Supplemental Data

TMEM126A, Encoding a Mitochondrial Protein, Is Mutated

in Autosomal-Recessive Nonsyndromic Optic Atrophy

Sylvain Hanein, Isabelle Perrault, Olivier Roche, Sylvie Gerber, Noman Khadom, Marlene Rio, Nathalie Boddaert, Marc Jean-Pierre, Nora Brahimi, Valérie Serre, Dominique Chretien, Nathalie Delphin, Lucas Fares-Taie, Sahran Lachheb, Agnès Rotig, Françoise Meire, Arnold Munnich, Jean-Louis Dufier, Josseline Kaplan, and Jean-Michel Rozet

Figure S1. Full parametric linkage analysis of Family 1 using a combination of Affymetrix GeneChip Human Mapping 10K 2.0 Arrays and microsatellite markers.

This approach points to a unique candidate region on chromosome 11 with a maximum lod-score >+3. Parametric LOD scores were calculated using the MERLIN¹ software program.

Figure S2. Localization of the ROA2 locus and segregation of disease-causing mutations.

Pedigree structure of families 1 to 4 with haplotypes reconstruction for informative markers on chromosome 11q14.1-q21. Black circles (women) and squares (men) indicate affected members. The code numbers of all sampled individuals are given below the symbols. Chromosomal positions of SNP and microsatellite markers are indicated in Mega base pairs (Mb) according to the draft of the human genome sequence (UCSC and Ensembl databases). VNTR: variable number of tandem repeats chosen from the UCSC database (primers in the Supplementary Table). Brackets show the deduced haplotype of subject II-1. Hashes point multiallelic markers used to refine the interval indicated by the "Affimetrix 10k SNP" genome scan in individuals III-2, III-5, III-6, III-8 and III-9 (Family 1). The homozygous haplotype in which the mutated gene is most likely located in affected patients is flanked by black boxes. Arrows indicate the position of key recombination events that were used to restrict the candidate *ROA2* interval: obligatory recombination events between loci *D11S4143* and *VNTR19CA* (Family 1, patient III-9), and loci *rs2020351* and *VNTR26AT* (family 1, individual III-8), respectively, defined a 14.4 Mb interval between loci *D11S4143* and *VNTR26(AT)*. The ancestral haplotype shared by the four families is framed.

Segregation of disease-causing mutations: "C" indicates wild-type allele and "T" indicates the nonsense mutation c.163C>T, p.Arg55X. Mutations were detected after PCR of the five *TMEM126A* exons (primers in the Supplementary Table), sequencing of the purified fragments using the Big Dye chemistry version 3.1 (Applied Biosystems) and analysis using an ABI-3130 sequencer (Applied Biosystems). We have chosen to number the A of the start codon (ATG) of the cDNA sequence of the *TMEM126A* (Genbank accession numbers NM_ 032273) as nucleotide 1.

