Parallel Synthesis of a Multi-Substituted

Benzo[b]furan Library

Chul-Hee Cho,[†] Benjamin Neuenswander,[‡] Gerald H. Lushington,[‡] and Richard C. Larock^{†,*}

Department of Chemistry, Iowa State University, Ames, Iowa 50011, and the University of Kansas NIH Center of Excellence in Chemical Methodologies and Library Development, Lawrence, Kansas 66047

Supporting Information

Contents

1. General considerations	S2
2. Experimental details and characterization	S2-S25
3. Copies of selected ¹ H and ¹³ C NMR spectra	S26-S88

^{*} Corresponding Author: Phone: (515) 294-4660. E-mail: larock@iastate.edu

[†]Iowa State University

[‡] University of Kansas

The ¹H (400 or 300 MHz) and ¹³C NMR (100 or 75 MHz) spectra were recorded in CDCl₃ as the solvent using tetramethylsilane (TMS) as an internal standard, unless otherwise stated. Chemical shifts are reported in δ units (ppm) by assigning the TMS resonance in the ¹H NMR spectrum as 0.00 ppm and the CDCl₃ resonance in the ¹³C NMR spectrum as 77.23 ppm. All coupling constants, *J*, are reported in Hertz (Hz). Analytical thin layer chromatography (TLC) was performed using commercially prepared 60-mesh silica gel plates, and visualization was effected with short wavelength UV light (254 nm). All melting points are uncorrected. HPLC analysis was carried out using an Xterra MS C-18 column (5 μ M, 4.6 ×150 mm) with gradient elution (10% CH₃CN to 100% CH₃CN) on a Waters Mass Directed Fractionation instrument using a Waters 2767 sample manager and Waters 2525 HPLC pump and a 2487 dual λ absorbance detector, and Water/Micromass ZQ (quadruple) detector. Purification was carried out using an Xterra MS C-18 column (5 μ M, 10 × 150 mm), and gradient elution (40% CH₃CN to 100% CH₃CN) with a UV fraction trigger. High resolution mass spectra (HRMS) were obtained using a Waters/Micromass LCT Premier TOF instrument.

Commercially available reagents were used without further purification unless otherwise stated. The organic solvents (*e.g.* Et₂O, EtOAc, EtOH, CH₃CN, DMF, hexanes, toluene, etc.) were used as anhydrous solvents. THF and CH₂Cl₂ were distilled from sodium/benzophenone or CaH₂ respectively under an atmosphere of argon prior to use. The palladium catalysts were donated by Johnson Matthey Inc. and Kawaken Fine Chemicals Co. Ltd. The boronic acids were donated by Frontier Scientific and Synthonix Co. Ltd.

General procedure for the preparation of bromoalkynes 7{5-8}

To a solution of 4-bromo-2-iodoanisole [5{3}, 10.0 mmol], 3 mol % $PdCl_2(PPh_3)_2$ and 3 mol % CuI in Et₃N (20 mL), 10.5 mmol of terminal alkyne **6** was added. The reaction mixture was stirred vigorous between 0 °C and room temperature for *ca*. 1-3 h under an Ar atmosphere. The resulting mixture was diluted with EtOAc (2 × 200 mL). The separated organic layer was washed with water and brine, dried over MgSO₄, and concentrated *in vacuo*. The crude product was purified by column chromatography on silica gel using ethyl acetate/hexanes as the eluent to afford the corresponding products **7**{5-8}.

Br

Bromoalkyne 7{5}

The product was obtained as a yellow oil (84% yield): ¹H NMR (300 MHz, CDCl₃) δ 1.54-1.69 (m, 4H), 2.07-2.16 (m, 2H), 2.18-2.25 (m, 2H), 3.79 (s, 3H), 6.19-6.23 (m, 1H), 6.67 (d, *J* = 8.9 Hz, 1H), 7.28 (dd, *J* = 2.5, 8.9 Hz, 1H), 7.47 (d, *J* = 2.5 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 21.5, 22.3, 25.8, 29.1, 56.0,

81.6, 96.6, 112.1, 112.1, 115.0, 120.6, 131.7, 135.4, 135.7, 158.8; HRMS calcd for $C_{15}H_{15}BrO$ [M⁺], 290.0306, found 290.0309.

