a sum of four terms representing the influence of
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each initial condition and each input:

rE(t) = rE(0)erE(t)− rI(0)erI (t) + IEeIE(t)− IIeII (t) with

erE(t) =
kIe
− t
τ − e−β+

t
τ

kI − 1
= e−

t
τ + wgw+(t)

erI (t) = kI
e−

t
τ − e−β+

t
τ

kI − 1
= kIwgw+(t)

eIE(t) =
1

β+

(
(wkI + 1)− kIβ+e

− t
τ − e−β+

t
τ

kI − 1

)
=

1

β+

(
(wkI + 1)− (w + 1)e−

t
τ − wgw+(t)

)
eII (t) =

kI
β+

(
w − β+e

− t
τ − e−β+

t
τ

kI − 1

)
=
wkI
β+

(
1− e−

t
τ − gw+(t)

)
(S6)

rI(t) = rE(0)irE(t)− rI(0)irI (t) + IEiIE(t)− IIiII (t) with

irE(t) =
e−

t
τ − e−β+

t
τ

kI − 1
= wgw+(t)

irI (t) =
e−

t
τ − kIe−β+

t
τ

kI − 1
= −e−β+

t
τ + wgw+(t)

iIE(t) =
1

β+

(
w − β+e

− t
τ − e−β+

t
τ

kI − 1

)
=

w

β+

(
1− e−

t
τ − gw+(t)

)
iII (t) =

1

β+

(
w − 1− β+e

− t
τ − kIe−β+

t
τ

kI − 1

)
=

1

β+

(
(w − 1)(1− e−

t
τ )− wkIgw+(t)

)
(S7)

The steady-state responses (t→∞) are rss
E = [IE +wkI(IE − II)]/β+, rss

I = [II +w(IE −
II)]/β+ (or rss

+ = (I+ + wFF I−)/β+, rss
− = I−).

S1.1.2 Applications to Results in the Main Text

In Fig. 2 of the main text, we examined the steady-state response of rE to a sustained

input IE = 1 (II = 0) starting from rE(0) = rI(0) = 0. This steady state response is

rss
E = (1 +wkI)/(1 +w(kI − 1)). It is obtained for a given kI by setting w = (rss

E − 1)/(rss
E −

kI(r
ss
E − 1)), which gives w = 42

7
for rss

E = 4, kI = 1.1. Note that this amplification factor,

(1 +wkI)/(1 +w(kI − 1)), is also 1
τ

times the time integral of erE(t), as explained in section

S2.1.

In Fig. 2F we saw that the time course of response of rE to a steady input IE grew

faster with increasing amplification (increasing w). This time course is eIE(t), whose time-

dependent part is (negatively) proportional to (w + 1)e−
t
τ + wgw+(t). As we saw above, as
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w is increased from zero to large values, the time course of gw+(t) speeds up monotonically;

in addition, the amplitude of wgw+(t) increases from zero to 1
kI−1

. For w → 0, wgw+(t) →
w t
τ
e−

t
τ , while for w → ∞, wgw+(t) → e−

t
τ /(kI − 1). In either limit, the time course of eIE

becomes proportional simply to e−
t
τ , i.e. the dynamics are just determined by the membrane

time constant. For intermediate w, the term wgw+(t) has a finite amplitude and a slightly

slower time course than e−
t
τ . The result is that, beginning at w = 0, the time course first

slows slightly from e−
t
τ and then speeds up again back to e−

t
τ with increasing w. Note that

this effect does not occur for perfectly balanced excitation and inhibition (kI = 1). In this

case, wgw+(t) = w t
τ
e−

t
τ for all w, so the time course is simply (w + 1)e−

t
τ + w t

τ
e−

t
τ , which

starts at e−
t
τ at w = 0 and slows toward an asymptotic (slowest possible, for large w) time

course of
(
1 + t

τ

)
e−

t
τ , with amplitude w.

In Fig. 3C of the main text, we examined the time course of the response vector length

|r(t)| to an initial condition in which one difference mode was set to r−(0) = 1 and all other

modes and inputs were set to zero. The result is that the difference mode decays, while

serving as a source for its sum mode r+. We noted that the first mode follows a time course

wFF
t
τ
e−

t
τ once wFF

t
τ
� 1, corresponding to a zero eigenvalue, while subsequent modes had

earlier and smaller peaks, reflecting the influence of increasingly negative eigenvalues. No

modes other than the difference mode and its paired sum mode are activated, so we can write

|r(t)| =
√
r−(t)2 + r+(t)2. From Eqs. S4-S5, we find that |r(t)| =

√
(wFFgw+(t))2 + (e−

t
τ )2.

For wFF � 1, which was true for all of the pictured pairs of modes (all had wFF > 20),

this is well approximated by |r(t)| = wFFgw+(t) except at very early times, t
τ
� 1, when

gw+(t) is very small. It is easy to show that at these early times gw+(t) = t
τ

+O( t
τ

2
) (where

O( t
τ

2
) means terms involving t

τ
raised to a power of 2 or greater). So once wFF

t
τ
� 1, i.e.

t
τ
� 1/wFF , then |r(t)| = wFFgw+(t) and the described behavior follows immediately from

this.

There is one slight wrinkle in this account. Except for the first sum mode which is an

eigenvector of W, each sum mode defined as the output of the corresponding difference mode

actually is a linear combination of different sum eigenvectors with different negative eigen-

values, see section S1.2 below. We can regard this as the difference mode actually making

feedforward connections to each of the underlying sum eigenvectors, with each eigenvector’s

dynamics described by Eq. S4 but with its own feedforward weight and eigenvalue. The

sum of the squares of their feedforward weights will be equal to the square of the single

feedforward weight shown in Fig. 3B. Since each eigenvector mode behaves as just described,

a linear combination of them also behaves as just described.
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S1.1.3 Paradoxical Effects of Input to Inhibitory Cells

In the discussion, we suggest that one test for the dynamics underlying balanced amplification

is the “paradoxical” effect caused by adding input to inhibitory cells when the excitatory

recurrence is strong enough that the excitatory subnetwork would be unstable by itself (i.e.,

w > 1 in the two-population model) [Tsodyks et al. 1997, Ozeki et al. 2009]. The effect is

that adding excitatory input to the inhibitory cells causes them to decrease their firing rate

in the new steady state, and conversely adding inhibitory input or withdrawing excitatory

input causes them to raise their firing rate. This is true for an arbitrary two-population

model, but it is easy to see using the two-population model of Fig. 1 of the main text.

We think of steady input II to the inhibitory cells as a set of delta-pulse inputs (inputs

confined to a single instant dt) of size IIdt, or equivalently as a set of initial conditions

r0
I = IIdt/τ induced by such an input; the steady-state response is then the superposition of

the responses to all such past initial conditions, which is just the integral of the response to

a single such initial condition (section S2.1). Each delta-pulse of excitation to the inhibitory

population represents an equal-sized positive increase r0
I of r+ and negative increase −r0

I of

r−. Thus, we can think of the dynamics, up to a multiplicative scaling by r0
I , as being as in

Fig. 1 except with initial condition r−(0) = −1 and r+(0) = 1, rather than both having both

initial conditions = +1 as in that figure. r− will exponentially decay back to zero, and will

induce a negative pulse response −wFFgw+(t) in r+. This will add to the exponential decay

of the r+ initial condition to give the total response in r+. The response of the inhibitory

cell is rI = 1
2
(r+ − r−), which is an average of the two exponential decays, one with time

constant τ and one with time constant τ
1+w+

, plus the negative pulse response −wFF
2
gw+(t).

The overall amplification of the steady-state input II is just 1/τ times the integral of this

response. This yields 1+w+/2
(1+w+)

for the average of the two exponentials and −wFF /2
1+w+

for the

negative pulse, so the total integrated response is negative when 1 + w+/2 < wFF/2 or

1 + w(k − 1)/2 < w(k + 1)/2, which is precisely the condition w > 1.

This effect can also be seen from Eq. S7, where we see that the response of an inhibitory

cell to input II is II(−iII (t)) where −iII (t) = 1
β+

(
(1− w)(1− e− t

τ ) + wkIgw+(t)
)

. Thus we

see immediately that the steady-state response, 1− w, is negative for w > 1. The response

rises briefly due to the gw+(t) term, representing the immediate response to the input, be-

fore falling and becoming negative as excitatory firing rates fall and feedback excitation is

reduced.
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S1.2 Multi-Neuron Model

We consider the weight matrix W =

(
WE −WI

WE −WI

)
, an example of which was studied in

Fig. 3.

We first characterize the eigenvectors and eigenvalues of W. Let WE and WI be

N × N , and let the normalized eigenvectors of WE −WI be eDi with eigenvalues −λDi ,

(WE −WI)e
D
i = −λDi eDi , i = 1, . . . , N .1 We will imagine that inhibition balances or dom-

inates excitation in such a manner that no pattern can excite itself – all the eigenvalues of

(WE −WI) have real part ≤ 0 – so we have taken the eigenvalue to be −λDi so that λDi
will have positive real part. Then W has N eigenvalues equal to the −λDi , with correspond-

ing normalized eigenvectors pD+
i = 1√

2

(
eDi
eDi

)
(the + is used to indicate that these are

sum modes), as can be seen directly by applying W to pD+
i . An additional N eigenvalues

of W are equal to zero, because the top N rows are identical to the bottom N rows. If

either WE or WI are invertible, the corresponding eigenvectors can be written as propor-

tional to

(
WE

−1WIv

v

)
or

(
v

WI
−1Av

)
for any N-dimensional basis v. Note that, with

the assumption that inhibition appropriately balances or dominates excitation, W has no

eigenvalues with positive real part.

We now consider the feedforward connectivity. We let eSi be the normalized eigenvectors

of WE + WI with eigenvalues λSi , and note that WE + WI is a nonnegative matrix with

large entries (if excitation and inhibition are large) so that some of these eigenvalues will be

large and positive. We define the difference modes pS−i = 1√
2

(
eSi
−eSi

)
and the sum modes

pS+
i = 1√

2

(
eSi
eSi

)
and find that WpS−i = λSi pS+

i . Thus, each pair pS−i , pS+
i behaves much

like the difference and sum modes, p− and p+, in the simpler, two-neuron model we studied

previously, with feedforward weight wFFi = λSi .

There is one difference, however. Each pS+
i is a linear combination2 of the pD+

i , each

of which in turn decays at its own rate (determined by its λDj ). So the decay of pS+
i is

actually a mix of decays at different rates, rather than a decay at a single rate as before.