MARKERS	Mb	Band									
centromere											
D11S918 (AFM203vg1) [#]	78.4	11q14.1			183	191		183	197		
D11S4143 (AFMb055yd1)*	79.03				209	219		209	213		
VNTR19CA [#]	79.28				276	280		276	276		
D11S1362 (AFMa132xh9) [#]	79.47				197	197		197	197		
VNTR23TG [#]	79.67				250	252		250	252		
D11S901 (AFM063yg1) [#]	81.52				160	172		160	172		
D11S4187 (AFM311wh5) [#]	83.23				286	284		286	286		
D11S1354 (AFM338xe1) [#]	84.35				177	177	FAMILY 1	177	169		
ТМЕМ126А - с.163С	85.04	11q14.1			Т	c _		T	С		
D11S1887 (AFMa049wa5) [#]	86.06	11q14.2			263	275	_	263	265		
D11S1780 (AFMa082wb9) [#]	87.32				189	193		189	173		
D11S4175 (AFM269yg9) [#]	89.89	11q14.3	1		187	151 7	1	2 187	183		
D11S1332 (AFM281wf9) [#]	91.74		1		196	200		196	196		
VNTR29TA [#]	93.41	11q21						173	167		
VNTR26AT [#]	93.48		п](307	287		
D11S4176 (AFMb354xa5) [#]	93.71		11		230	214		230	224		
telomere					<u></u>)	1	2			
			\perp								
				$\bigcap $				\bigcap			
			1	2	3 4	5	6	7	8	9	10 11
D ((00 (0 (1 T) (000) () #	70.4			404 407	404 407	100 100	100 100	100 107	100 100		
D11S918 (AFM203vg1)"	78.4	11q14.1		191 197	191 197	183 183	183 183	183 197	183 183	191 183	183 197
D11S4143 (AFMb055yd1)"	79.03			219 213	219 213	209 209	209 209	209 213	209 209	→ 219 209	209 209
VNTR19CA"	79.28			280 276	280 276	276 276	276 276	276 276	276 276	276 276	276 276
D11S1362 (AFMa132xh9)*	79.47			197 197	197 197	197 197	197 197	197 197	197 197	197 197	197 197
VNTR23TG"	79.67			252 252	250 252	250 250	250 250	250 252	250 250	250 250	250 250
rs1479311	79.7			A A	400 470	BB	B B	100 170	BB	BB	400 400
D11S901 (AFM063yg1)"	81.52			1/2 1/2	160 172	160 160	160 160	160 172	160 160	160 160	160 160
rs1318423	82.34			A B	200 200	B B	B B	200 200	B B	BB	200 200
D11S4187 (AFM311Wh5)"	63.23			264 260	200 200	200 200	200 200	200 200	200 200	200 200	200 200
D11S1354 (AFM338xe1)"	84.35			177 169	177 169	1// 1//	177 177	177 169	1// 1//	177 177	1// 1//
TMEM126A - c 162C	04.30 85.04	11014 1			TC			TC			T T
$D_{14} = (120 - 0.1030)^{*}$	86.06	11q14.1		275 265	263 265	263 263	263 263	263 265	263 263	263 263	263 263
D1151867 (AFMA049Wa3)	96.00	11414.2		275 205	203 203	203 203 B B	203 203	203 203	203 203	203 203 B B	203 203
D_{11}^{10079}	87 32			103 173	180 173	180 180	180 180	180 173	180 180	180 180	180 180
rs649529	87.69			B B	103 175			103 175			103 103
$D_{11}^{100} S_{175}^{100} (\Lambda EM260 vc0)^{\#}$	89.89	11a14.3		151 183	187 183	187 187	187 187	187 183	187 187	187 187	187 187
rs1404527	90.29	11914.0		A A	107 100	B B	B B	107 100	B B	B B	
$D_{11}S_{132}^{(\Delta FM281wf9)^{\#}}$	91.74			200 196	196 196	196 196	196 196	196 196	196 196	196 196	196 196
rs2045462	92.91	11g21		A B		AA	AA		AA	AA	
VNTR29TA #	93.41	1		173 167	173 167	173 173	173 173	173 167	173 173	173 173	173 173
rs2020351	93.43			A B		BB	BB		BB	BB	
VNTR26AT [#]	93.48			307 287	307 287	307 307	307 307	307 287	307 287	307 307	307 307
D11S4176 (AFMb354xa5) [#]	93.71			230 224	230 224	214 230	230 230	230 224	230 224	230 230	230 230

					FAMILY	2		
			I				1	
			II					
D11S4143 (AFMb055yd1) [#] VNTR19CA [#] D11S1362 (AFMa132xh9) [#] D11S901 (AFM063yg1) [#] D11S4187 (AFM311wh5) [#] D11S1354 (AFM328xp1) [#]	79.03 79.28 79.47 81.52 83.23 84.35	11q14.1	III	207 207 278 278 201 201 168 168 282 282	207 219 278 276 201 203 168 172 282 282 177 179		2	207 213 278 278 201 195 168 160 282 282 177 169
D11S1334 (AFM330x81) TMEM126A - c.163C D11S1887 (AFMa049wa5) [#] D11S1780 (AFMa082wb9) [#] D11S1332 (AFM281wf9) [#] VNTR29TA [#]	85.04 86.06 87.32 91.74 93.41	11q14.1 11q14.2 11q21	IV	7 7 263 263 191 191 200 198 173 173	T C 263 263 191 175 200 182 167 175			T C 263 265 191 191 200 196 167 173
			V				2	
D11S4143 (AFMb055yd1) [#] VNTR19CA [#] D11S1362 (AFMa132xh9) [#] D11S901 (AFM063yg1) [#] D11S4187 (AFM311wh5) [#]	79.03 79.28 79.47 81.52 83.23	11q14.1				207 207 278 278 201 201 168 168 282 282	207 213 278 278 201 195 168 160 282 282	
D11S1354 (AFM338xe1) [#] TMEM126A - c.163C D11S1887 (AFMa049wa5) [#] D11S1780 (AFMa082wb9) [#] D11S1332 (AFM281wf9) [#]	84.35 85.04 86.06 87.32 91.74	11q14.1 11q14.2				177 177 T T 263 263 191 191 200 200	177 169 T C 263 265 191 191 200 196	
VNTR29TA [#]	93.41	11q21				167 167	167 173	

