Supplemental Data

Genetic Control of Human Brain Transcript Expression

in Alzheimer Disease

Jennifer A. Webster, J. Raphael Gibbs, Jennifer Clarke, Monika Ray, Weixiong Zhang, Peter Holmans, Kristen Rohrer, Alice Zhao, Lauren Marlowe, Mona Kaleem, Donald S. McCorquodale III, Cindy Cuello, Doris Leung, Leslie Bryden, Priti Nath, Victoria L. Zismann, Keta Joshipura, Matthew J. Huentelman, Diane Hu-Lince, Keith D. Coon, David W. Craig, John V. Pearson, NACC-Neuropathology Group, Christopher B. Heward, Eric M. Reiman, Dietrich Stephan, John Hardy, and Amanda J. Myers

Supplemental Acknowledgments

The directors, pathologists and technicians involved in this research include: National Institute on Aging: Ruth Seemann, John Hopkins Alzheimer's Disease Research Center (NIA grant AG05146): Juan C. Troncoso, MD, Dr. Olga Pletnikova, University of California, Los Angeles (NIA grant P50 AG16570): Harry Vinters, MD, Justine Pomakian, The Kathleen Price Bryan Brain Bank, Duke University Medical Center (NIA grant AG05128, NINDS grant NS39764, NIMH MH60451 also funded by Glaxo Smith Kline): Christine Hulette, MD, John F. Ervin, Stanford University: Dikran Horoupian, MD, Ahmad Salehi, MD, PhD, New York Brain Bank, Taub Institute, Columbia University (NYBB): Jean Paul Vonsattel, MD, Katerina Mancevska, Massachusetts General Hospital: E. Tessa Hedley-Whyte, MD, Karlotta Fitch, University of Michigan (NIH grant P50-AG08671): Roger Albin, MD, Andrew Lieberman MD, Lisa Bain, Eszter Gombosi, University of Kentucky (NIH grant AG05144): William Markesbery, MD, Sonya Anderson, Mayo Clinic, Jacksonville: Dennis W. Dickson, MD, Natalie Thomas, University Southern California: Caroll A. Miller, MD, Jenny Tang, M.S., Dimitri Diaz, Washington University, St Louis Alzheimer's Disease Research Center (NIH grant P50AG05681): Dan McKeel, MD, John C. Morris, MD, Eugene Johnson, Jr., PhD, Virginia Buckles, PhD, Deborah Carter, University of Washington, Seattle (NIH grant P50 AG05136): Thomas Montine, MD, PhD, Aimee Schantz, MEd., University of Pennsylvania School of Medicine, Alzheimer's Disease Research Center: John Q Trojanowski, MD, Virginia M Lee, MD, Vivianna Van Deerlin, MD, Terry Schuck, Boston University Alzheimer's Disease Research Center (NIH grant P30-AG13846): Ann C. McKee, MD, Carol Kubilus, Sun Health Research Institute, Arizona (NIA grant P30 AG19610): Joseph Rogers, PhD, Thomas G. Beach, MD, PhD, Lucia I. Sue, Emory University: Bruce H. Wainer, MD, PhD, Marla Gearing, PhD, University of Texas, Southwestern Medical School: Charles L. White, III, M.D., Roger Rosenberg, Marilyn Howell, Joan Reisch, University of California, Davis: William Ellis, MD, Mary Ann Jarvis, Rush University Medical Center, Rush Alzheimer's Disease Center (NIH grant AG10161): David A. Bennett, M.D. Julie A. Schneider, MD, MS, Karen Skish, MS, PA (ASCP)MT, Wayne T Longman, University of Miami/NPF Brain Endowment Bank: Deborah C. Mash, MD, Margaret J Basile, Mitsuko Tanaka.