Bromoalkyne 7{6}

The product was obtained as yellow oil that solidified upon standing to a yellow solid (90% yield): mp 68-70 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ 3.75 (s, 3H), 3.80 (s, 3H), 6.68 (d, *J* = 8.9 Hz, 1H), 6.83 (d, *J* = 8.8 Hz, 2H), 7.31 (dd, *J* = 2.5, 8.8 Hz, 1H), 7.46 (d, *J* = 8.8 Hz, 2H), 7.57 (d, *J* = 2.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 55.3, 56.0, 83.1, 94.8, 112.3, 114.0 (×2), 114.2, 114.9, 115.1, 132.0, 133.2 (×2), 135.5, 158.9, 159.8; HRMS calcd for C₁₆H₁₃BrO₂ [M⁺], 316.0099, found 316.0102.

Bromoalkyne 7{7}

The product was obtained as a dark yellow oil (94% yield); ¹H NMR (400 MHz, CDCl₃) δ 3.86 (s, 3H), 6.74 (d, *J* = 8.8 Hz, 1H), 7.20 (dd, *J* = 1.2, 5.0 Hz, 1H), 7.26 (d, *J* = 8.8 Hz, 1H), 7.28 (d, *J* = 8.0 Hz, 1H), 7.36 (dd, *J* = 2.5, 8.8 Hz, 1H), 7.54 (dd, *J* = 1.2, 3.0 Hz, 1H), 7.58 (d, *J* = 2.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 56.2, 84.0, 89.9, 112.4, 112.4, 114.6, 122.2, 125.5, 129.2, 130.1, 132.5, 135.8, 159.1; HRMS calcd for C₁₃H₉BrOS [M⁺], 291.9557, found 291.9551.

The product was obtained as a yellow oil (93% yield): ¹H NMR (400 MHz, CDCl₃) δ 2.34 (s, 3H), 3.87 (s, 3H), 6.75 (d, J = 8.9 Hz, 1H), 7.14 (d, J = 7.6 Hz, 1H), 7.23 (t, J = 7.4 Hz, 1H), 7.36-7.39 (m, 3H), 7.59 (d, J = 2.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.4, 56.3, 84.1, 95.0, 112.41, 112.44, 114.8, 123.0, 128.4, 128.9, 129.5, 132.42, 132.44, 135.9, 138.1, 159.2; HRMS calcd for C₁₆H₁₃BrO [M⁺], 300.0150, found 300.0156.

General procedure for the preparation of alkynes 8{1-13} by Suzuki-Miyaura coupling

Method A (using arylboronic acids **10**)

To a solution of bromoalkyne $7{5-8}$ (2.0 mmol) and 5 mol % Pd(PPh₃)₄ in toluene (10 mL) was added K₂CO₃ (6.0 mmol) under an Ar atmosphere. To the resulting mixture was added arylboronic acid **10** (3.0

mmol) dissolved in ethanol (2 mL). The reaction mixture was heated at 80 °C for 8 h with vigorous stirring. Upon cooling to room temperature, the reaction mixture was extracted with EtOAc (2×40 mL). The combined extracts were dried over MgSO₄, concentrated, and purified by flash column chromatography using EtOAc/hexane as the eluent to afford the corresponding product.

Method **B** (using heteroarylboronic acids **10**)

To a solution of bromoalkyne $7{5-8}$ (2.0 mmol), 5 mol % Pd(dba)₂ and 8 mol % PPh₃ in toluene (10 mL) was added KOH (6.0 mmol) under an Ar atmosphere. To the resulting mixture was added heteroarylboronic acid **10** (3.0 mmol) dissolved in ethanol (2 mL). The reaction mixture was heated at 80 °C for 8 h with vigorous stirring. Upon cooling to room temperature, the reaction mixture was extracted with EtOAc.