Instead of thinking in terms of pS−i making a single feedforward connection to pS+
i , which

1In the main text we used the convention for basis vectors of denoting both which basis vector (i) and
which type of basis vector (+) as superscripts, pi+, so that subscripts could be used to designate elements
of the vector. In the supplement we will revert to the more usual convention p+

i ; should we need to refer to
the jth element, we would write (p+

i )j .
2This is true because the pS+

i and the pD+
i each span the N-dimensional space of vectors that have

identical patterns of activity in the excitatory and the inhibitory neurons
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then decays as a mixture of modes, one can alternatively think of pS−i making a set of

feedforward connections to the different pD+
i ’s, each of which decays at its own rate. If

pS+
i =

∑
j cijp

D+
j , then the feedforward connection from pS−i to pD+

j is equal to λSi cij. If the

eDj and thus the pD+
j are mutually orthogonal (see below), then cij = pD+

j · pS+
i = eDj · eSi .

There is one other slight wrinkle. If the matrix WE + WI is not normal, then the pS−i
will not be mutually orthogonal, nor will the pS+

i , though each pS−i will be orthogonal to

each pS+
j . Similarly, if WE −WI is not normal, the pD+

j will not be mutually orthogonal.

If this is true, this description, while correct, could be misleading in the same way that the

solution in the eigenvector basis is misleading when the eigenvectors are not orthogonal,

namely the size or dynamics of the basis pattern amplitudes may not directly reflect the

size or dynamics of the rates. The WE and WI matrices we used in Fig. 3 are slightly

nonnormal, because the normalization of total excitatory and inhibitory weights onto each

neuron (see Methods) results in small asymmetries. However, this non-normality is very

small, as assessed by measures such as fM (see section S3.2), so the vast majority of the

non-normality of the overall matrix W is the result of the arrangement of the submatrices,

not the non-normality of the submatrices themselves. In other words, these basis patterns

should be close to orthogonal to one another, if not orthogonal, so distortions, if any, should

be small. Our guess is that this will be typical of biological connection matrices.

We can write down the solution in a basis of the pS−i and either of the group of sum

modes; we choose to use pD+
j . Each pS−i is orthogonal to each pD+

j , and if WE + WI and

WE −WI are normal (or close to normal), this is an orthonormal (or close to orthonormal)

basis. We let C be the matrix with elements Cij = cjiλ
S
j , and let LD be the diagonal matrix

of the the −λDi . Then in the basis {pD+
1 , . . . ,pD+

N ,pS−1 , . . . ,pS−N }, the matrix W becomes(
LD C

0 0

)
.

The solution to τ d
dt

r = −r + Wr + I for time-independent I can be formally written

r(t) = e−
t
τ
(1−W)(r(0) − I) + I, where, for a matrix M, the matrix eM is defined by the

same power series as for the ordinary exponential, eM = 1 + M + M2/2! + M3/3! + . . ..

Thus, calculating e−
t
τ
(1−W) = e−

t
τ e

t
τ
W amounts to solving the equation. This turns out to

be easy to do, and we can write the solution as follows. Let LD be the diagonal matrix

of e−λ
D
i
t
τ , and define K as the matrix with entries Kij = cjiλ

S
j (1 − e−λ

D
i
t
τ )/λDi . Then

e−
t
τ
(1−W) = e−

t
τ

(
LD K

0 1

)
.

This solution tells us that an initial condition of size 1 of pS−j causes a response in the sum

pattern pD+
i equal to e

t
τ Kij = λSj cji

(
e−

t
τ − e−(1+λDi ) t

τ

)
/λDi = wFFgλDi (t) with wFF = λSj cji

and gλDj (t) = gw+(t) (defined in Section S1.1.1) for w+ = λDj . This is precisely the response

we derived for the sum mode amplitude r+(t) in the two-population model in response to an
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initial difference mode amplitude r−(0) = 1, Eq. S4. More generally, if, in Eqs. S4-S5, I− and

I+ are understood to be the inputs to mode pS−j and pD+
i , respectively, and r− and r+ their

respective amplitudes, then, with the substitutions wFF → λSj cji and w+ → λDi (and thus

β+ = 1 + λDi ), Eqs. S4-S5 describe the solution for the amplitudes of pS−j and pD+
i arising

from initial conditions and inputs of these two modes. Other difference modes pS−k might

also project to pD+
i . In this case, the terms that the various difference modes generate for

pD+
i under equation S4 (those involving r−(0) and I−) must be added together, along with

a single instance of the terms involving r+(0) and I+, to yield the solution for the amplitude

of pD+
i .

In summary, the differences mode pS−j , in which excitation and inhibition have spatial

patterns of activity eSj with opposite signs, is amplified into the sum pattern pS+
j , in which

excitation and inhibition have the same spatial pattern eSj but now of the same sign, with

feedforward weight λSj . The spatial pattern eSj in turn is a mixture of the patterns eDi with

weights cji, so that we can instead take the pS−j to send feedforward weights λSj cji to the

various sum eigenvector patterns pD+
i , which have eigenvalues λDi . The amplitudes of pS−j

and pD+
i receiving inputs I− and I+, respectively are then described precisely by the solutions

for the amplitudes r− and r+, respectively, of the two-population system (Eqs. S4-S5), with

λDi replacing w+. If pD+
i receives inputs from multiple difference modes pS−k , each of their

contributions to pD+
i under Eqs. S4 simply add together to yield the amplitude of pD+

i .

S2 Amplification in the Data and the Models

S2.1 Relationship Between Transient Response to an Initial Con-

dition and Sustained Response to Onset of a Steady-State

Stimulus

Here we remind the reader of a simple result for a linear model that we refer to in several

places: the response at time t to the onset of a sustained stimulus is just proportional to the

integral from 0 to t of the transient response to an initial condition created by a delta-pulse of

that input (by delta-pulse, we mean input restricted to a single instant of time, represented

by the infinitesimal width dt). As specific examples, in Eqs. S4-S7, each term multiplied by

IX (X =E,I,+,−), which represents the time course of response to the onset of IX , is 1
τ

times

the time integral of the corresponding term that is multiplied by rX(0), which represents the

transient response to the initial condition rX(0).

We consider the response rj(t) of pattern or neuron j to the onset of steady-state input Ik

to pattern k with onset time t = 0. We suppose the response in j to an initial condition rk(0)

is rk(0)Kjk(t) for some temporal response function Kjk(t) with Kjk(t) = 0 for t < 0. Given
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the differential equation that says τ d
dt
rk =. . . +Ik, we see that a delta-pulse of input Ik to k

– an input confined to a the time dt – evokes an immediate change in rk of drk = Ik(dt/τ).

Thus, the instantaneous delta-pulse of input at time t′ > 0 evokes an “initial condition”

rk(t
′) = Ik(dt/τ), and at time t > t′ the response of rj to this initial condition has become

∆rj(t) = Rjk(t− t′)Ikdt/τ . Since it is a linear model, the responses to the input delta-pulses

at different times superpose, so the full response r(t) to I(k) is obtained by integrating ∆r(t)

over the t′’s for which the stimulus has been on:

rj(t) =

∫ t

0

dt′
1

τ
Kjk(t− t′)Ik = Ik

∫ t

0

dt′
1

τ
Kjk(t

′) (S8)

(where we have changed variables t− t′ → t′ in the last step). We can think of 1
τ
Kjk(t) either

as 1
τ

times the temporal kernel describing the response of rj to a unit initial condition of rk,

or as the kernel describing the response of rj to a delta-pulse of input Ik.

We can describe this result in different words: the rate of rise of an onset response to a

steady stimulus is just determined by the rate of accumulation of the area under the curve

of the transient response to a delta-pulse of the stimulus. This is the reason why the slow

response to a delta-pulse input in Fig. 2A yields the slow onset response in Fig. 2C, while

the fast response to a delta-pulse input in Fig. 2B yields the fast onset response in Fig. 2D.

This result also tells us that the steady-state response to Ik is just the full time integral

Ik
∫∞

0
dt′ 1

τ
Kjk(t

′), so the steady-state amplification of a constant stimulus is determined by

the area under the curve of the transient pulse response.

S2.2 Amplification in the Data

We are motivated by the optical recording data of Kenet et al. [2003]. There, amplification

was measured in the fluctuating spontaneous activity, presumably driven by fluctuating

inputs. The amplification of a given pattern (in their case, the average evoked response to an

oriented grating) was measured as the increase in the width of the distribution of correlation

coefficients between spontaneous activity and that pattern, relative to the width of the similar

distribution for a control pattern (in their case, a mirror-reflection of the evoked pattern).

A reason for using the correlation coefficient, rather than simply the amplitude, is that

biologically there are factors that nonspecifically elevate or suppress the size of all patterns

in the data (changes in overall excitability including those due to changes in anesthesia level;

changes in overall signal due to fluctuations in the illuminant). These would increase the

standard deviation of the amplitude but are factored out of the correlation coefficient. Our

analysis of their published data (their Fig. 2) indicates the amplification by this measure

was by a factor of 2. Our spiking model simulations (Fig. 5 of main text) used precisely this

measure to assay the amplification. The simulations also show amplification of 2, and values
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ranging from 1-3 (or more) are easily achieved by strengthening or weakening all recurrent

weights (Fig. S2A, blue line).

There are several uncertainties in the estimate that the patterns in Kenet et al. [2003]

showed amplification by a factor of 2. First, the evoked map patterns probably do not per-

fectly correspond to an eigenvector (Hebbian amplification) or a Schur basis vector (balanced

amplification), in which case the amplification of the most similar eigenvector(s) or Schur

basis vector(s) would need to be by a factor greater than 2 in order for the evoked maps

to be amplified by a factor of 2. Second, the control pattern might itself be amplified, in

which case the evoked patterns must be amplified by the circuit by a factor greater than

2. Alternatively, the control pattern might be a mixture of eigenvectors that have negative

eigenvalues and might not receive significant effective feedforward input, and thus be dimin-

ished rather than amplified by the network. In this case, to obtain a relative amplification

of 2 for the evoked map relative to the control pattern, the absolute amplification of the

evoked map would be less than 2. Finally, the measured degree of amplification is dependent

to some extent on the filtering of the image, since filtering reduces the number of degrees

of freedom or dimensions of the data and thus changes the denominator of a correlation

coefficient (Goldberg et al. 2004 and Fig. S3), and the data analyzed by Kenet et al. [2003]

was filtered both by the optics and the brain tissue [Polimeni et al. 2005] and by subsequent

processing.

S2.3 Amplification in Linear Models

We define the amplification for a fluctuating input and the amplification to a steady-state

input produced in the linear models. For fluctuating input, we take the amplification Aj of

a pattern j to be the measure used by Kenet et al. [2003]: the standard deviation of the

correlation coefficient of pattern j with the fluctuating response, relative to the same measure

for an unamplified pattern. By an unamplified pattern, we mean the response of any pattern

in the network with all recurrent weights set to zero (we assume that all patterns have

statistically identical input). We show that this Aj, if factors that nonspecifically change

overall activity or signal levels are eliminated, is equivalent to the standard deviation of the

response rj(t), suitably normalized to give 1 for the case of no recurrent connections. For a

steady state input, we define the amplification Ajk of pattern or neuron j in response to a

nonzero input Ik to pattern or neuron k to be rj/Ik.