This research was supported in part by the Intramural Research Program of the NIH, National Institute on Aging (project Z01 AG000949-02). These studies were supported by Kronos Sciences Laboratory, the Verum foundation, the Bisgrove charitable donation, the NIH Neuroscience Blueprint (U24NS051872), the ENDGAME Consortium (U01HL084744), the MRC, the Brain Research Trust, the Reta Lila Trust and the state of Arizona.

We also thank Dr. Edward B. Suh and Mr. James Lowey at TGen for the use of the ASU-TGen clusterbased supercomputer. AJM would like to thank the Johnnie B. Byrd Institute for support. None of the sponsors were involved in the design or conduct of the study, in the collection, analysis, and interpretation of the data, or in the preparation, review, or approval of the manuscript. There are no conflicts of interest for any of the authors.

Figure S1. Analysis of Population Structure within Cohort

Clusters were calculated for genotype data using the program STRUCTURE^{1,2} for 7 cohorts to examine ethnic bias within our series. On the figure blue corresponds to primarily European origin, green is primarily Asian descent and red corresponds to samples that are primarily African descent. As is seen on the figure there were 2 ethnic outliers within the LOAD population used for this study (WGAAD-75 and WGAAD-270, bins 1 and 2 on the figure) and 3 within the control population (WGCON-185, WGACON-194 and WGACON-66, bin 2 on the figure).

Figure S2. Significant Transcript Effects for Each Covariate

Graphed are the numbers of associated SNP/transcript pairs from the initial correction regression using R. Only pairs that reached possible significance (uncorrected p-value, $\alpha \leq 0.05$) for each covariate are graphed.

Figure S3. Determination of Hub Genes

The graph plots the number of links for all of the genes within the DE/eQTL network we mapped (n=1697). The X-axis plots the genes in ascending order of the number of links (range=1-230). The Y-axis plots the number of links for each gene. The dashed line indicates the mean number of links, and the red line indicates the hub gene cutoff, with any gene having greater than 134 links defined as a hub gene.

AJHG, Volume 84

Table S1. Sample Description

	control cohort	case cohort
% female	45%	50%
average age	81	84
age range	65-100	68-102
% frontal cortex	21%	18%
% temporal cortex	73%	60%
% parietal cortex	2%	10%
% cerebellar cortex	3%	13%
# of different hybridization dates	9	9
average # of samples per hybridization	21	19
number of institute sources	18	16
average number of samples per institute	11	11
average PMI	10 hrs	9 hrs
average transcriptome detection rate per sample	77%	76%

Listed are descriptive statistics for the samples used.

Table S2. Top Ontology Groupings for Each Cluster within Our eQTL/DE Network

Table S2A

С	Score	Term	Process	Count	P_Value
1	1.72	GOTERM_BP_ALL	organ morphogenesis	8	2.90E-03
		GOTERM_BP_ALL	developmental process	31	6.40E-03
		GOTERM_BP_ALL	organ development	14	1.10E-02
		GOTERM_BP_ALL	multicellular organismal development	22	1.70E-02
		GOTERM_BP_ALL	system development	18	2.40E-02
		GOTERM_BP_ALL	anatomical structure development	20	4.60E-02
		GOTERM_BP_ALL	anatomical structure morphogenesis	12	4.90E-02
		GOTERM_BP_ALL	multicellular organismal process	24	9.10E-02
2	0.99	INTERPRO	Zinc finger, C2H2-type	8	4.10E-03
		GOTERM_MF_ALL	ion binding	23	5.30E-03
		INTERPRO	KRAB box	5	6.60E-03
		SMART	KRAB	5	6.60E-03
		GOTERM_MF_ALL	cation binding	21	7.00E-03
		GOTERM_MF_ALL	metal ion binding	22	1.00E-02
		GOTERM_MF_ALL	zinc ion binding	14	2.40E-02
		PIR_SUPERFAMILY	PIRSF005559:zinc finger protein ZFP-36	3	2.80E-02
		GOTERM_BP_ALL	RNA metabolic process	16	4.40E-02
		COG_ONTOLOGY	General function prediction only	8	5.30E-02
		INTERPRO	Zinc finger, C2H2-subtype	4	5.40E-02
		SP_PIR_KEYWORDS	zinc-finger	10	5.70E-02
		SP_PIR_KEYWORDS	metal-binding	14	5.80E-02
		GOTERM_BP_ALL	nucleobase, nucleoside, nucleotide and nucleic acid metabolic process	19	6.10E-02
		SP_PIR_KEYWORDS	zinc	11	7.90E-02
		SP_PIR_KEYWORDS	Transcription regulation	10	7.90E-02
		SP_PIR_KEYWORDS	dna-binding	9	9.40E-02
		SP_PIR_KEYWORDS	Transcription	10	9.70E-02
		GOTERM_MF_ALL	transition metal ion binding	14	9.80E-02
		GOTERM_BP_ALL	gene expression	17	1.10E-01
		GOTERM_BP_ALL	regulation of transcription, DNA-dependent	11	1.40E-01
		SP_PIR_KEYWORDS	nucleus	18	1.60E-01