Alkyne 8{*1*}

The product was obtained as a pale yellow solid (69% yield): mp 135-137 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ 3.78 (s, 3H), 3.79 (s, 3H), 3.89 (s, 3H), 6.86 (d, *J* = 8.7 Hz, 2H), 6.89 (d, *J* = 8.7 Hz, 1H), 6.93 (d, *J* = 8.7 Hz, 2H), 7.43 (d, *J* = 8.7 Hz, 1H), 7.47 (d, *J* = 8.7 Hz, 2H), 7.51 (d, *J* = 8.7 Hz, 2H), 7.69 (d, *J* = 2.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 55.38, 55.43, 56.1, 84.6, 93.6, 111.1, 113.1, 114.0 (×2), 114.3 (×2), 115.7, 127.7, 127.8 (×2), 131.6, 132.7, 133.3 (×2), 133.4, 158.9, 159.0, 159.6; HRMS calcd for C₂₃H₂₀O₃ [M⁺], 344.1412, found 344.1412.

Alkyne 8 $\{2\}$

The product was obtained as a white solid (63% yield): mp 132-135 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ 3.76 (s, 3H), 3.87 (s, 3H), 5.93 (s, 2H), 6.81-6.88 (m, 2H), 6.85 (d, *J* = 8.7 Hz, 2H), 6.97-7.01 (m, 2H), 7.35-7.39 (m, 1H), 7.51 (d, *J* = 8.7 Hz, 2H), 7.64 (d, *J* = 2.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 55.3, 56.0, 84.5, 93.7, 101.2, 107.3, 108.6, 111.0, 113.1 (×2), 114.0, 115.6, 120.2, 127.8, 131.7, 133.2 (×2), 133.4, 134.5, 146.9, 148.2, 159.0, 159.6; HRMS calcd for C₂₃H₁₈O₄ [M⁺], 358.1205, found 358.1207.

Alkyne 8{*3*}

The product was obtained as a yellow oil (57% yield): ¹H NMR (400 MHz, CDCl₃) δ 3.82 (s, 3H), 3.94 (s, 3H), 3.97 (s, 3H), 6.80 (d, *J* = 8.6 Hz, 1H), 6.88 (d, *J* = 8.9 Hz, 2H), 6.96 (d, *J* = 8.6 Hz, 1H), 7.42 (dd, *J* = 2.4, 8.6 Hz, 1H), 7.52 (d, *J* = 8.9 Hz, 2H), 7.64 (d, *J* = 2.3 Hz, 1H), 7.75 (dd, *J* = 2.5, 8.6 Hz, 1H), 8.35 (d, *J* = 2.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 53.7, 55.5, 56.2, 84.3, 94.0, 110.9, 111.3, 113.5, 114.1 (×2), 115.6, 127.7, 129.2, 130.5, 131.7, 133.3 (×2), 137.3, 144.7, 159.4, 159.8, 163.5; HRMS calcd for C₂₂H₁₉NO₃ [M⁺], 345.1365, found 345.1359.

Alkyne 8{*4*}

The product was obtained as a yellow oil (63% yield): ¹H NMR (400 MHz, CDCl₃) δ 3.80 (s, 3H), 3.88 (s, 3H), 3.92 (s, 6H), 3.93 (s, 3H), 6.74 (s, 2H), 6.87 (d, J = 8.7 Hz, 2H), 6.94 (d, J = 8.6 Hz, 1H), 7.46 (dd, J = 2.2, 8.6 Hz, 1H), 7.52 (d, J = 8.7 Hz, 2H), 7.69 (d, J = 2.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 55.4, 56.1, 56.3 (×2), 61.1, 84.4, 93.8, 104.0 (×2), 111.0, 113.1, 114.0 (×2), 115.5, 128.1, 131.9, 133.2 (×2), 133.8, 136.2, 137.4, 153.5 (×2), 159.3, 159.7; HRMS calcd for C₂₅H₂₄O₅ [M⁺], 404.1624, found 404.1628. **Alkyne 8**{5}