We first present the answers; we will then present the details of their derivation. We

assume that the response of rj to a unit initial condition for k, rk(0) = 1, is described by

the function Kjk(t). Then for a steady-state input to pattern or neuron k, the amplification
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of pattern or neuron j is

Ajk =

∫ ∞
0

dt
1

τ
Kjk(t) (Steady State) (S9)

as shown in section S2.1. For fluctuating input, the amplification of pattern j depends on

the statistics of the input. We can work out two limits, giving:

Aj =

(∑
k

A2
jk

)1/2

(Fluctuating Input); where

Ajk =

(
2

∫ ∞
0

dr
1

τ
Kjk(r)

2

)1/2

(White Noise Input); (S10)

Ajk =

∫ ∞
0

dt
1

τ
Kjk(t) (Input with long correlation times) (S11)

In the limit of long correlation times, Ajk for fluctuating input is the same as for steady

state input. We also suggest that amplification to input with finite correlation times might

be well thought of as bounded between these two limits.

The input to the patterns we study are typically dominated by the “feedforward” input

from sum mode to difference mode. If there is a single dominant input k, then for the

fluctuating input case Aj ≈ Ajk. Based on this, elsewhere in this supplement we simply

use Ajk from equation S10 as the amplification expected for white noise input from a mode

supplying such a feedforward link.

The details for the case of fluctuating input follow, but can be safely skipped.

The Details: Fluctuating Input

We generalize the approach of section S2.1 to the case of multiple inputs. We assume that

the response rj(t) of pattern j arises from a sum over patterns k of a filtering of their inputs

Ik(t). The filters or kernels for different inputs can be different: for example, in our two-

population model, the sum response pattern has one kernel of response (exponential decay)

to a sum initial condition and another (a pulse response) to a difference initial condition

(Fig. 1; Eq. S4). Following the reasoning presented in section S2.1, but with multiple time-

dependent inputs, we arrive at

rj(t) =
∑
k

∫ t

−∞
dt′

1

τ
Kjk(t− t′)Ik(t′) (S12)

For fluctuating inputs, we assume the input patterns are all independent and have iden-

tical statistical properties, so that any differences in output (i.e., amplification) of different

patterns result from differences in their kernels. We also assume that the inputs have zero

means, that is, either polarity of a given pattern is equally likely in the input noise.
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We begin with the measure of Kenet et al. [2003], in which amplification is measured as

the standard deviation of the set of correlation coefficients of the pattern j. Suppose we have

a set of orthonormal basis patterns pi. The spontaneous activity is r(t) =
∑

i ri(t)pi. The

correlation coefficient with pattern pj is then ccj(t) =
r(t)·pj
|r(t)||pj | =

rj(t)

|
P
i ri(t)

2| . The width of the

distribution of ccj’s, measured as the standard deviation of the distribution, is 〈ccj(t)2〉1/2t =〈
rj(t)

2P
i ri(t)

2

〉1/2

t
where 〈x(t)〉t is the time average of x. We argue that the numerator and

denominator can be taken to be independent. In the biological data from optical imaging

there will be factors that scale all patterns up or down together, as discussed above, which

will scale numerator and denominator together, but the correlation coefficient factors these

out, and they are not present in our models of amplification, so we will ignore such effects.

Then the numerator is still correlated with the denominator, because when rj is large, it

will contribute a correspondingly larger amount to the denominator. But if the system has

many independent basis patterns that contribute significantly to the denominator, this will

be a very small effect, so that it should be a good approximation to treat the numerator and

denominator as independent.

This approximation means that, for purposes of computing the correlation coefficient ccj,

we can ignore any dependence of the denominator on Kjk. So we arrive at the conclusion

that, for any patterns j, p, the ratio of their correlation coefficient standard deviations is just

the ratio of their response standard deviations:

〈ccj(t)2〉1/2t

〈ccp(t)2〉1/2t

=
〈rj(t)2〉1/2t

〈rp(t)2〉1/2t

(S13)

Thus, if we take our amplification measure to be the response standard deviation, normalized

to be 1 for the network with no recurrent connections, then this amplification measure

will correctly assay the increase in correlation coefficient width of a pattern relative to an

unamplified pattern.

In turn,

〈
rj(t)

2
〉1/2
t

=

〈(∑
k

1

τ
Kjk ∗ Ik(t)

)2〉1/2

t

=

〈∑
kl

∫ t

−∞
dp

∫ t

−∞
dq

1

τ 2
Kjk(t− p)Kjl(t− q)Ik(p)Il(q)

〉1/2

t

=
∑
kl

∫ ∞
0

dr

∫ ∞
0

ds
1

τ 2
Kjk(r)Kjl(s) 〈Ik(t− r)Il(t− s)〉1/2t

=

(∑
kl

∫ ∞
0

dr

∫ ∞
0

ds
1

τ
Kjk(r)C

input
kl (r − s)1

τ
Kjl(s)

)1/2

(S14)
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where Cinput
kl (x) = 〈Ik(t)Il(t+ x)〉t is the input correlation function. For k 6= l, Cinput

kl is

just the square of the mean of any input pattern, which is 0. For k = l, Cinput
kl (x) is the

correlation function of any individual input pattern, which we will call Cinput(x). We have

assumed that the input statistics are stationary in time, so that Cinput only depends on the

difference in time between two samples of the input pattern. Thus,

〈
rj(t)

2
〉1/2
t

=

(∑
k

∫ ∞
0

dr

∫ ∞
0

ds
1

τ
Kjk(r)C

input(r − s)1

τ
Kjk(s)

)1/2

(S15)

In general, this depends on the structure of both Kjk and Cinput. For the special case

that the input is temporally white, Cinput(r − s) = C2τδ(r − s) (where the τ is included so

that both C2 and Cinput have the dimension of i2k), it becomes

〈
rj(t)

2
〉1/2
t

= C

(∑
k

A2
jk/2

)1/2

where

Ajk =

(
2

∫ ∞
0

dr
1

τ
Kjk(r)

2

)1/2

(S16)

Ajk represents the contribution to the amplification of pattern j of input to pattern k when

the input is white noise. The factor of 2 is included so that Ajk = δjk and the amplification

is 1 for the network without recurrent connections, for which Kjk = δjke
−t/τ .

On the other hand, as the input temporal correlations become long, Ajk goes to the

amplification seen for a steady-state input. Intuitively, the temporal kernel extends only

some finite extent T in time, i.e. there is a limit to how long the response to a delta-pulse

input or an initial condition will endure. As input temporal correlations become comparable

to and then longer than this time, the input within the window seen by the kernel will

become more and more constant, and so the amplification will become the same as that

for a steady-state input. Mathematically, in Eq. S14, if Kjk(r) ≈ 0 for r ≥ T , then when

Cinput(x) becomes roughly constant (with value C2 = 〈ik(t)2〉t) over −T ≤ x ≤ T , the

expression becomes

〈
rj(t)

2
〉1/2
t

= C

(∑
k

A2
jk

)1/2

where

Ajk =

∫ ∞
0

dr
1

τ
Kjk(r) (S17)

Thus, the factor by which the input is amplified is just the integral of the kernel, as in the

steady-state case. It seems reasonable to guess that the amplification to input with finite

temporal correlations will lie somewhere between the bounds of the amplification to white

noise input and the amplification to steady-state input, though there is no guarantee of this.



Murphy and Miller – February 10, 2009 15

S3 Non-normal matrices, Neurobiological Connection

Matrices, and the Schur Decomposition

Normal matrices are matrices M that satisfy M†M = MM† where M† is the complex

conjugate of the transpose of M, or equivalently, matrices that have a complete orthonormal

basis of eigenvectors.3 For real matrices, M† = MT , the transpose of M.

S3.1 Neurobiological connection matrices are non-normal

Neurobiological connection matrices are of the form W =

(
WEE −WEI

WIE −WII

)
, with all

entries of the WXY being non-negative. The simplest way to see that these are non-normal

is just to consider the arrangement of the signs of the nonzero entries:

(
+ −
+ −

)
. For such

a matrix, WWT has signs

(
+ +

+ +

)
, while WTW has signs

(
+ −
− +

)
. So, assuming the

off-diagonal blocks are not all zero, W is non-normal.

More generally, WT =

(
WT

EE WT
IE

−WT
EI −WT

II

)
. So

WWT =

(
WEEWT

EE + WEIWT
EI WEEWT

IE + WEIWT
II

WIEWT
EE + WIIWT

EI WIEWT
IE + WIIWT

II

)
(S18)

while

WTW =

(
WT

EEWEE + WT
IEWIE −WT

EEWEI −WT
IEWII

−WT
EIWEE −WT

IIWIE WT
EIWEI + WT

IIWII

)
. (S19)

W cannot be normal unless all the submatrices are symmetric and WEI = WIE. In this

case, the requirements for W to be normal reduce to WEEWEI = 0 and WEIWII = 0.

The first is equivalent to saying that no excitatory cell that receives a connection from an

inhibitory cell makes a projection to another excitatory cell, while the second is equivalent to

saying that no inhibitory cell that receives a connection from another inhibitory cell makes

a projection to an excitatory cell. Clearly, no plausible connectivity pattern will be normal.

We are of course ignoring many elements of biological complexity, starting with the fact

that a connection matrix is used to describe connections onto cells that linearly sums their

3The overall idea underlying this equivalence is: the right eigenvectors of M† are the conjugate transpose
of the left eigenvectors of M. Two matrices share a common basis of eigenvectors if and only if they commute.
Thus, iff M† and M commute, the right and left eigenvectors of M are identical (meaning that one set is the
conjugate transpose of the other). These are mutually orthonormal, so iff they are identical, they constitute
an orthonormal basis.
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inputs, and may not be an adequate description to the extent that summation on dendritic

trees is nonlinear [e.g. Spruston 2008]. Even within the connection matrix formalism, we are

ignoring the fact that there are gap junctions among inhibitory neurons of a given subtype

[Beierlein et al. 2003], which represent an excitatory influence of one inhibitory neuron on

another. Thus, some elements of WII conceivably could be negative. We imagine that

these effects are not critical to the rate dynamics we are studying (though they may be very

important to spike synchronization and rhythms, [e.g. Pfeuty et al. 2005]), but of course we

cannot be certain.

S3.2 The Schur Decomposition

The Schur decomposition gives a “simplest” orthonormal basis for a non-normal matrix.

Before we describe the Schur decomposition itself, we explain the motivation for using an

orthonormal basis rather than the non-orthogonal eigenvector basis.

