Table S1	A. nidulans strains used in this study	
Strain	Genotype	Derivation
CDS246	<i>pyrG</i> 89; <i>wA</i> 3; <i>pyroA</i> 4; GFP- <i>sonBn</i> ^{Nup98} <i>sonBc</i> ^{Nup96} -mRFP:: <i>pyrG</i> ^{Af}	De Souza et al., 2004
CDS439	<i>pyrG</i> 89 (<i>yA</i> 2 ¹); <i>wA</i> 3; <i>gpdp::stuA C-term</i> -DsRedT4 (NLS-DsRed); <i>pyroA</i> 4: <i>sonBc</i> ^{Nup96} -GFP::pyrG ^{Af}	CDS396 x CDS283
CDS621	(<i>pyrG</i> 89 ¹); <i>pyroA</i> 4; An- <i>nup</i> 49-chRFP:: <i>pyrG</i> ^{4f} ; <i>fwA</i> 1 An- <i>gle</i> 1- GFP:: <i>pyrG</i> ^{4f}	SO602 x CDS590
CDS767	<i>pyrG</i> 89; <i>wA</i> 3; <i>argB</i> 2; Δ <i>mad</i> 2:: <i>pyrG</i> ; <i>An-fib</i> -chRFP:: <i>pyrG</i> ^{Af} GFP- <i>tubA</i> chaA1	CDS596 x CDS410a
CDS778	<i>pyrG</i> 89 ΔyA::NLS-DsRed; <i>pyroA</i> 4; Δ <i>mad</i> 2:: <i>pyrG</i> ; An-bop1- GFP:: <i>pyrG</i> ^{Af}	LU398 x CDS459
CDS863	<i>pyrG</i> ^{Af} <i>An-topo I-</i> GFP:: <i>pyrG</i> ^{Af} <i>An-topo I-</i> GFP:: <i>pyrG</i> ^{Af} <i>chaA</i> 1 <i>fwA</i> 1	LU131 x LU439
HA092	<i>pyrG</i> 89; An- <i>erg</i> 4-GFP:: <i>pyrG</i> ^{Af} wA3; <i>argB</i> 2; $\Delta nkuA^{ku70}$:: <i>argB pyroA</i> 4; <i>sE</i> 15 <i>nirA</i> 14 <i>chaA</i> 1 <i>fwA</i> 1	SO451 transformant
HA112	pabaA1 yA2 (pyrG89 ¹); An-erg4-GFP::pyrG ^{Af} ; (argB2 ¹), pyroA4 AnkuA ^{ku70} ::argB; histone-H1-mRFP::pyrG ^{Af}	HA092 x HA088
LU105	<i>pyrG</i> 89; <i>wA</i> 3; arg <i>B</i> 2; <i>pyroA</i> 4; An- <i>erg</i> 4-mRFP:: <i>pyrG</i> ^{Af} ; <i>An-fib</i> -GFP:: <i>pyrG</i> ^{Af} (<i>chaA</i> 1 ¹ <i>fwA</i> 1 ¹ <i>nirA</i> 14 ¹ <i>sE</i> 15 ¹)	LU103 X LU161
LU118	pyrG89; wA3; argB2; $\Delta nkuA^{ku70}$::argB pyroA4; An-topo1- GFP::pvrG ^{Af} sE15 nirA14 chaA1 fwA1	SO451 transformant
LU124	<i>pyrG</i> ⁸⁹ ; wA3; <i>argB</i> 2:: <i>gpdp</i> :: <i>stuA C</i> - <i>term</i> -DsRedT4- <i>argB</i> (NLS-DsRed); <i>pyroA</i> 4 ($\Delta nkuA^{ku70}$:: <i>argB</i> ¹) <i>An-fib</i> -GFP:: <i>pyrG</i> ^{Af} chaA1 (<i>sE15</i> ¹ n <i>irA</i> 14 ¹)	LU161 X CDS396
LU125	pabaA1 pyrG89; wA3; argB2; histone-H1-mRFP::pyrG ^{Af} ; An-fib-GFP::pyrG ^{Af} (fwA1 ¹ chaA1 ¹ nirA14 ¹ sE15 ¹)	LU161 X LO1353
LU126	<i>pyrG</i> 89; wA3; <i>argB</i> 2; <i>An-nrap-</i> GFP:: <i>pyrG</i> ^{Af} ; <i>histone-H</i> 1- mRFP:: <i>pyrG</i> ^{Af} ; (<i>fwA</i> 1 ¹ <i>chaA</i> 1 ¹ <i>nirA</i> 14 ¹ <i>sE</i> 15 ¹)	LU116 X LO1353
LU132	$pyrG89$; wA3; $argB2$; An-topo1-GFP:: $pyrG^{Af}$ An-fib-chRFP:: $pyrG^{Af}$ fwA1 chaA1 (sE15 ¹ nirA14 ¹)	LU118 X CDS410a
LU135	<i>pyrG</i> 89; <i>wA</i> 3; arg <i>B</i> 2; <i>histone-H</i> 1-mRFP:: <i>pyrG</i> ^{<i>Af</i>} ; <i>An-topo</i> 1-GFP:: <i>pyrG</i> ^{<i>Af</i>} (<i>fwA</i> 1 ^{1} <i>chaA</i> 1 ^{1} <i>sE</i> 15 ^{1} n <i>irA</i> 14 ^{1})	LU119 X LO1353
LU161	pyrG89; wA3; argB2; Δ nku A^{ku70} ::argB pyroA4; An-fib-GFP::pyrG ^{Af} sE15 nirA14 chaA1 fwA1	SO451 transformant
LU178	<i>pyrG</i> 89; <i>wA</i> 3; <i>argB</i> 2; <i>histone-H</i> 1-mRFP:: <i>pyrG</i> ^{<i>Af</i>} ; <i>An-cgrA</i> -GFP:: <i>pyrG</i> ^{<i>Af</i>} ; (<i>fwA</i> 1 ¹ <i>chaA</i> 1 ¹ <i>nirA</i> 14 ¹ <i>sE</i> 15 ¹)	LU152 X LO1353
LU193	pabaA1 pyrG89; wA3; argB2; pyrOA4; histone-H1-mRFP::pyrG ^{Af} ; An- bop1-GFP::pyrG ^{Af} sE15; (fwA1 ¹ chaA1 ¹ nirA14 ¹)	LU81 X LO1353
LU359	pyrG89; wA3; argB2::gpdp::stuA C-term-DsRedT4-argB (NLS-DsRed); pyroA4 ($\Delta nkuA^{ku70}$::argB ¹); ΔAn -mad2::pyrG; An-fib-GFP::pvrG ^{4f} (sE15 ¹ nirA14 ¹)	LU124 X ΔMd2
LU398	pyrG89 ΔyA ::NLS-DsRed; argB2; pyroA4; nicB8; An-bop1- GFP::pyrG ^{4f} bimG11 (nirA14 ¹)	LU377 X ΔMd2
LU437	pyrG89; wA3; argB2; $\Delta nkuA^{ku70}$::argB pyroA4; An-pol I-GFP::pyrG ^{Af} sE15 nirA14 chaA1 fwA1	SO451 transformant
LU451	pabaA1 pyrG89; pyroA4; Δ mad2::pyrG An-nup49-chRFP::pyrG ^{Af} ; An- bop1-GFP::pyrG ^{Af} chaA1 (sE15 ¹)	LU399 X CDS590
LU456	<i>paba</i> A1 <i>pyrG</i> 89; <i>pyroA</i> 4; <i>An-nup170</i> -chRFP:: <i>pyrG</i> ^{Af} ; Δ <i>mad</i> 2:: <i>pyrG</i> ; <i>riboB2 An-bop</i> 1-GFP:: <i>pyrG</i> ^{Af} (<i>sE</i> 15 ¹)	LU399 X HA313
LU458	$pyrG89$; $(nimT23^1)$; $alcA$::nd- $nimE^{cyclinB}$ at argB; $(bimG11^1)$ An-fib- chRFP:: $pvrG^{Af}$ An-bop1-GFP:: $pvrG^{Af}$ chaA1 $(nirA14^1)$	LU395 x CDS410a
SO451	pyrG89; wA3; argB2; $\Delta nkuA^{ku70}$:: argB pyroA4; sE15 nirA14 chaA1 fwA1	Osmani et al., 2006
SO602	(<i>pyrG</i> 89 ¹); <i>wA3</i> ; <i>argB2</i> ; <i>sE</i> 15 An- <i>gle</i> 1-GFP:: <i>pyrG</i> ^{Af}	Osmani et al., 2006