The product was obtained as a yellow oil (72% yield): ¹H NMR (400 MHz, CDCl₃) δ 3.82 (s, 3H), 3.93 (s, 3H), 3.94 (s, 3H), 6.88 (d, *J* = 8.8 Hz, 2H), 6.93 (d, *J* = 8.7 Hz, 1H), 7.03 (d, *J* = 8.7 Hz, 1H), 7.47 (dd, *J* = 2.4, 8.6 Hz, 1H), 7.52 (d, *J* = 8.8 Hz, 2H), 7.66-7.76 (m, 2H), 8.03 (d, *J* = 2.1 Hz, 1H), 10.50 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 55.5, 56.0, 56.2, 84.3, 93.9, 111.2, 112.3, 113.4, 114.1 (×2), 116.2, 125.0, 126.3, 127.7, 131.6, 132.0, 132.8, 133.3 (×2), 134.0, 159.3, 159.7, 161.1, 189.9; HRMS calcd for C₂₄H₂₀O₄ [M⁺], 372.1362, found 372.1353.

Alkyne 8{6}

The product was obtained as yellow oil that solidified upon standing to a yellow solid (78% yield): mp 106-108 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ 3.82 (s, 3H), 3.91 (s, 3H), 6.92 (d, *J* = 8.7 Hz, 1H), 6.94 (d, *J* = 8.8 Hz, 2H), 7.21-7.29 (m, 2H), 7.46 (d, *J* = 8.7 Hz, 1H), 7.48 (d, *J* = 8.8 Hz, 2H), 7.55 (dd, *J* = 1.2, 2.9 Hz, 1H), 7.68 (d, *J* = 2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 55.5, 56.2, 85.4, 88.7,

111.1, 112.7, 114.4 (×2), 122.6, 125.4, 127.8 (×2), 128.1, 128.8, 130.2, 131.8, 132.7, 133.5, 159.0; HRMS calcd for $C_{20}H_{16}O_2S$ [M⁺], 320.0871, found 320.0862.

The product was obtained as yellow oil that solidified upon standing to a yellow solid (81% yield): mp 100-101 °C (uncorrected); ¹H NMR (300 MHz, CDCl₃) δ 3.91 (s, 3H), 5.96 (s, 2H), 6.84 (d, *J* = 7.9 Hz, 1H), 6.90 (d, *J* = 8.7 Hz, 1H), 6.98-7.03 (m, 2H), 7.21-7.29 (m, 2H), 7.39-7.43 (m, 1H), 7.53-7.57 (m, 1H), 7.63-7.65 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 56.2, 85.3, 88.8, 101.3, 107.4, 108.7, 111.2, 112.8, 120.3, 122.6, 125.4, 128.2, 128.8, 130.2, 132.0, 133.6, 134.5, 147.0, 148.3, 159.2; calcd for C₂₀H₁₄O₃S [M⁺], 334.0664, found 334.0668.

Alkyne 8{8}

The product was obtained as a dark yellow oil (62% yield): ¹H NMR (400 MHz, CDCl₃) δ 3.94 (s, 3H), 3.97 (s, 3H), 6.80 (d, *J* = 8.6 Hz, 1H), 6.97 (d, *J* = 8.6 Hz, 1H), 7.21-7.31 (m, 2H), 7.45 (d, *J* = 8.6 Hz, 1H), 7.57 (s, 1H), 7.65 (s, 1H), 7.75 (d, *J* = 8.6 Hz, 1H), 8.35 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 53.8, 56.2, 85.1, 89.0, 111.0, 111.4, 113.1, 122.5, 125.4, 128.0, 129.0, 129.2, 130.2, 130.6, 131.8, 137.3, 144.7, 159.5, 163.6; calcd for C₁₉H₁₅NO₂S [M⁺], 321.0823, found 321.0817.