In the text, we stated that when eigenvectors that are far from orthogonal are used as

basis vectors, the size and time course of their amplitudes can give a misleading picture

of the dynamics. To better understand why, consider the simple two-population model of

Fig. 1. The dynamics are given by

d

dt
r = −r + Wr + I (S20)

In the original re, ri basis, r =

(
re

ri

)
and W =

(
w −kIw
w −kIw

)
. The eigenvectors of W

are the sum mode, proportional to

(
1

1

)
, with eigenvalue −w+ = −w(kI − 1), and another

very similar pattern, proportional to

(
kI

1

)
, with eigenvalue 0. We start from the initial

condition r(0) =

(
1

0

)
, that is, with excitation but not inhibition active. To express this as

the sum of the two eigenvectors, we write

(
1

0

)
= 1

kI−1

((
kI

1

)
−

(
1

1

))
. That is, the

initial amplitudes of the two eigenvectors are large ( 1
kI−1

� 1) but of opposite sign, largely

cancelling one another to create the much smaller initial condition. These amplitudes then

each monotonically decay to zero with time constants τ+ = τ/(1 + w+) and τ respectively,

giving r(t) = 1
kI−1

(
et/τ

(
kI

1

)
− et/τ+

(
1

1

))
. Because τ+ < τ , the

(
1

1

)
term decays

away more quickly, leaving r(t) dominated by the more slowly decaying

(
kI

1

)
vector, still
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with large amplitude. Thus, the small initial condition, represented as a balance of two large

cancelling components, grows in size as one of these two components decays away faster than

the other.

This is quite general: in higher dimensions, if the eigenvectors are not orthogonal, but

are all normalized to length 1, we can say that some directions are poorly represented if

they are close to orthogonal with (have small dot products with) all of the eigenvectors. An

example of such a direction for W would be

(
1

−1

)
;

(
1

0

)
has a significant component

in (significant dot product with) that direction. Then to represent a small vector with a

significant component in a poorly represented direction, there must be a weighted sum of

large but cancelling amplitudes of various eigenvectors. If these then decay at different rates,

there will be transient growth from the poorly represented direction toward the directions

represented by the slowly-decaying eigenvectors.

From the eigenvalues and the corresponding monotonic decays of the eigenvector ampli-

tudes, there is no hint that the neural activities, given by the sum of the eigenvectors weighted

by their amplitudes, are actually growing. This fact is hidden in the non-orthogonal geome-

try of the eigenvectors and the complicated ways in which they can cancel one another. To

put it another way, the eigenvector amplitudes decay independently – the change in one does

not depend on the values of the others – but the eigenvectors are dependent in a hidden way,

namely in the way they combine and cancel to represent a given vector. In particular, if a

subspace is poorly represented in the eigenvector basis, then some eigenvectors must have

large and largely canceling amplitudes to represent small components in that subspace.4

In contrast, if orthonormal basis patterns (meaning mutually orthogonal and normalized

to length 1) are used, then the sum of the squares of the amplitudes of the basis patterns

is equal to the sum of the squares of the neuronal firing rates, so the amplitudes accurately

reflect the size and the growth or decay of overall activity. For W, using the difference and

sum modes as a basis (these are orthogonal, but for simplicity we normalized them in the

text to length
√

2 rather than 1), the amplitude of the difference mode monotonically decays,

while that of the sum mode first grows and then decays, directly revealing the non-monotonic

dynamics of the firing rates. Using orthonormal patterns, each basis pattern’s contribution

to the representation of a given vector is determined independently (it is given by the dot

product of the basis pattern with the represented vector). Orthogonal components cannot

4Mathematically, to represent a vector v as a weighted sum of non-orthonormal basis vectors, the weight
of one basis vector ei depends on all the other basis vectors: one finds the direction that is orthogonal to all
other basis vectors ej for j 6= i, lets li (the left eigenvector corresponding to ei) be a vector in that direction
with length such that li · ei = 1, and then takes the dot product of v with li to obtain the weight of ei. If E
is the matrix whose columns are the eigenvectors, then the left eigenvector corresponding to the jth column
is found as the jth row of E−1.
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cancel one another, so one cannot have the situation in which large components cancel to

create a small resultant, and thus in which the decay of some components reveals hidden

large components in other directions.

The problem with non-orthogonal bases can be stated more generally as follows: a trans-

formation to a non-orthogonal basis is not unitary, and unitary transformations are the only

ones that preserve vector length and the angles between vectors. Unitary transformations

are precisely the set of transformations to an orthonormal set of basis vectors. When we

transform to a non-orthonormal basis, the trajectory is sheared and stretched. Thus, what

appears in the eigenvector basis to be a trajectory that monotonically decays from an ini-

tially very large vector length can correspond in the original basis (the firing rates) to the

trajectories of Fig. 1B, a transient increase in firing rates followed by their decay, starting

from initially relatively small firing rates. If we imagine this trajectory as a path in the

two-dimensional re/ri plane: when we transform to an orthonormal basis, we do not stretch

or shear the trajectory, it keeps exactly the same geometric structure, we only do a rigid

rotation of the coordinates in which we view the trajectory (e.g. the sum and difference Schur

basis vectors of W are a rigid rotation of the unit-length vectors along the re and ri axes,

which were the original basis vectors; the trajectory has the same size and shape relative to

either basis, it is only rigidly rotated when the basis is changed).

Thus, if we wish to understand the changes in firing rate (the original basis), we do well

to restrict ourselves to basis sets that preserve the size and shape of the trajectory, that is,

to orthonormal basis sets or to unitary transformation. A matrix M is particularly simple in

a basis in which it is diagonal, because that means each basis vector behaves independently

of all others. But if M is non-normal, it cannot be diagonalized by a unitary transformation

– it is diagonalized by the basis of eigenvectors, with the eigenvalues on the diagonal, but

the eigenvectors are not orthogonal. How close to diagonal can we make the matrix by

transformation to an orthogonal basis? The answer, given by the Schur decomposition, is

that we can make the matrix upper triangular, with the eigenvalues on the diagonal and all

other nonzero entries above the diagonal; this matrix will be diagonal (no nonzero entries

above the diagonal) if and only if the matrix is normal [Horn and Johnson 1985].5

We interpret the Schur decomposition as follows. The strictly upper triangular part of

the matrix (excluding the diagonal) corresponds to a strictly feedforward hierarchy of con-

nections: connectivity flows from node j to node i only for j > i. The diagonal entries

correspond to recurrent connectivity: node i connects to itself with a strength corresponding

5The Schur Decomposition should not be confused with the Jordan normal form of a matrix. The Jordan
normal form involves non-unitary transformations, and is diagonal for any matrix, non-normal or normal,
with a complete basis of eigenvectors. It has nonzero entries above the diagonal only for matrices that are
missing one or more eigenvectors. The Schur Decomposition involves only unitary transformations, and is
diagonal only for normal matrices; it has nonzero entries above the diagonal for all non-normal matrices.
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to an eigenvalue. In the transformed orthonormal basis in which M is upper triangular,

each node corresponds to an activity pattern. Thus, non-normal matrices, in addition to

the recurrent connectivity represented by the eigenvalues, have a hidden feedforward con-

nectivity pattern between activity patterns, which results in amplification not predicted by

the eigenvalues. In essence, the hidden dependency between the eigenvectors represented by

their overlaps (nonzero dot products) is transformed into an explicit dependency (feedfor-

ward connections between orthogonal basis patterns). The purely feedforward nature of the

connectivity also makes computation of the dynamics tractable (section S3.4).

For the generic case in which a matrix has a complete basis of eigenvectors, a Schur

decomposition is found by transforming to an orthogonal basis obtained by Gram-Schmidt

orthonormalization of the eigenvector basis. A problem with the Schur decomposition is that

it is not unique. For a non-normal matrix, each ordering of the non-orthogonal eigenvectors

may lead, under the Gram-Schmidt orthonormalization process, to a distinct orthogonal

basis. Since there are N ! possible orderings of the eigenvectors, a non-normal matrix may

have N ! distinct Schur decompositions (not counting decompositions that differ only by a

reordering of the orthonormal basis vectors). Thus, we cannot describe a unique feedforward

structure between activity patterns that characterizes a given matrix.

In reality the set of Schur bases may be more restricted. For example, for the 2N × 2N

matrix W =

(
WE −WI

WE −WI

)
studied in section S1.2, if WE − WI is normal, the N

eigenvectors pD+
i with eigenvalues λDi (which are eigenvalues of WE −WI) are mutually

orthogonal. The other N eigenvectors correspond to eigenvalues of 0. The pD+
i eigenvectors,

which are of the form

(
q

q

)
for some vectors q, are analogous to the p+ eigenvector,

∝

(
1

1

)
, with eigenvalue w+ = wE − wI in the 2× 2 case of Fig. 1 of the main text. The

eigenvectors corresponding to the 0 eigenvalues are analogous to the very similar eigenvector

proportional to

(
k

1

)
with eigenvalue 0 in the 2 × 2 case. They also can be mutually

orthogonal, but they are not very different from, and not orthogonal to, the pD+
i eigenvectors.

If in constructing the Schur basis we start with the pD+
i vectors, they will become part of the

Schur basis in a manner that does not depend on their ordering. The remaining Schur basis

vectors will all be perfect difference vectors, i.e. of the form

(
v

−v

)
for some orthonormal

set of N-dimensional vectors v, because these are the only vectors that are orthonormal to

a complete basis of perfect sum vectors (the pD+
i ), i.e. vectors of the form

(
q

q

)
. Thus, if

we start with the sum vectors pD+
i , the only ambiguity in the Schur basis will be the choice
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of orthonormal basis for the space of difference vectors.

Although the Schur decomposition is not uniquely specified, we can uniquely characterize

the overall strength of the feedforward connectivity of a matrix. All the different Schur

decompositions of a matrix are related to one another by unitary transformations. The sum

of the absolute squares of all of the elements of M is a unitary invariant (unchanged by

unitary transformations of M, and thus identical for all Schur decompositions of M), and is

equal to Tr MM†, where Tr is the trace, which in turn is equal to the sum of the squares

of the singular values σM
a of M. The eigenvalues of M are also unitary invariants, and so in

particular the sum of the absolute squares of the eigenvalues of M,
∑

a |βMa |2, is a unitary

invariant. But since all Schur decompositions have the eigenvalues on the diagonal, this is

the sum of the absolute squares of the diagonal elements of any Schur decomposition of M.

Thus, the sum of the absolute squares of the off-diagonal or feedforward elements of any Schur

decomposition of M, as a proportion of the sum of the absolute squares of all of the elements,

is fM =
(
Tr
(
MM†)−∑a |βMa |2

)
/Tr

(
MM†) = 1−

P
a |βMa |2P
a(σ

M
a )2

. The size of fM is a measure

of the strength of hidden feedforward connectivity and thus of the strength of transient

response and of the non-normality of the matrix. Note that, in the special case that all of

the eigenvalues of M are real,
∑

a |βMa |2 = Tr M2 and fM = Tr
(
MM† −M2

)
/Tr

(
MM†).

For W given by the orientation-specific connectivity matrix used in Fig. 3 in the main text

(based on 32× 32 grids of E cells and of I cells), fM = 0.55, that is, 55% of the total power

in the matrix driving the dynamics is in the feedforward links.