¹ In some strains we have not confirmed some markers which could be covered by or recessive to other markers in the strain.

Supplementary Figure 1. Mitotic segregation of An-Pol I. (A) Time lapse imaging of An-Pol I-GFP during mitosis. (B) An-Pol I-chRFP together with An-Topo I-GFP demonstrating that An-Pol I-chRFP co-localizes with the An-Topo I-GFP foci (arrowheads) as they segregate. (C) An-Topo I-GFP together with An-Fib-chRFP during mitotic exit demonstrating that An-Fib-chRFP accumulates at the segregated An-Topo I-GFP foci which represent the NORs. Arrowheads indicate the segregated Topo I foci and the initial accumulation of An-Fib at these foci. This is highlighted in the kymographs of the time course collecting images every 7 sec. Bars ~5 μ m.

Supplemental Figure S1

3min

Supplemental video files.

Video1.mov shows time-lapse imaging of An-Erg24-GFP location during mitosis (Figure 1D). Images were collected every 1 min and are displayed at 2 fps.

Video2.mov shows An-Fib-GFP together with histone H1-mRFP during mitosis (Figure 2B). Images were collected every 40 sec and are displayed at 2 fps.

Video3.mov shows An-Fib-chRFP together with An-Bop1-GFP during mitosis (Figure 3B). Images were collected every 20 sec and are displayed at 2 fps.

Video4.mov shows that when An-Topo I-GFP (mitotic NOR marker) segregates in anaphase, it is removed from the nucleolus (Figure 4D). When An-Fib-chRFP then begins to disassemble from the nucleolus, it is imported into daughter nuclei and accumulates around An-Topo I-GFP at the NORs. Images were collected every 45 sec and are displayed at 2 fps.

Video5.mov shows NLS-DsRed and An-Fib-GFP (Figure 5C) distribution during SIM ($mad2\Delta$ + benomyl). Images were collected every 45 sec and are displayed at 2 fps.

Video6.mov shows NLS-DsRed and An-Bop1-GFP (Figure 5D) distribution during SIM ($mad2\Delta$ + benomyl). Images were collected every 1 min and are displayed at 2 fps.

Video7.mov shows An-Topo I-GFP (mitotic NOR marker) and An-FibchRFP (Figure 7B) distribution during SIM ($mad2\Delta$ + benomyl). Images were collected every 1 min and are displayed at 2 fps. Video8.mov shows An-Nup49-chRFP and An-Bop1-GFP distribution (Figure 8A) during SIM ($mad2\Delta$ + benomyl). Images were collected every 30 sec and are displayed at 2 fps.

Video9.mov shows An-Nup170-chRFP and An-Bop1-GFP distribution (Figure 8B) during SIM ($mad2\Delta$ + benomyl). Images were collected every 1 min and are displayed at 2 fps.