Alkyne 8{*9*}

The product was obtained as yellow oil that solidified upon standing to a yellow solid (83% yield): mp 156.5-158 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ 3.88 (s, 3H), 3.92 (s, 6H), 3.94 (s, 3H), 6.74 (s, 2H), 6.95 (d, *J* = 8.6 Hz, 1H), 7.21-7.31 (m, 2H), 7.48 (dd, *J* = 2.3, 8.6 Hz, 1H), 7.56 (d, *J* = 2.9 Hz, 1H), 7.68 (d, *J* = 2.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 56.2, 56.4 (×2), 61.1, 85.2, 88.8, 104.1 (×2), 111.1, 112.8, 122.5, 125.4, 128.4, 128.9, 130.1, 132.1, 133.9, 136.1, 137.5, 153.6 (×2), 159.5; HRMS calcd for C₂₂H₂₀O₄S [M⁺], 380.1082, found 380.1089.

Alkyne 8{*10*}

The product was obtained as a pale yellow solid (71% yield): mp 107-108 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ 1.56-1.70 (m, 4H), 2.10-2.18 (m, 2H), 2.22-2.30 (m, 2H), 3.87 (s, 3H), 5.95 (s, 2H), 6.25 (br s, 1H), 6.84 (t, *J* = 9.1 Hz, 2H), 6.97-7.02 (m, 2H), 7.36 (dd, *J* = 2.4, 8.6 Hz, 1H), 7.55 (d, *J* = 2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.6, 22.4, 25.9, 29.4, 56.0, 83.0, 95.5, 101.2, 107.3, 108.5, 110.9, 113.2, 120.1, 120.9, 127.5, 131.6, 133.3, 134.5, 135.2, 146.8, 148.1, 158.9; HRMS calcd for C₂₂H₂₀O₃ [M⁺], 332.1412, found 332.1409.

Alkyne 8{*11*}

The product was obtained as a pale yellow oil (68% yield): ¹H NMR (400 MHz, CDCl₃) δ 1.61-1.67 (m, 4H), 2.14 (br s, 2H), 2.27 (br s, 2H), 3.90 (s, 3H), 3.96 (s, 3H), 6.26-6.27 (m, 1H), 6.78 (d, *J* = 8.6 Hz, 1H), 6.92 (d, *J* = 8.6 Hz, 1H), 7.38 (d, *J* = 8.6 Hz, 1H), 7.56 (s, 1H), 7.73 (d, *J* = 8.6 Hz, 1H), 8.32 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.7, 22.5, 26.0, 29.4, 53.7, 56.1, 82.8, 95.9, 110.8, 111.2, 113.7, 120.9, 127.5, 129.3, 130.4, 135.6, 137.2, 144.6, 159.3, 163.5; calcd for C₂₁H₂₁NO₂ [M⁺], 319.1572, found 319.1576.

Alkyne 8{*12*}

The product was obtained as a pale yellow oil (68% yield): ¹H NMR (400 MHz, CDCl₃) δ 1.59-1.71 (m, 4H), 2.14 (br s, 2H), 2.28 (br s, 2H), 3.88 (s, 3H), 3.89 (s, 3H), 3.91 (s, 6H), 6.26 (br s, 1H), 6.72 (s, 2H), 6.90 (d, *J* = 8.6 Hz, 1H), 7.43 (d, *J* = 8.6 Hz, 1H), 7.59 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.6, 22.4, 25.9, 29.3, 56.0, 56.2 (×2), 61.0, 82.9, 95.6, 103.9 (×2), 110.9, 113.2, 120.8, 127.8, 131.8, 133.7, 135.4, 136.1, 137.3, 153.4 (×2), 159.2; calcd for C₂₄H₂₆O₄ [M⁺], 378.1831, found 378.1823.