		GOTERM_BP_ALL	RNA biosynthetic process	11	1.70E-01
		GOTERM_BP_ALL	transcription, DNA-dependent	11	1.70E-01
		GOTERM_BP_ALL	regulation of transcription	11	2.00E-01
		GOTERM_BP_ALL	regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolic process	11	2.20E-01
		GOTERM_BP_ALL	transcription	11	2.40E-01
		GOTERM_BP_ALL	regulation of metabolic process	12	2.60E-01
		GOTERM_BP_ALL	metabolic process	32	2.70E-01
		GOTERM_BP_ALL	regulation of gene expression	11	2.70E-01
		GOTERM_BP_ALL	regulation of cellular metabolic process	11	3.30E-01
		GOTERM MF ALL	nucleic acid binding	14	3.80E-01
		GOTERM MF ALL	DNA binding	9	4.30E-01
		GOTERM BP ALL	macromolecule metabolic process	25	4.40E-01
		GOTERM_BP_ALL	cellular metabolic process	28	4.50E-01
		GOTERM_BP_ALL	biopolymer metabolic process	19	4.50E-01
		GOTERM_BP_ALL	primary metabolic process	28	4.80E-01
		GOTERM_BP_ALL	regulation of cellular process	14	6.30E-01
		GOTERM_BP_ALL	regulation of biological process	15	6.40E-01
		GOTERM_BP_ALL	biological regulation	16	6.60E-01
		GOTERM_BP_ALL	cellular process	38	6.90E-01
3	1.12	GOTERM_BP_ALL	cell growth	5	2.40E-02
		GOTERM_BP_ALL	regulation of cell size	5	2.60E-02
		GOTERM_BP_ALL	growth	5	5.20E-02
		GOTERM_BP_ALL	regulation of cell growth	4	5.80E-02
		GOTERM_BP_ALL	anatomical structure morphogenesis	9	8.30E-02
		GOTERM_BP_ALL	regulation of growth	4	8.40E-02
		GOTERM_BP_ALL	cellular structure morphogenesis	6	1.10E-01
		GOTERM_BP_ALL	cell morphogenesis	6	1.10E-01
		GOTERM_BP_ALL	regulation of biological quality	7	2.00E-01
		GOTERM_BP_ALL	anatomical structure development	13	2.00E-01
4	2.05	GOTERM_BP_ALL	negative regulation of transcription, DNA-dependent	13	2.40E-03
		GOTERM_BP_ALL	negative regulation of transcription	16	2.50E-03
		SP_PIR_KEYWORDS	repressor	17	2.70E-03
			negative regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolic		
		GOTERM_BP_ALL	process	16	4.60E-03
		GOTERM_MF_ALL	transcription repressor activity	13	5.10E-03