S3.3 The Schur Decomposition for the General 2× 2 case

We consider the general 2 × 2 connection matrix W =

(
wEE −wEI
wIE −wII

)
. We assume wEI

is nonzero. Our results will otherwise be valid for any 2× 2 matrix. However, we will regard

wEE, wEI , wIE, wII as all positive, and refer to modes as sum or difference modes based on

this assumption.

We define

X =
wEE + wII

2wEI

Y =
√
X2 − wIE/wEI (S21)

and also Z = wEE−wII
2wEI

. We note X and Z are real, X > 0, and Y is either real and positive or

else is pure imaginary. We also note that |<(Y )| < X where <(Y ) is the real part of Y . The

eigenvectors of W are e± = 1√
1+|x±|2

(
1

x±

)
where x± = X ± Y , and the corresponding

eigenvalues are λ± = wEI(Z ∓ Y ).



Murphy and Miller – February 10, 2009 21

Since X > 0 and |<(Y )| < X, the real parts of x+ and x− are both positive. This means

that both eigenvectors are sum modes, in the generalized sense that both entries have real

parts of the same sign.

To make a Schur basis, we start with e+, and construct a second vector orthonormal

to it, which we’ll call q. We can immediately see that to have q · e+ = 0, we must have

q = ± 1√
1+|x+|2

(
x∗+
−1

)
(the ∗ indicates complex conjugate; recall that, for possibly complex

vectors, q ·e+ = q†e+ where † means conjugate transpose). We choose the + of the ± choice.

Note that q is a difference vector in the generalized sense that its two entries have real parts

of opposite signs. We can also write this as q = e−−(e−·e+)e+√
1−|e−·e+|2

, since this is the Gram-Schmidt

formula for finding a unit-length vector in the e+/e− plane that is orthogonal to e+, and the

sign turns out to agree with the + choice for q above.

Then we can compute Wq = λ−e−−λ+(e−·e+)e+√
1−|e−·e+|2

= λ−q + (λ−−λ+)(e−·e+)√
1−|e−·e+|2

e+. Letting β =

(λ−−λ+)(e−·e+)√
1−|e−·e+|2

, we have We+ = λ+e+, Wq = λ−q + βe+. In other words, in the Schur basis

(e+,q), W takes the upper triangular form

W =

(
λ+ β

0 λ−

)
with

β =
(λ− − λ+)(e− · e+)√

1− |e− · e+|2
(S22)

β is the effective feedforward weight from the difference mode q to the sum mode e+.

Note that this definition of β defines a Schur decomposition for any 2 × 2 matrix with

distinct eigenvectors ei and corresponding eigenvalues λi, i = 1, 2. We didn’t use any specific

information about the structure of the eigenvectors and eigenvalues to compute this. Thus,

for any 2× 2 matrix, the feedforward weight can become large when |e1 · e2| is close to one,

i.e. when the angle between the eigenvectors is small. On the other hand, it becomes zero

when the matrix is normal, so that |e1 ·e2| = 0. (It also becomes zero if λ1 = λ2, but this also

means that the matrix is normal, because, assuming that there are two distinct eigenvectors,

then when the two eigenvalues are equal, any linear combination of the two eigenvectors is

also an eigenvector so we can always choose the eigenvectors to be orthonormal.)

Now, for our particular matrix, we wish to compute β. We do this6, and find that, in the

6First we note that (λ− − λ+) = 2wEIY . Next, e− · e+ = 1+x∗−x+√
(1+|x+|2)(1+|x−|2)

. Write this as A/B where

A, the numerator, may be complex, and B is real. Then the term (e−·e+)√
1−|e−·e+|2

= A

B
√

1−|A|2/B2
= A√

B2−|A|2
.

Now A = 1 + (X − Y ∗)(X + Y ) = 1 +X2 − |Y |2 +X(Y − Y ∗), with X(Y − Y ∗) = 0 if Y is real and = 2Y
is Y is imaginary. After some manipulation, we find that

√
B2 − |A|2 = 2|Y |.

Putting this all together, we find β = wEI(Y/|Y |)(1 +X2 − |Y |2 +X(Y − Y ∗). Y/|Y | = 1, Y real; = i, Y
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orthonormal Schur basis {e+,q}:

β = wEI + wIE, Y real (ξ ≥ 1);

= i
(
wEI + wIE(2ξ2 − 1) + iwIEξ

√
1− ξ2

)
, Y imaginary (ξ < 1); and

ξ =
wEE + wII
2
√
wEIwIE

(S23)

We can determine the size of the feedforward weight β when ξ < 1, by computing for this

case

|β| =
(
(wEI − wIE)2 + 4wEIwIEξ

2 − 3w2
IEξ

2(1− ξ2)
) 1

2

=

(
(wEI − wIE)2 + (wEE + wII)

2

(
1− 3wIE

4wEI

)
+

3(wEE + wII)
4

(4wEI)2

) 1
2

, ξ < 1 (Y imaginary)

(S24)

We have noted (section S1.2) that the solution to the dynamical equation for r with

time-independent input can be written in terms of the matrix e−(1−W)t/τ = e−t/τeWt/τ as

r(t) = e−(1−W)t/τ (r(0) − I) + I (or with time-dependent input, r(t) = e−(1−W)t/τr(0) +
1
τ

∫ t
0
dt′e−(1−W)(t−t′)/τI(t′)). We can compute this matrix:

e−(1−W)t/τ = e−t/τ

(
eλ+t/τ β e

λ−t/τ−eλ+t/τ

λ−−λ+

0 eλ−t/τ

)
(S25)

The term multiplying β,

gλ+;λ−(t) =
e(λ−−1)t/τ − e(λ+−1)t/τ

λ− − λ+

(S26)

is the generalization of the pulse function gw+(t) that we saw in section S1.2. gw+(t) is this

term for the case λ− = 0, λ+ = −w+, which was true for that model. gλ+;λ−(t) just arises

imaginary (where i =
√
−1). So we arrive at

β = wEI(1 +X2 − Y 2), Y real

= iwEI(1 +X2 − |Y |2 + 2XY ), Y imaginary

For the case Y real, which means
(
wEE+wII

2

)2 ≥ wEIwIE , we have X2 − Y 2 = X2 − (X2 − wIE/wEI) =
wIE/wEI . Thus β = wEI(1 +wIE/wEI) = wEI +wIE . In other words, the feedforward weight is just given
by the sum of the two feedback inhibition terms, so if feedback inhibition is strong, there is strong balanced
amplification.

For the case Y imaginary, which means wEIwIE >
(
wEE+wII

2

)2, X2 − |Y |2 = X2 − (wIE/wEI −X2) =
2X2−wIE/wEI . Thus β = iwEI(1−wIE/wEI+2X(X+Y )) = i(wEI−wIE+2wEIX(X+Y )). The expression
simplifies somewhat if we define ξ =

√
X2/(wIE/wEI) = wEE+wII

2
√
wEIwIE

, and note Y is imaginary if and only if

ξ < 1. Then X =
√
wIE/wEIξ, Y = i

√
(wIE/wEI)(1− ξ2), and X(X + Y ) = (wIE/wEI)(ξ2 + iξ

√
1− ξ2).

Thus we can write β = i(wEI − wIE + 2wIEξ(ξ + i
√

1− ξ2).
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from concatenating the filter 1
τ
e(λ−−1)t/τ that the difference mode q applies to its input, with

the filter 1
τ
e(λ+−1)t/τ that the sum mode e+ applies to its input, as explained in section S3.4.

In the limit λ+ → λ−, gλ+;λ−(t)→ (t/τ)eλ−t/τ .

S3.4 Solution of the Dynamics in a Schur Basis, and Coexistence

of Hebbian and Balanced amplification

The dynamics can, at least in principle, be simply solved in a Schur Basis. Let the eigenvalues

of W be λi. Let the Schur basis patterns be pi, with associated eigenvalues λi and amplitudes

ri(t), and feedforward weights wFFij between the patterns with i < j. Then the ith pattern

simply filters (convolves) its input with its filter, fi(t) = 1
τ
e−(1−λi)t/τ (where convolution of

I(t) with fi is fi ? I(t) =
∫ t

0
dt′ fi(t − t′)I(t′)), and any initial condition ri(0) is multiplied

by τfi(t). The sum of these gives the activity ri(t) of the ith pattern at time t. This is the

same prescription used to solve the dynamics in the eigenvector basis (or in any basis, if the

eigenvalue is replaced by the self-connection in that basis).

There are two differences from the eigenvector basis. First, in the Schur basis, the inputs

to patterns include inputs via feedforward links from other patterns, while in the eigenvector

basis there are no connections between patterns. If there were loops in the connectivity,

this prescription would not suffice to write down a solution. To compute a neuron’s response

would require concatenating infinite loops of exponential filters. But because the connectivity

is purely feedforward, this prescription yields a finite solution.

Second, in the eigenvector basis, the components ri of the patterns and Ii of the inputs

must be found by dot product of the corresponding left eigenvectors with the rate vector r

or input vector I, and the left eigenvectors are not equal to the right eigenvectors when the

eigenvectors are not mutually orthogonal (the left eigenvectors are found as the rows of the

inverse of the matrix whose columns are the eigenvectors). This is why the components of

r in the eigenvector basis are so nonintuitively related to r for a non-normal matrix. For

an orthonormal basis set, the components are found simply as dot products with the basis

patterns.

How is a solution written down in the Schur basis? One begins with patterns receiving

no feedforward input from other patterns, and then propagates the activity forward through

the feedforward tree of patterns. This continues until reaching the end of all chains and

branches of the tree. The total input to pattern i at time t is I totali (t) = Ii(t) +
∑

j>iwijrj(t)

where rj(t) is the activity of node j. Then node i’s activity ri(t) = fi ? I
total
i (t) + ri(0)τfi(t)

where ? indicates convolution.

Alternatively, one can compute the matrix e−(1−W)t/τ , from which the solution can be

computed as r(t) = e−(1−W)t/τr(0) + 1
τ

∫ t
0
dt′e−(1−W)(t−t′)/τI(t′). The element

(
e−(1−W)t/τ

)
ij
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is computed as follows. It is τ times the sum, over all feedforward paths from j to i, of the

following for each path: the concatenation (convolutions) of the filters for each pattern in

the path (including j and i), multiplied by the product of all the feedforward weights along

the path. If i = j (diagonal elements), this is just the filter for the node j; if there are no

feedforward paths, the element is 0.

As a simple example: for the case in which a difference mode p− corresponding to

eigenvalue λ− sends a feedforward connection wFF to a sum mode p+ corresponding to

eigenvalue λ+, then the result of concatenating the two exponential filters of p− and p+,

multiplied by wFF , is 1
τ
wFFgλ+;λ−(t) (Eq. S26), the pulse function that describes the response

of the sum mode to input to the difference mode.

We have focused on the case in which there are no positive eigenvalues, so that there

is no Hebbian slowing and the only mechanism of amplification is balanced amplification.