The product was obtained as a yellow oil (67% yield): ¹H NMR (400 MHz, CDCl₃) δ 2.33 (s, 3H), 3.88 (s, 3H), 5.94 (s, 2H), 6.83 (d, J = 8.0 Hz, 1H), 6.87 (d, J = 8.6 Hz, 1H), 6.98-7.01 (m, 2H), 7.10-7.12 (m, 1H),

7.20-7.23 (m, 1H), 7.37-7.40 (m, 3H), 7.65 (d, J = 2.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.4, 56.1, 85.5, 93.9, 101.2, 107.4, 108.7, 111.1, 112.9, 120.2, 123.4, 128.1, 128.3, 128.9, 129.2, 131.9, 132.4, 133.5, 134.5, 138.0, 146.9, 148.2, 159.2; HRMS calcd for C₂₃H₁₈O₃ [M⁺], 342.1256, found 342.1256.

General procedure for the preparation of alkyne $8{14}$ by carbonylative Suzuki coupling.

The bromoalkyne **7**{6} (2.0 mmol), 4-methoxyphenylboronic acid **10**{*I*} (2.2 mmol), K₂CO₃ (6.0 mmol), NaI (6.0 mmol) and 5 mol % PdCl₂(dppf) in toluene (10 mL) were placed in a vial with a magnetic stir bar under an Ar atmosphere. After sealing the vial, the atmosphere was changed to carbon monoxide and the reaction mixture was kept at 80 °C for 24 h with vigorous stirring. Upon cooling to room temperature, the reaction mixture was extracted with EtOAc (2 × 40 mL). The usual work up gave a crude oil, which was purified by chromatography (EtOAc/hexane) to give **8**{*14*} in a 38% yield as a pale yellow oil: ¹H NMR (400 MHz, CDCl₃) δ 3.81 (s, 3H), 3.87 (s, 3H), 3.97 (s, 3H), 6.86 (d, *J* = 8.8 Hz, 2H), 6.96 (d, *J* = 8.7 Hz, 1H), 6.97 (d, *J* = 8.8 Hz, 2H), 7.49 (d, *J* = 8.8 Hz, 2H), 7.76-7.82 (m, 3H), 7.94 (d, *J* = 2.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 55.4, 55.6, 56.3, 83.6, 94.3, 110.2, 112.8, 113.7 (×2), 114.1 (×2), 115.3, 130.5, 130.7, 131.9, 132.4 (×2), 133.3 (×2), 135.6, 159.8, 162.7, 163.1, 193.9; HRMS calcd for C₂₄H₂₀O₄ [M⁺] 372.1362, found 372.1354.

General procedure for the preparation of alkynes 8{15-20} by amination.

To the bromoalkyne $7{5-8}$ (2.0 mmol), 5 mol % Pd₂(dba)₃ and NaO^tBu (1.4 equiv), DavePhos (0.1 equiv) was added with a magnetic stir bar under an Ar atmosphere. To the reagent mixture was added amine **11** (1.5 equiv) dissolved in toluene (12 mL) at room temperature. The reaction mixture was heated to 60 °C for 12 h. Upon cooling to room temperature, the reaction mixture was extracted with EtOAc (2 × 40 mL). The combined extracts were dried over MgSO₄, concentrated, and purified by column chromatography on silica gel using ethyl acetate/hexanes as the eluent to afford the corresponding product **8**{*15-20*}.

Alkyne 8{15}

The product was obtained as a dark-brown oil (78% yield): ¹H NMR (400 MHz, CDCl₃) δ 3.05 (t, *J* = 4.8 Hz, 4H), 3.79 (s, 3H), 3.85 (s, 3H), 3.83 (t, *J* = 4.8 Hz, 4H), 6.80-6.88 (m, 2H), 6.86 (d, *J* = 8.9 Hz, 2H),

7.07 (d, J = 2.8 Hz, 1H), 7.49 (d, J = 8.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 50.6 (×2), 55.3, 56.4, 67.1 (×2), 84.7, 93.3, 111.9, 113.2, 114.0 (×2), 115.7, 118.0, 121.5, 133.2 (×2), 145.3, 154.4, 159.6; HRMS calcd for C₂₀H₂₁NO₃ [M⁺] 323.1521, found 323.1519.