MARKERS	Mb	Band									
centromere			_								
D11S4143 (AFMb055yd1) [#]	79.03	11q14.1	2	209 217		209 211		211 217			211 211
VNTR19CA [#]	79.28		2	276 276		276 278		272 278			272 278
D11S1362 (AFMa132xh9) [#]	79.47		2	201 199		201 211		197 195			197 199
D11S901 (AFM063yg1) [#]	81.52			176 168	FAMIL 1 3	176 170		160 160			160 168
D11S4187 (AFM311wh5) [#]	83.23		2	290 288		290 286		290 284			290 288
D11S1354 (AFM338xe1) [#]	84.35		. I I	177 169		177 169		177 169			177 167
TMEM126A - c.163C	85.04	11q14.1		т с Ц				т с			ТС
D11S1887 (AFMa049wa5) [#]	86.06	11q14.2	2	263 275	1	2 263 263		263 263	FAIVIL	_14	263 269
D11S1780 (AFMa082wb9) [#]	87.32			173 191	Ĺ	173 173		173 189			173 191
D11S1332 (AFM281wf9) [#]	91.74	11q14.4	- H	186 184) 184 190	I	200 186			200 178
VNTR29TA [#]	93.41	11q21		167 167	1	2 173 167		167 167	1	2	167 167
telomere					-	-					
			111				П				
				1	2	3		1	2	3	4
D1101110 (1 CMb0E5, d1)#	70.03	11014 1		217 211	200 200	200 200		217 211	211 211	211 211	217 211
D1134143 (AFMD033y01)	79.00	11914.1		276 278	276 276	203 203		278 278	277 277	272 272	278 278
VIVIR 190A	79.20			100 211	201 201	201 201		105 100	107 107	107 107	105 100
D1151302 (AFMa132XII9) $D115001$ (AFM062: $(\pi 1)^{\#}$	01 50			199 211	176 176	176 176		160 169	160 160	160 160	160 169
D115901 (AFM063yg1)	01.02			100 170	200 200	170 170		100 100	100 100	100 100	100 100
D11S4187 (AFM311Wn5)"	03.23			200 200	290 290	290 290	r	204 200	290 290	290 290	204 200
D11S1354 (AFM338xe1)"	04.30	11~11 1		109 109	T T						
	65.04 86.06	11014.1									
D11S1887 (AFMa049wa5)"	00.00	11414.2		275 263	203 203	203 203	L	203 269	203 203	203 203	203 209
D11S1780 (AFMa082wb9)*	87.32			191 173	173 173			189 191	173 173	1/3 1/3	189 191
D11S1332 (AFM281wf9)*	91.74			184 190	186 184	186 190		186 178	200 200	200 200	186 178
VNTR29TA*	93.41	11q21		167 167	167 173	167 167		167 167	167 167	167 167	167 167

Figure S3. Ophthalmological data in 37-year-old patient III6, Family 1 harboring the *TMEM126* p.Arg55X mutation.

(A) The fundus photograph of left eye shows optic disc pallor with normal aspect of the retina including the macular region. (B) Flash visual evoked potentials (VEP) show flattened waves, prolonged latencies and highly reduced amplitudes for right eye (RE) and left eye (LE). Electroretinographic recordings were strictly normal. Pattern reversal VEP display hardly recordable traces. (C, D) Goldman Dynamic perimetry show severe bilateral visual field loss.

С

D

Α

Figure S4. Brain Magnetic Resonance Imaging (MRI) of 37-year-old patient III6, Family 1 harboring the *TMEM126* p.Arg55X mutation.

(A) Axial FLAIR weighted images show asymmetric and homogeneous punctate hyperintensities with no evidence for necrosis (white arrows). (B) Coronal weighted FSE T2 and axial FLAIR images show hyperintensities in the bilateral stratum subependymale (left > right side) near the head and corpus of the caudate nuclei (black arrow).

Figure S5. Expression of the TMEM126-myc fusion protein in COS-7 cells, 48 hours after transient transfection.