AJHG, Volume 84

		GOTERM_BP_ALL	negative regulation of cellular metabolic process	17	9.90E-03
		GOTERM_BP_ALL	negative regulation of cellular process	36	1.40E-02
		GOTERM_BP_ALL	negative regulation of metabolic process	18	1.70E-02
		GOTERM_BP_ALL	negative regulation of biological process	36	2.10E-02
		GOTERM_BP_ALL	negative regulation of transcription from RNA polymerase II promoter	6	1.80E-01
5	2.06	GOTERM BP ALL	protein kinase cascade	9	2.20E-03
		GOTERM_BP_ALL	regulation of signal transduction	10	2.80E-03
		GOTERM_BP_ALL	MAPKKK cascade	5	1.80E-02
		GOTERM_BP_ALL	positive regulation of signal transduction	4	5.20E-02
6	2.11	INTERPRO	KRAB box	9	5.50E-05
		PIR_SUPERFAMILY	PIRSF005559:zinc finger protein ZFP-36	6	6.20E-05
		SMART	KRAB	9	1.50E-04
		SP_PIR_KEYWORDS	dna-binding	22	3.30E-04
		UP_SEQ_FEATURE	zinc finger region:C2H2-type 11	6	1.20E-03
		UP_SEQ_FEATURE	zinc finger region:C2H2-type 10	6	1.90E-03
		UP_SEQ_FEATURE	zinc finger region:C2H2-type 9	6	3.30E-03
		INTERPRO	Zinc finger, C2H2-type	11	3.70E-03
		INTERPRO	Zinc finger, C2H2-subtype	7	4.30E-03
		UP_SEQ_FEATURE	zinc finger region:C2H2-type 12	5	5.00E-03
		UP_SEQ_FEATURE	zinc finger region:C2H2-type 8	6	5.30E-03
		UP_SEQ_FEATURE	zinc finger region:C2H2-type 7	6	6.70E-03
		COG_ONTOLOGY	General function prediction only	16	7.50E-03
		UP_SEQ_FEATURE	domain:KRAB	5	9.70E-03
		UP_SEQ_FEATURE	zinc finger region:C2H2-type 6	6	1.10E-02
		UP_SEQ_FEATURE	zinc finger region:C2H2-type 1; degenerate	3	1.60E-02
		UP_SEQ_FEATURE	zinc finger region:C2H2-type 4	6	2.90E-02
		UP_SEQ_FEATURE	zinc finger region:C2H2-type 2	6	4.30E-02
		UP_SEQ_FEATURE	zinc finger region:C2H2-type 3	6	4.30E-02
		INTERPRO	Zinc finger, C2H2-type/integrase, DNA-binding	5	5.80E-02
		UP_SEQ_FEATURE	zinc finger region:C2H2-type 5	5	7.10E-02
		UP_SEQ_FEATURE	zinc finger region:C2H2-type 13	3	9.70E-02
		INTERPRO	Zinc finger, C2H2-like	5	1.40E-01
		SMART	ZnF_C2H2	5	2.00E-01
		UP_SEQ_FEATURE	zinc finger region:C2H2-type 1	3	5.30E-01
7	1.78	GOTERM_MF_ALL	ligase activity, forming carbon-nitrogen bonds	12	6.40E-03