Alkyne 8{*16*}

The product was obtained as a dark brown oil (73% yield): ¹H NMR (400 MHz, CDCl₃) δ 2.33 (s, 3H), 3.06 (t, *J* = 4.8 Hz, 4H), 3.84 (t, *J* = 4.8 Hz, 4H), 3.86 (s, 3H), 6.81-6.89 (m, 2H), 7.08 (d, *J* = 2.8 Hz, 1H), 7.12 (d, *J* = 7.6 Hz, 1H), 7.22 (t, *J* = 7.6 Hz, 1H), 7.36 (d, *J* = 7.6 Hz, 1H), 7.39 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.4, 50.7 (×2), 56.5, 67.1 (×2), 85.8, 93.5, 112.0, 113.0, 118.3, 121.7, 123.4, 128.3, 128.8, 129.2, 132.4, 138.0, 145.4, 154.5; HRMS calcd for C₂₀H₂₁NO₂ [M⁺] 307.1572, found 307.1563. **Alkyne 8**{*17*}

The product was obtained as yellow oil that solidified upon standing to a yellow solid (71% yield): mp 118-119 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ 3.06 (t, *J* = 4.8 Hz, 4H), 3.85 (s, 3H), 3.85 (t, *J* = 4.8 Hz, 4H), 6.82-6.81 (m, 2H), 7.08 (d, *J* = 2.8 Hz, 1H), 7.21-7.30 (m, 2H), 7.53-5.54 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 50.7 (×2), 56.4, 67.1 (×2), 85.6, 88.4, 111.9, 112.8, 118.4, 121.7, 122.6, 125.3, 128.8, 130.1, 145.3, 145.4, 154.5; HRMS calcd for C₁₇H₁₇NO₂S [M⁺] 299.0980, found 299.0972. **Alkyne 8**{*19*}

The product was obtained as a yellow oil (87% yield): ¹H NMR (400 MHz, CDCl₃) δ 0.95 (t, *J* = 7.3 Hz, 3H), 1.36-1.47 (m, 2H), 1.53-1.62 (m, 2H), 3.06 (t, *J* = 7.1 Hz, 2H), 3.33 (br s, 1H), 3.81 (s, 3H), 3.84 (s, 3H), 6.57 (dd, *J* = 2.9, 8.8 Hz, 1H), 6.76 (d, *J* = 11.7 Hz, 1H), 6.77 (s, 1H), 6.85 (d, *J* = 8.9 Hz, 2H), 7.49 (d, *J* = 8.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 14.1, 20.5, 31.9, 44.8, 55.4, 56.8, 85.0, 93.0, 112.8, 113.4, 114.0 (×2), 114.6, 115.9, 117.6, 133.3 (×2), 142.6, 152.6, 159.6; HRMS calcd for C₂₀H₂₃NO₂ [M⁺] 309.1729, found 309.1717.

Alkyne 8{20}

The product was obtained as a yellow oil (93% yield): ¹H NMR (400 MHz, CDCl₃) δ 2.28 (s, 3H), 3.80 (s, 3H), 3.87 (s, 3H), 5.44 (br s, 1H), 6.80 (d, J = 8.8 Hz, 1H), 6.84-6.89 (m, 4H), 6.98 (dd, J = 2.8, 8.8 Hz, 1H), 7.04 (d, J = 8.1 Hz, 2H), 7.20 (d, J = 2.8 Hz, 1H), 7.47 (d, J = 8.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 20.8, 55.4, 56.5, 84.5, 93.6, 112.1, 113.6, 114.0 (×2), 115.7, 117.3 (×2), 120.8, 124.4, 129.9, 130.0 (×2), 133.3 (×2), 136.8, 141.9, 155.1, 159.7; HRMS calcd for C₂₃H₂₁NO₂ [M⁺] 343.1572, found 343.1562.