However, it is important to point out that balanced amplification and amplification by

slowing down will coexist if there are eigenvalues of W, λi, with positive real part but in the

stable regime, 0 < <(λi) < 1. The basic mechanism is as just described and as illustrated

in Fig. 4 in the main text: the eigenvalues control the dynamics of each pattern, while the

feedforward connections transmit between them. If a pattern’s dynamics are slowed by its

eigenvalues, this will affect both its integration of any input it receives, including feedforward

input, and the time course of any feedforward input it sends to other patterns.

S3.5 The general case of distinct WEE, WEI, WIE, and WII

In the general case in which W =

(
WEE −WEI

WIE −WII

)
, with each submatrix WXY having

non-negative entries, we cannot form a general solution or make a general argument as to

the size or structure of the balanced amplification that will arise. However, we can make a

number of more limited arguments to suggest that, when recurrent excitation is large but is

balanced by large feedback inhibition, we should expect large balanced amplification, with

the dominant feedforward links being from difference modes to sum modes. In addition, for

many simple connectivities (translation-invariant connectivity), feedforward chains are only

a single link long.

The dynamics is driven by W − 1, but the identity matrix remains the identity in any

basis, subtracting 1 from each diagonal element and making no contribution to feedforward

weights. So, we focus on W, knowing that we must simply subtract 1 from each diagonal

element. We think of W as the mean connectivity matrix in the linear model, which defines

the probabilities from which the sparse random connectivity of the spiking model was drawn.

However, some of our arguments would also apply to a sparse random connectivity matrix.
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S3.5.1 Balanced Networks Should Have Large Feedforward Weights

Here we make two arguments. The first is that presented in the main text, which we slightly

amplify here. The sum of the absolute squares of the matrix entries of any matrix is a unitary

invariant (invariant under unitary transformations). Since both excitation and inhibition

are strong, this sum is large for W. In the basis of a Schur decomposition, this is equal

to the sum of the absolute squares of the eigenvalues plus the sum of the absolute squares

of the effective feedforward connections. If we define balanced inhibition to mean that all

of the eigenvalues are small, then it follows that there will be large effective feedforward

connections and therefore large balanced amplification. However, some connectivities that

might otherwise be interpreted as “balanced inhibition” might produce eigenvalues with large

negative real parts and/or large imaginary parts, and conceivably these eigenvalues could be

large and/or numerous enough to account for most of the sum, leaving only relatively small

feedforward connections; we cannot rule this out or state conditions under which it will or

will not happen.

Second, we compute the invariant fW defined above in section S3.2, which measures

the relative strength of the effective feedforward connectivity and thus of the balanced

amplification, in a special case: we assume that all of the eigenvalues of W are real.

In this case, fW = Tr
(
WW† −W2

)
/Tr

(
WW†). Let WA

EE = (W†
EE −WEE)/2 and

WA
II = (W†

II −WII)/2 be the antisymmetric parts of WEE and WII respectively. Then we

can compute

fW =
Tr
(
WEIW

†
EI + WIEW†

IE + WEIWIE + WIEWEI + 2WEEWA
EE + 2WIIW

A
II

)
Tr
(
WEIW

†
EI + WIEW†

IE + WEEW†
EE + WIIW

†
II

)
(S27)

In particular, if all of the submatrices WXY are symmetric, this becomes

fW =
Tr ((WEI + WIE)2)

Tr (W2
EI + W2

IE + W2
EE + W2

II)
(S28)

Thus, if feedback inhibitory terms WIE and WEI are at least comparable in size to the

recurrent terms WEE and WII , as they must be for inhibition to balance excitation, then the

numerator of fW should be comparable to the denominator and fW should be significantly

nonzero. This becomes particularly clear in the symmetric case, in which fW becomes

essentially a measure of the size of the feedback inhibition relative to the overall connectivity,

similar to our finding in the case in which the different submatrices can be simultaneously

diagonalized.
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S3.5.2 The Dominant Feedforward Links in Biological Connection Matrices

Should Be From Difference Modes to Sum Modes

Here we argue that the overall structure of W, namely its two nonnegative submatrices on

the left and two nonpositive submatrices on the right, causes the dominant feedforward links

to be from difference modes to sum modes. We take W to be 2N -dimensional, so that each

submatrix is N -dimensional.

Our argument is based on the following fact: in any 2N -dimensional orthonormal basis

{fi}, i = 1, . . . , 2N , W can be written W =
∑

ijW
f
ijfif

†
j where W f

ij = f †i Wfj. W
f
ij is the i-jth

element of W when it is expressed in the {fi} basis. Each term of the form W f
ijfif

†
j takes

input in the fj direction, multiplies it by Wij, and converts it to output in the fi direction.

That is, it can be thought of as a link from pattern fj to pattern fi with weight Wij.

Let {ei} be any set of N orthonormal N-dimensional basis vectors. Form the 2N -

dimensional orthonormal basis consisting of the sum vectors e+
i = 1√

2

(
ei

ei

)
and the differ-

ence vectors e−i = 1√
2

(
ei

−ei

)
. We then can write

W =
∑
ij

W++
ij e+

i e+†
j +

∑
ij

W−−
ij e−i e−†j +

∑
ij

W+−
ij e+

i e−†j +
∑
ij

W−+
ij e−i e+†

j (S29)

We define W++ =
∑

ijW
++
ij e+

i e+†
j and similarly for the other three terms. W++ represents

links from sum patterns to sum patterns; W−− represents links from difference patterns

to difference patterns; W+− represents links from difference patterns to sum patterns; and

W−+ represents links from sum patterns to difference patterns.

By considering the structure of individual terms in the sums, it is easy to see that these

matrices have the form

W++ =

(
A A

A A

)

W−− =

(
B −B

−B B

)

W+− =

(
C −C

C −C

)

W−+ =

(
D D

−D −D

)
(S30)

for some submatrices A,B,C,D. From the fact that W = W++ + W−− + W+− + W−+,
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we can find

A =
1

4
(WEE −WEI + WIE −WII) (S31)

B =
1

4
(WEE + WEI −WIE −WII) (S32)

C =
1

4
(WEE + WEI + WIE + WII) (S33)

D =
1

4
(WEE −WEI −WIE + WII) (S34)

C is the average of the four nonnegative submatrices of W, so it is nonnegative and it will

have large entries if W does. A, B, and D all are averages of two of these submatrices plus

the negatives of two others, meaning that A, B, and D should be relatively small by some

measure (for example, in the case of sparse random submatrices, then C would have leading

eigenvalue of order N while A, B, and D would have leading eigenvalue of order
√
N [Rajan

and Abbott 2006]).

Thus, the dominant contribution to W should be from W+−, which has the same struc-

ture of signs as W, and which involves links from difference patterns to sum patterns. The

contributions from W++, W−−, and W−+ should be relatively small: these account for the

differences between WEE,WEI ,WIE and WII , that is, for their deviations from their av-

erage, while W+− accounts for their average. Since W+− makes the dominant contribution

to W and W overall is large (involving large recurrent excitation balanced by large feed-

back inhibition), we expect W to involve large balanced amplification dominantly involving

feedforward links from difference-like patterns (in which inhibition and excitation largely or

entirely have opposite signs) to sum-like patterns (in which they largely or entirely have the

same sign).

We can see more generally the sources of other kinds of links from Eq. S30. W+−,

and thus difference-to-sum links, account for equal strengths of E→E, E→I, I→E, and I→I

connections. Sum-to-sum links (W++) add something of the same sign to all four kinds of

connections; if positive, this makes excitatory connections stronger and inhibitory weaker, if

negative it does the reverse. So sum-to-sum links create overall imbalances between excita-

tory and inhibitory connections. Difference-to-difference links (W−−) make connections to

E cells stronger and connections to I cells weaker, or vice versa, so these create overall im-

balances between connections to E cells and connections to I cells. Finally, sum-to-difference

links W−+ make same-type coupling (E→E and I→I) stronger and opposite-type (I→E and

E→I) weaker, or vice versa, so these create overall imbalances between same-type connec-

tions and opposite-type connections. Thus, by looking at the strengths of the average and

of each type of imbalance, one can obtain some sense of the strength of each type of link.

This analysis is limited, because the sum and difference basis with which we’re working is

not likely to render a general W matrix upper triangular, i.e. the links will involve loops
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and not be strictly feedforward. The Schur basis, which is strictly feedforward except for

the eigenvalues, will be a different basis, and we cannot predict exactly how this picture will

translate into the Schur picture. We do suggest that, if certain kinds of links are especially

strong or especially weak in the sum and difference basis, this is likely to also be evident in

the feedforward links in the Schur picture. Thus, given that difference-to-sum links dom-

inate the matrix, we expect the dominant feedforward links in the Schur basis to be from

difference-like modes to sum-like modes.

S3.5.3 Translation-Invariant Connectivity Leads to Independent Two-by-Two

Connection Matrices for Each Spatial Frequency

Third, consider the case in which theN -dimensional submatrices WEE, WEI , WIE, and WII

can all be simultaneously diagonalized in an orthonormal basis. In this case, we can show

quite generally that the matrix breaks down into a set of N independent 2× 2 submatrices,

one for each eigenvector, so that feedforward chains can only have length one, between the

two Schur vectors of a single 2×2 submatrix. We argue further that when recurrent excitation

is large but is balanced by large feedback inhibition, there will be large amplification from

difference modes to sum modes.

This assumption is not unreasonable for the mean connectivity. In particular, it will be

true if the mean connectivity submatrix is translation-invariant, meaning that it looks the

same at any spatial position or at any position in feature space on which the connectivity

depends, so that translating a spatial or feature-space position by the same amount for all

neurons will not change the connectivity between them. In this case, the submatrices can be

simultaneously diagonalized by the Fourier transform, which represents a transformation to

an orthonormal basis. If connections depend on spatial position and preferred orientation,

they will be translation invariant if changing every neuron’s position by 100 µm or changing

every neuron’s preferred orientation by 30o will leave the connection matrix unchanged.

This will be true if the connection strength between two neurons depend only on differences

between their positions or features, if boundary effects are negligible, and if the different

spatial or feature dimensions on which the connections depend are not coupled, so that

changing one does not also cause changes in others. An example in which this last condition

is violated, i.e. features are coupled, is Fig. 3: the orientation map is spread over space,

so the preferred orientation of a neuron depends on its position. Thus, if all neurons are

translated in space, this will also change their preferred orientations, and for most orientation

maps the preferred orientations of different neurons will not change by the same amount,

so the connectivity is not translation invariant. If instead we assume that each position

contains cells of all preferred orientations, then connectivity that only depends on differences

of position and of preferred orientation would be translation invariant. To the extent that
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this latter form of model is adequate to understand many features of V1, the conclusions

drawn from considering the behavior of translation-invariant matrices will apply.