		GOTERM_MF_ALL	ubiquitin-protein ligase activity	10	9.00E-03
		GOTERM_MF_ALL	small protein conjugating enzyme activity	10	9.60E-03
		GOTERM_BP_ALL	protein ubiquitination	7	1.10E-02
		GOTERM_BP_ALL	ubiquitin cycle	19	1.10E-02
		GOTERM_MF_ALL	small conjugating protein ligase activity	10	1.20E-02
		GOTERM_BP_ALL	protein modification by small protein conjugation	7	1.30E-02
		GOTERM_MF_ALL	acid-amino acid ligase activity	10	1.90E-02
		SP_PIR_KEYWORDS	Ubl conjugation pathway	16	2.40E-02
		GOTERM_MF_ALL	ligase activity	14	6.20E-02
		SP_PIR_KEYWORDS	ligase	10	9.40E-02
8	3.02	SP_PIR_KEYWORDS	mitochondrion	33	8.20E-06
		SP_PIR_KEYWORDS	transit peptide	19	2.50E-03
		UP_SEQ_FEATURE	transit peptide:Mitochondrion	12	4.10E-02
9	3.42	SP_PIR_KEYWORDS	glycoprotein	49	3.90E-06
		UP_SEQ_FEATURE	glycosylation site:N-linked (GlcNAc)	38	1.60E-04
		SP_PIR_KEYWORDS	signal	36	4.00E-04
1		UP_SEQ_FEATURE	signal peptide	32	6.30E-04
		SP_PIR_KEYWORDS	Secreted	19	7.80E-04
		UP_SEQ_FEATURE	disulfide bond	21	2.40E-02

Table S2B

Term	Process	C1	Ct1	PV1	C4	Ct4	PV4
SP_PIR_KEYWORDS	activator	3.74	14	1.30E-05	2.61	19	1.10E-03
GOTERM_BP_ALL	biological regulation	3.74	53	1.50E-05	2.61	124	3.90E-04
GOTERM_BP_ALL	biopolymer metabolic process	3.74	54	7.20E-05	2.61	110	3.00E-01
GOTERM_BP_ALL	cellular metabolic process	3.74	64	1.90E-02	2.61	154	8.00E-01
GOTERM_BP_ALL	cellular process	3.74	81	1.50E-01	2.61	231	3.80E-01
GOTERM_MF_ALL	DNA binding	3.74	31	1.50E-04	2.61	59	1.30E-03
SP_PIR_KEYWORDS	dna-binding	3.74	26	3.30E-05	2.61	48	9.80E-05
GOTERM_BP_ALL	gene expression	3.74	40	5.40E-04	2.61	89	1.90E-02
GOTERM_BP_ALL	macromolecule metabolic process	3.74	62	1.40E-03	2.61	142	4.80E-01
GOTERM_BP_ALL	metabolic process	3.74	69	1.60E-02	2.61	169	8.20E-01
GOTERM_MF_ALL	nucleic acid binding	3.74	44	6.20E-05	2.61	83	7.00E-03
	nucleobase, nucleoside, nucleotide and nucleic acid						
GOTERM_BP_ALL	metabolic process	3.74	42	5.80E-04	2.61	85	2.30E-01
SP_PIR_KEYWORDS	nucleus	3.74	48	3.10E-04	2.61	119	3.80E-04
GOTERM_BP_ALL	primary metabolic process	3.74	62	6.50E-02	2.61	160	5.90E-01
GOTERM_BP_ALL	regulation of biological process	3.74	50	1.90E-05	2.61	117	2.40E-04
GOTERM_BP_ALL	regulation of cellular metabolic process	3.74	37	2.70E-06	2.61	77	1.10E-04
GOTERM_BP_ALL	regulation of cellular process	3.74	49	5.40E-06	2.61	113	6.50E-05
GOTERM_BP_ALL	regulation of gene expression	3.74	35	7.40E-06	2.61	74	1.20E-04
GOTERM_BP_ALL	regulation of metabolic process	3.74	37	8.60E-06	2.61	78	3.00E-04
	regulation of nucleobase, nucleoside, nucleotide and						
GOTERM_BP_ALL	nucleic acid metabolic process	3.74	33	2.10E-05	2.61	71	1.40E-04
GOTERM_BP_ALL	regulation of transcription	3.74	32	3.30E-05	2.61	70	1.00E-04
GOTERM_BP_ALL	regulation of transcription, DNA-dependent	3.74	31	2.40E-05	2.61	63	7.70E-04
GOTERM_BP_ALL	RNA biosynthetic process	3.74	31	4.60E-05	2.61	64	1.10E-03
GOTERM_BP_ALL	RNA metabolic process	3.74	37	7.70E-05	2.61	69	1.00E-01
SP_PIR_KEYWORDS	Transcription	3.74	30	8.50E-06	2.61	56	2.70E-05
GOTERM_BP_ALL	transcription	3.74	32	9.10E-05	2.61	71	2.90E-04
GOTERM_MF_ALL	transcription factor activity	3.74	11	5.80E-02	2.61	24	2.10E-02
GOTERM_BP_ALL	transcription from RNA polymerase II promoter	3.74	11	2.10E-02	2.61	26	4.20E-03
SP_PIR_KEYWORDS	Transcription regulation	3.74	30	3.80E-06	2.61	55	1.70E-05
GOTERM_MF_ALL	transcription regulator activity	3.74	17	3.00E-02	2.61	40	3.00E-03
GOTERM_BP_ALL	transcription, DNA-dependent	3.74	31	4.60E-05	2.61	64	1.10E-03