COS-7 cells were transfected with 1 µg plasmid DNA (OmicsLink ORF Expression Clone-GeneCopoeiaTM clone EX-V0975-M09; Ressourcenzentrumfuer Genomforschung imaGenes) with FuGENE®6 transfection reagent, according to the manufacturer's instructions (Roche). The cells were fixed for 15 min in 4% formaldehyde, 48 hr posttransfection. Immunocytochemistry was performed via classical procedures. Colocalization experiments were performed using specific or myc antibodies (mouse monoclonal anti-myc and rabbit polyclonal anti-myc, 1/200, Santa Cruz Biotechnology), respectively. Secondary antibodies were Alexa Fluor®488 conjugated goat anti-rabbit (1/1000, Molecular Probes) and ZyMaxTM goat anti-mouse CYTM 3 conjugate (1/100, Invitrogen). No significant colocalization of Transmembrane 126A protein was noted with Golgi apparatus (mouse monoclonal anti-Giantin, 1/200, Abcam), lysosomes (mouse monoclonal anti-Lamp2, 1/200, Abcam), endoplasmic-reticulum (mouse monoclonal anti-Calreticulin, 1/400, Stressgen), early endosomes (rabbit polyclonal anti-EEA1, 1/200, Abcam), cytoskeleton (mouse monoclonal anti-βActin, 1/100, AbCys) and microtubule (mouse monoclonal anti-γTubulin, 1/200, Sigma), respectively. Cells were counterstained and mounted with ProLong®Gold antifade reagent with DAPI (Invitrogen). Images were recorded using a Leica SP5 confocal microscope (objective 63x oil immersion objective, scale bar = $20 \mu m$) and Leica Application Suite Advanced Fluorescence Lite software.

Expression of a myc-tagged fusion protein of the expected size was verified on Western blots of cell extracts with a myc antibody (mouse anti myc, 1/1000, Santa Cruz Biotechnology, data not shown).

Figure S6. RT-PCR quantification of TMEM126A mRNA in human tissues.

TMEM126A mRNA expression was analyzed by RT-PCR in adult human tissues, normalized with respect to *vimentin* expression, (**A**) semiquantitatively (at 25 PCR cycles, in the exponential phase) and (**B**) at end point PCR (et 35 cycles, in the plateau phase). One microgram of total RNAs from adrenal gland, bone marrow, brain (whole), cerebellum, fetal brain, fetal liver, lung (whole), placenta, prostate, salivary gland, skeletal muscle, testis, thymus, thyroid gland, trachea, uterus and spinal cord (Human Total RNA Master panel II, Clontech) were reverse transcribed with the High Capacity cDNA Archive Kit (Applied Biosystems) primed with Oligo d(T)16 (Applied Biosystems) in accordance with the supplier's recommendations. 0.5 microgram of total RNAs from retina, optic nerve, retinal pigmentary epithelium (RPE), cornea, iris, sclera and lens extracted from a twenty-week-old fetal human ocular globe were also reverse transcribed. A 523 pb cDNA fragment of *TMEM126A* from exon 2 to exon 5 was amplified using primer: (forward) 5'-taaccagcttccagaagcag-3', (reverse) 5'-gtgaatttctttgccaggttca-3' (Genbank accession numbers NM_032273). A 274 bp cDNA fragment of *VIMENTIN* containing exons 1 to 4 was amplified using primers: (forward) 5'accagctaaccaacgacaaa-3', (reverse) 5'-tgctgttcctgaatctgagc-3' (GenBank accession number NM_003380), as a reference. Semi-quantitative condition showed a predominantly expression in brain (whole), cerebellum, fetal brain, skeletal muscle, testis, fetal retinal pigmentary epithelium (RPE) and retina (**A**) while a widespread expression of *TMEM126A* mRNA in all adult tissues was noted (**B**).

AJHG, Volume 84

TMEM126A, Exons 2-4

Table S1. Sequences of primers used for amplification of (A) four polymorphic markers developed from the UCSC Draft of the Human Sequence; and (B) the five exons of the *TMEM126* gene (Genbank accession number NM_032273).

A) **Polymorphic markers** (VNTR = variable number of tandem repeat).

VNTRs / chromosomal position	Forward sequence (5'-3')	Reverse sequence (5'-3')
VNTR19CA (79.28Mb)	tgccgggagcctaaaat	actcaccctgcagatcttag
VNTR23TG (79.67Mb)	gatacatgtatacattgtgt	gttaatcattttgacatgtt
VNTR29TA (93.41Mb)	tcactcaactcctgaacctc	aagatctaccccagtgcg
VNTR26AT (93.48Mb)	gcttcctcattccctctctg	tagcctattgtgggaccc

B) *TMEM126*

Exon	Forward sequence (5'-3')	Reverse sequence (5'-3')
1	cttctcagcccaaagccgct	cgtcgtgcttctcctgacac
2	cagattagctctacagtattat	ccttctcacattccatgttg
3	gggatagatgtcgtatccag	attacagcatacagtacttgg
4	caattacatttgatatattacctg	gggtaacattgcctttggtc
5	tttatcttaagacttctaggac	ccttttgttgtaggtcccag

Supplemental References

1. Abecasis, G.R., Cherny, S.S., Cookson, W.O., Cardon, LR. (2002). Merlin-rapid analysis of dense genetic maps using sparse gene flow trees. Nat. Genet. 30, 97-101.