Let ei be the orthonormal basis of the N × N subspace in which all of the submatrices

are diagonal. Let DEE(i) be the eigenvalue of WEE corresponding to ei, and similarly for

the other submatrices. For a translation-invariant matrix in which connectivity depends

only on space, i corresponds to a spatial frequency, and DEE(i) is the Fourier transform of

the excitatory connectivity at frequency i. For a translation-invariant matrix that depends

on multiple spatial or feature dimensions, i represents a particular set of frequencies, one

for each dimension, and DEE(i) is the product of the Fourier transforms of the excitatory

connectivity along each dimension at the corresponding frequency for that dimension.

Define orthonormal basis vectors of the full space by the excitatory cell vector eEi =(
ei

0

)
and inhibitory cell vector eIi =

(
0

ei

)
, where 0 is the N-dimensional vector of all

0’s, and work in the basis {eE1 , eI1, eE2 , eI2, . . . , eEN , eIN}. In this basis, the matrix W becomes

a set of N 2×2 matrices arrayed along the diagonal, with the kth such matrix corresponding

to the basis vectors eEk , e
I
k and being of the form D(k) =

(
DEE(k) −DEI(k)

DIE(k) −DII(k)

)
. Thus, the

dynamics break up into independent two-dimensional subspaces, one for each N-dimensional

eigenvector. E and I amplitudes for a given eigenvector interact with one another by the

corresponding 2×2 matrix, but do not interact with the amplitudes for any other eigenvector.

In section S3.3, we computed the Schur decomposition for this 2× 2 matrix. We showed

that, if all of the DXY ’s were positive, the Schur basis showed a feedforward connection of

size β from a difference-like mode to a sum-like mode. Here, we cannot be certain that all

the DXY ’s will be positive, but if the connection strengths decrease smoothly with distance

(in all the dimensions on which they depend), then they are likely to be, particularly when

they are large. We also showed (Eqs. S23-S24) that, when the eigenvalues of D(k) are real,

the feedforward connection strength is β = DEI(k) + DIE(k); while when the eigenvalues

are complex, β has a more complicated form in which |β| depends upon DEE(k) + DII(k)

and also on |DEI(k) − DIE(k)|. Assuming each submatrix individually has large elements,

each of the DXY ’s must take large values for some k’s (e.g., the sum of the absolute squares

of the DEI(k)’s is equal to the sum of the absolute squares of the elements of WEI , etc.).

If they are positive (for example, the Fourier transform of a Gaussian connectivity function

is a Gaussian, and similar results are expected for any connectivity that falls off gradually

with distance in the the relevant real or feature spaces that define connectivity), or more

generally if there is no conspiracy by which DEI and DIE (or DEE and DII) tend to be of

opposite sign and cancel, then there should be large feedforward weights and large balanced

amplification.
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None of these arguments are general or definitive, but all are consistent with the hypoth-

esis that large balanced amplification should be expected when large recurrent excitation is

balanced by large feedback inhibition. It obviously remains an important open question to

define more precisely when this will or will not be true.

S4 Issues related to the Model and the Experimental

Data

S4.1 Asynchronous, irregular activity in the spiking model, and

the correspondence between spiking and rate models

The spiking model studied here operates in the “asynchronous irregular” regime [Brunel 2000]

characterized by irregular spiking response and absence of global rate oscillations (Fig. S1),

as in previous models of sparse balanced networks with unstructured random connectivity

[Brunel 2000, van Vreeswijk and Sompolinsky 1996] or orientation-specific connectivity [Ler-

chner et al. 2006]. The coefficient of variation for inter-spike intervals (ISIs) is around 1

(Fig. S1A), and the ISI distribution is essentially exponential (Fig. S1C), indicating Poisson-

like firing. The average firing rate in spontaneous activity fluctuates around 7 Hz without

oscillations (Fig. S1B).

In the asynchronous irregular regime, mean field theory can be applied to derive expres-

sions for firing rates from a spiking model [e.g. Brunel 2000, Lerchner et al. 2006, Shriki

et al. 2003, Sompolinsky and White 2005]. Furthermore, for a statistically stationary input

for which the system is fluctuating relatively weakly around the mean rates it would have

in response to the mean input, as is the case for the spontaneous activity studied here, one

can derive linear dynamical equations for the rate (although the best linear description has a

band-pass temporal filter, rather than the low-pass filter used here for the rate model) [Shriki

et al. 2003, Sompolinsky and White 2005].7 One imagines that the mean connectivity matrix

from which the sparse random connectivity is drawn should provide a reasonable description

of the connectivity in this linear model, again by mean field arguments (given enough inputs,

7This correspondence was derived by [Shriki et al. 2003, Sompolinsky and White 2005] on the assumption
that a neuron receives a large enough number of uncorrelated pre-synaptic spikes in one integration time
that fluctuations in this number for a fixed network firing rate can be neglected. We speculate that, even for
the sparsely connected network studied here, this approximation is sufficient to explain why a simple linear
model captures key aspects of spiking model behavior, although this requires further study. Our neurons
have about a 10 ms time constant, so at a 7 Hz average firing rate, with 100 excitatory and 25 inhibitory
connections, they will receive a mean of about 14 excitatory and 3.5 inhibitory inputs in one integration
time. Fluctuations in number, relative to the mean N , are expected to be of size 1/

√
N , that is, about 25%

for excitatory inputs and about 50% for inhibitory inputs.
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the input a neuron receives from the sparse random sampling should show small deviations

from the input it would receive under the mean connectivity matrix). Together these pro-

vide an intuitive but speculative reasoning as to why the linear rate model we studied should

capture key aspects of the behavior of the spiking model we studied. Obviously, these ideas

need more careful study.

S4.2 The relationship between the auto-correlation function (ACF)

and the response rise time

We looked at two measures of network dynamics: the ACF of a pattern’s amplitude relative

to the ACF of its input, which is a natural measure of network time scales for fluctuating

(spontaneous) activity and which we used to characterize the spiking model; and the onset

time for response to stimuli that drive that pattern, which is a natural measure of dynamics

for responses to stimuli and which we examined in some studies of the linear two-population

model. We showed that neither is slowed by balanced amplification. What is the relationship

between these two measures?

Intuitively, the relationship in a linear model is as follows. We are measuring the ACF

of, essentially, the amplitude of the orientation-map-like pattern in the model of Fig. 3. This

sum mode is driven both by input to the sum mode and by input to the difference mode,

each with different temporal responses. A pulse of instantaneous input to the difference

mode drives a pulse of activity in the sum mode that grows and decays, while a delta-pulse

of input to the sum mode simply drives a decaying exponential of activity; the response of

the E population in Fig. 2 is just the sum of these two.

We abstract from this to consider just a single input I(t) that drives a response r(t). In

section S2.1, we show the following. Suppose an initial condition r(0) evokes a response time

course R(t), R(t) = 0 for t < 0. Then, if a steady input I is turned on at time zero, the

response at t is just the integral of R: r(t) = I
∫ t

0
dt′ 1

τ
R(t′). The response grows with time

at a rate corresponding to the rate of accumulation of area under the curve R(t), as can be

seen by comparing Figs 3A-B (which represent R(t) to their corresponding Figs 3C-D (which

represent the response to onset of I.

In the noise response, each instant of noisy input evokes the same response time course

R(t), and these responses to the different noisy inputs at different times just superpose.

So the noisy input is just being filtered by R(t) to determine the response, the same filter

function whose integral determines the rise time. There is a slight complication because the

ACF involves a product of r(t) and r(t+τ) and thus two factors of R. But, the increase in the

time over which the noisy response is correlated, relative to the correlation time of the noisy

input, is determined by the same time scales that determine R(t) and thus determine the
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rise time. They are in a sense two measures of the same thing. In footnote 9 and Eq. S35 we

show that this is mathematically true in the simple case that noise is derived by exponential

filtering of white noise and the response function is also an exponential function.

In particular, we have seen that in the models of balanced amplification, amplification

occurs with little or no widening of the ACF and little or no slowing of the rise time to

stimulus onset.

S4.3 Further evidence of balanced amplification in the spiking net-

work

In the main text (Fig. 6) we provide evidence of balanced amplification in the spiking model

by showing that the time course of the amplified patterns is not slowed even as the strengths

of the recurrent connections, and thus the strength of the amplification, is increased (by

scaling all synapses, both excitatory and inhibitory, by a common factor). As a control, we

now also examine an alternative spiking model that is identical except for a modification in

connectivity that, in the linear model, yields a positive eigenvalue for patterns resembling

evoked orientation maps. In this case, the time course of the amplified patterns should

be increasingly slowed with increasing strength of recurrent connectivity and amplification,

showing that the lack of slowing in the original model is not a general attribute of spiking

models.

In the original spiking model of Fig. 5, excitation and inhibition have identical orientation

tuning (weθ = wiθ = 20◦). In this case, all eigenvalues in the linear model are ≤ 0. In the

modified spiking model, a “Mexican hat” connectivity is used, in which inhibitory connec-

tions have wider orientation tuning than excitatory inputs (wiθ = 50◦). In the linear rate

model with this circuitry, orientation-map-like patterns have positive eigenvalues, so there

is both Hebbian and balanced amplification. The overall excitatory and inhibitory synaptic

strengths are equal in the two models: each neuron in the second model receives exactly the

same summed excitatory and summed inhibitory input as in the first model (both in the

linear versions of the models and in the spiking versions of the models). However, in the sec-

ond model, a cell receives more excitation than inhibition from cells with nearby preferred

orientations, and more inhibition than excitation from cells with more distant preferred

orientations. Thus, orientation-map-like patterns, in which neurons with similar preferred

orientation have similar activity and neurons with more distant preferred orientations have

opposite activity, acquire positive eigenvalues.

In Fig. S2A,C we compare the effect of increasing recurrent strength in these two types of

network, from 0% (no recurrent circuitry) to 200% (twice the strength used for the original

model in Fig. 5.) Blue lines indicate the original model, using the same data as in Fig. 6,
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while green lines indicate the model with a positive eigenvalue. In both models, increas-

ing recurrent strength increases the amplification of patterns resembling evoked orientation

maps, as measured by the width of the distribution of correlation coefficients (Fig. S2A).

The increase is less for the original model, for reasons that can be understood from the linear

model. First the patterns in the wiθ = 50◦ network are amplified both by slowing associated

with a positive eigenvalue and by balanced amplification, while the wiθ = 20◦ network has

only the balanced amplification.

Second, one expects the correlation coefficient to grow to a plateau with increasing recur-

rent strength for the network that only has balanced amplification, but not for the network

that also has Hebbian amplification, for the following reason. Recall from S1.2 that the

response in a sum pattern, pD+
i , when its corresponding difference pattern, pS−j , is activated

is wFFgλDi (t) with wFF = λSj cji. For the network with only balanced amplification, there are

no positive eigenvalues, and we assume also that there are no zero eigenvalues (real part of

−λDi < 0), as was true for the relevant patterns in our simulation.8 Then, the degree of

amplification produced for the sum pattern, as discussed in S2 and S1.1.1, is proportional

to wFF
1+λDi

(recall, we defined λDi as a positive quantity whose negative is the eigenvalue of

the sum pattern) for a steady state input and wFF√
(1+λDi )(2+λDi )

, for white noise input. The

amplification for temporally correlated input is likely to be between these two quantities. As

the recurrent circuitry is scaled up, both wFF and λDi are scaled up by equal factors, with

their ratio remaining constant, and the amplification in either case asymptotes to wFF
λDi

.