AJHG, Volume 84

Listed are the full ontologies for the top grouping from our analysis of each cluster using functional annotation clustering from the DAVID suite of programs^{3,4}. Table S2A shows the cluster number (C) enrichment score (Score), ontology keyword (Term), ontology process (Process), number of transcripts (Count) and p-values for the EASE scores for each process (p-value). Table S2B shows the ontologies for top enrichment group for clusters 1 and 4 both of which had the same members with C1 and C4 being the enrichment score for cluster 1 and cluster 4, Ct1 and Ct4 the number of transcripts with that score in cluster 1 and cluster 4, PV1 and PV4 the p-values for those terms in cluster 1 and cluster 4

Table S3. Summary Statistics for Original Cohort with Control Sample Generatedfrom Bootstrap Analysis

Original cohort: LOAD and control combined n = 364. Control sample: n = 364. Shown are the sample statistics comparing the original dataset (total cohort) with a permuted dataset (bootstrap cohort) to determine whether we had effects that were specific to disease tissue or whether novel effects were found simply because we had a larger sample.

	total cohort	bootstrap cohort
% female	48%	50%
average age	82	81
age range	65-102	65-100
% frontal cortex	20%	18%
% temporal cortex	67%	72%
% parietal cortex	6%	2%
% cerebellar cortex	8%	3%
# of different hybridization dates	9	9
average # of samples per hybridization	20	21
number of institute sources	18	18
average number of samples per institute	11	11
average PMI	10 hrs	10 hrs
average transcriptome detection rate per sample	77%	77%

ALPHA	INTERACTIO	NO INTERACTION			
	number det	proportion det	number det		proportion det
α= 0.05	551	83%		1820	100%
α= 0.01	495	74%		1820	100%
α= 0.001	436	66%		1820	100%
α= 0.0001	390	59%		1815	100%
α= 0.00001	345	52%		1794	97%
α= 0.000001	303	46%		1737	95%

Table S4. Detection of Disease Effects in Entire Cohort Compared with BootstrapSample Based on Control Data Only

Shown are the numbers (number det) and the percentages (proportion det) of the SNPtranscript effects we found in the total cohort that were recovered in the bootstrap sample based just on our control dataset at different false positive stringencies. To survive multiple testing correction, p-values in our analysis had to be less that α = 0.000001. Note that at this level, only 46% of the SNP-transcript relationships which have a significant interaction with diagnosis (putative LOAD effects) were recovered, whereas 95% of the relationships without a significant interaction term were recovered. This demonstrates that most of the novel effects are likely due to our specific sampling of disease tissue and not an increase in cohort size.

Supplemental References

- 1. Pritchard JK, Stephens M, Rosenberg NA, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000 Jun;155 (2):945-59.
- Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics. 2003 Aug;164(4):1567-87.
- Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biology 2003;4(5):P3.
- Douglas A Hosack, Glynn Dennis Jr, Brad T Sherman, HClifford Lane, Richard A Lempicki. Identifying Biological Themes within Lists of Genes with EASE. Genome Biology 2003 4(6):P4.