In contrast, for the network with both balanced and Hebbian amplification, there is a

positive eigenvalue (real part of −λDi > 0), so one expects Hebbian amplification by a factor

of between 1
1+λDi

(steady state) and 1√
(1+λDi )

(white noise). This grows without bound for

real λDi as −λDi approaches 1, so the amplification need not plateau.

The decay time of the amplified patterns actually decreases with increasing recurrent

strength for the original model, whereas it increases with increasing recurrent strength for

the modified model (Fig. S2C). The reason for the decrease is that, with increasing recurrent

strength, the neurons receive more synaptic conductance and hence their average membrane

time constant is reduced. To see this, we subtract the average membrane time constant

from the decay time and plot the difference (dashed lines in Fig. S2C). The time added

beyond the membrane time constant is roughly constant for the original model, regardless

of recurrent strength. In contrast, a steep increase in decay time with increasing recurrent

strength occurs in the modified model.

8In our model circuit, all the −λDi have real part < 0 except one, that corresponding to the first pattern
shown in Fig. 3B, which is a spatially uniform or “DC” pattern and has λD = 0. Following the methods
used in experiments, we subtract the DC component from the frames before computing their correlation
coefficient with the evoked map, so we do not consider the correlation coefficients for this pattern.
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In these simulations, the difference in time course between the two models is not visible

when the amplification is about 2 (0.2 correlation distribution width in Fig. S2A, vs. 0.1

or less for control pattern in Fig. S2B), the level observed experimentally. This could mean

that Hebbian and balanced mechanisms are not distinguishable by the speed of decay in

this range of amplification. However, it is also possible, for example, that in the modified

model balanced amplification dominates Hebbian amplification over this range of parameters.

Unfortunately we have not studied this.

Neither network amplifies or slows the control map pattern from Fig. 5 of the main

paper (Fig. S2B,D), at any level of recurrent strength. This rules out the possibility that

nonlinearities cause the modified model to slow all patterns, rather than just those with

positive eigenvalues.

S4.4 Constraints on models from the time scales observed in Kenet

et al. [2003]

In the text, we briefly discuss the constraints imposed by the experiments of Kenet et al.

[2003] on the amount of cortical slowing in V1. Here we provide a more detailed description

of our reasoning. We refer to the time series or distribution of correlation coefficients of a pat-

tern, meaning the correlation coefficients between the pattern and snapshots of spontaneous

activity.

One expects the autocorrelation time of the time series of correlation coefficients of a

pattern to be given roughly by the sum of the correlation time of the inputs and the time

constant of the network activity for that pattern.9 We expect the correlation time of inputs

to upper layers to be many tens of milliseconds, based on the temporal kernels of inputs from

lateral geniculate nucleus to layer 4 of V1 [Wolfe and Palmer 1998] or of simple cells in V1

[DeAngelis et al. 1999, 1993], which should provide the dominant input to V1 upper layers

9Consider a linear model in which the input is given by white noise filtered by an exponential kernel with
time constant τn, and the response is given by the input filtered by an exponential kernel with time constant
τλ. The autocorrelation function of the response with itself at time difference t is given by

τn exp(−t/τn)− τλ exp(−t/τλ)
τ2
n − τ2

λ

(S35)

To see how this behaves, first consider the limit in which τn → τλ. In this limit, the expression becomes
1

2τλ

(
1 + t

τλ

)
exp(−t/τλ). This becomes equal to 1/e of its peak height for t ≈ 2.15τλ, that is, t slightly

larger than τn + τλ. Second, consider the limit in which τn � τλ (the limit with τλ � τn behaves identically
since Eq. S35 is invariant under interchange τλ ↔ τn). The numerator peaks at t = 0 with value τn− τλ. To
find the time when the numerator has decreased to 1/e of this value, note that the second term has become
negligible at this time relative to the first, so we can approximate the condition as τn exp(−t/τn) = (τn−τλ)/e
or t = τn(1− log(1− τλ

τn
)) ≈ τn(1 + τλ/τn) = τn + τλ.
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[e.g. Martinez et al. 2005]. The 73 ms time we used in the main paper seems reasonable

based on the studies of simple cells, but shorter times are also reasonable, particularly if

LGN rather than simple cells are considered. We take 30 ms as a lower bound of reasonable

input correlation times.

In the experimental data, the autocorrelation time of the correlation coefficients of evoked

maps, measured as the time for the autocorrelation to fall to 1/e of its maximum, is about 80

ms (M. Tsodyks, private communication; see also Kenet et al. [2003] for a different measure

of the time course that also gives a time of about 80 ms). Thus, we take 50 ms to be an

upper bound for the contribution of the network time constant.

In [Kenet et al. 2003], the width of the distribution of correlation coefficients of an evoked

map was about 2 times the width of the distribution for a similar, control pattern. This

suggests that input patterns corresponding to evoked maps are amplified about 2 times rela-

tive to input patterns corresponding to the control pattern, although there are uncertainties

in this estimate, discussed in section S2. In a Hebbian-assembly model, eigenvectors are

amplified by the factor 1
1−λ , for steady state input, or 1√

1−λ , for white noise, where λ is the

corresponding eigenvalue of W, and we suggested that values for correlated noise input will

be bounded by these values (section S2). Goldberg et al. [2004] studied a Hebbian-assembly

model with a threshold nonlinearity in the equation governing the firing rates, and with

correlated noise inputs. They showed that λ = 0.6, which gives an amplification factor of 1.6

(white noise) to 2.5 (steady-state input) in a linear model, gave a widening of the distribu-

tion of correlation coefficients of the evoked map of 2X relative to the same model without

recurrent connections, well within the predicted range. The dynamics of an eigenvector with

eigenvalue λ are slowed by the factor 1
1−λ , or 2.5 times in their model. If a slowing of 2.5 times

is needed to achieve 2X amplification, the amplification seen by Kenet et al. [2003] (Section

S2.2), then for the network time constant to be no more than 50 ms with an amplification

factor of 2.0, the intrinsic decay time, τ , needs to be no greater than 20 ms.

S4.5 Differing excitatory and inhibitory timescales in the spiking

model

We have used identical timecourses for excitatory and inhibitory synaptic conductances in

our spiking model. Although we have not explored the issue extensively, we imagine that, so

long as firing remains in the asynchronous regime, reasonable differences in excitatory and

inhibitory timescales can be compensated by changes in the synaptic connectivity, as in a

linear rate model. In the linear model, consider a 2× 2 network with one excitatory and one
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inhibitory neuron, with time constants τ and kτ respectively:

τ

(
1 0

0 k

)
d

dt

(
rE
rI

)
= −

(
1− wEE wEI

−wIE 1 + wII

)(
rE
rI

)
+

(
IE
II

)
(S36)

This network is equivalent to a network with equal time constants and modified connectivity

matrix and inputs:

τ
d

dt

(
rE
rI

)
= −

(
1− wEE wEI
−wIE
k

1+wII
k

)(
rE
rI

)
+

(
IE
II
k

)
(S37)

In other words, suppose we begin with a network with equal excitatory and inhibitory time

constants. If we then lengthen (shorten) the inhibitory time constant, but also compensate

by appropriately increasing (decreasing) all of the inputs to I cells (the E → I and I → I

weights and the external input to I cells), then the network behavior will be unchanged.

There is a limit to such compensation: the new wII , w
new
II = 1+wII

k
−1, cannot be negative.

This will become negative if k > 1 + wII , so the I time constant cannot be larger than the

E time constant by a factor of more than 1 + wII for an analysis in terms of an equivalent

network with equal E and I time constants to apply.

More generally, we can qualitatively say the following: for the mechanism of balanced

amplification to work, inhibition must have a combination of speed and strength that allows

excitation to grow transiently yet stabilizes the system. If inhibition is too fast and/or

strong relative to excitation, it will quench growth of a sum mode so quickly that balanced

amplification will be very weak. If inhibition is too slow and/or weak relative to excitation,

and excitation is strong enough to be unstable by itself, the network will lose stability, and

a sum mode will grow without bound. In between, there is a reasonable range of parameters

for which inhibition provides stability without instantly quenching growth.
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S5 Supplementary Figures
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Figure S1: During spontaneous activity excitatory neurons fired irregularly with a mean

firing rate of 15 Hz and an average coefficient of variation (CV) for inter-spike intervals (ISI)

of 1.0. Inhibitory neurons were similar with mean firing rates of 14.5 Hz and a CV of .95.

ISIs for both types of neuron have a roughly exponential distribution. A) Spike raster plots

over a one second long interval for 10 randomly selected excitatory (blue) and inhibitory

(red) neurons. B) The average firing rate computed in 5ms bins of the entire population of

excitatory (blue) and inhibitory (red) neurons for the same period. C Histogram showing

the relative frequencies of different ISIs for excitatory (blue) and inhibitory (red) neurons.
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Figure S2: (See caption on next page)
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Figure S2 Effects of changing strength of recurrent synapses in spiking models. A

comparison of the effects of increasing the strength of recurrent synapses in a network with

equal excitatory and inhibitory tuning widths (blue lines; simulations of Fig. 5) or wider

inhibitory tuning (green lines). Orientation tuning of excitatory and inhibitory neurons

are proportional to a Gaussian with standard deviation weθ/
√

2 and wiθ/
√

2, respectively

(more details in Methods), with weθ = 20◦; wiθ = 20◦ (blue lines) or wiθ = 50◦ (green

lines). A,B) The effect of increasing recurrent strength on the width (standard deviation)

of the distribution of correlation coefficients with the 0◦ evoked map and the control map

used in Fig. 5. C,D) The effect of increasing recurrent strength on the time constant of

network activity, as measured by the time required for the autocorrelation function of the

correlation coefficient timeseries to decay to 1/e of its maximum value (τACF). The membrane

time constant of the neurons (τm), taking into account the average synaptic conductance

associated with ongoing spontaneous activity, decreases with increasing recurrent strength.

The blue and green dashed lines plot τACF − τm for wiθ = 20◦ and wiθ = 50◦ respectively. In

all panels a strength of 100% corresponds to the synaptic strengths in the network presented

in Fig. 5.
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Figure S3: Amplification of evoked maps vs. control patterns varies slowly with

filter width over a broad range of filter widths. X-axis is the standard deviation of

the Gaussian filter applied to the voltage map before computing correlation coefficients, see

Methods. Solid line is the standard deviation of the correlation coefficient distribution for

the 0◦ map (left axis), which increases with filter width. Dashed line is the ratio of the

standard deviation of the correlation coefficient distribution for the evoked map to that for

the control pattern (right axis). This ratio serves as a measure of the degree to which input

patterns corresponding to evoked maps are amplified relative to similar control patterns.
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