General procedure for the iodocyclization of compounds 9{1-24}

To a solution of 1.6 mmol of the alkyne **7** and/or **8** and 15 mL of CH_2Cl_2 was added gradually 1.5 equiv of ICl dissolved in 10 mL of CH_2Cl_2 . The reaction mixture was allowed to stir at room temperature for 1-2 h. The reaction was monitored by TLC to establish completion. The excess ICl was removed by washing with satd aq Na₂S₂O₃. The mixture was then extracted by EtOAc (2 × 30 mL). The combined organic layers were dried over anhydrous MgSO₄ and concentrated under a vacuum to yield the crude product, which was purified by flash chromatography on silica gel using EtOAc/hexanes as the eluent. **3-Iodobenzofuran 9**{*3*}

The product was obtained as yellow oil that solidified upon standing to a dark brown solid (76% yield): mp 108 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ 3.87 (s, 3H), 7.02 (d, *J* = 9.0 Hz, 2H), 7.24 (dd, *J* = 8.2, 4.8 Hz, 1H), 7.69 (dd, *J* = 8.2, 1.2 Hz, 1H), 8.18 (d, *J* = 9.0 Hz, 2H), 8.59 (dd, *J* = 4.8, 1.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 55.6, 62.4, 114.2 (×2), 118.0, 120.0, 122.1, 129.4 (×2), 146.6, 146.9, 149.8, 156.6, 161.0; HRMS calcd for C₁₄H₁₀INO₂ [M⁺] 350.9756, found 350.9744.

3-Iodobenzofuran 9{*4*}

The product was obtained as dark yellow semi-solid (58% yield): ¹H NMR (400 MHz, CDCl₃) δ 3.90 (s, 6H), 6.59 (t, J = 2.2 Hz, 1H), 7.32 (dd, J = 8.3, 4.8 Hz, 1H), 7.42 (d, J = 2.2 Hz, 2H), 7.77 (dd, J = 1.2, 8.3 Hz, 1H), 8.64 (dd, J = 1.2, 4.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 55.8, 64.8, 102.9, 105.9 (×2), 118.5, 120.6, 131.2, 146.9, 147.1, 149.6, 156.2, 161.0 (×2); HRMS calcd for C₁₅H₁₂INO₃ [M⁺] 380.9862, found 380.9861.

3-Iodobenzofuran 9{5}

The product was obtained as a pale yellow solid (93% yield): mp 165-168 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ 3.86 (s, 3H), 3.87 (s, 3H), 7.00 (d, *J* = 8.9 Hz, 2H), 7.02 (d, *J* = 8.5 Hz, 2H), 7.47-7.53 (m, 3H), 7.58 (d, *J* = 8.7 Hz, 2H), 8.13 (d, *J* = 8.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 55.6, 55.6, 59.8, 111.3, 114.1 (×2), 114.4 (×2), 119.6, 122.8, 124.7, 126.6, 128.6 (×2), 129.2 (×2), 133.2, 134.0, 137.0, 153.2, 159.2, 160.5; HRMS calcd for C₂₂H₁₇IO₃ [M⁺] 456.0222, found 456.0231.

3-Iodobenzofuran 9{6}

The product was obtained as an ivory solid (89% yield): mp 148-150 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ 3.86 (s, 3H), 6.00 (s, 2H), 6.90 (d, *J* = 8.0 Hz, 1H), 7.01 (d, *J* = 8.8 Hz, 2H), 7.07-7.12 (m, 1H), 7.10 (d, *J* = 8.0 Hz, 1H), 7.45 (s, 2H), 7.49 (s, 1H), 8.12 (d, *J* = 8.7 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 55.6, 59.8, 101.4, 108.2, 108.8, 111.3, 114.1 (×2), 114.3, 119.8, 121.1, 124.8, 128.0 (×2), 133.2, 135.8, 137.1, 147.1, 148.3, 153.3, 154.0, 160.5; HRMS calcd for C₂₂H₁₅IO₄ [M⁺] 470.0015, found 470.0023.

3-Iodobenzofuran 9{7}

The product was obtained as a pale yellow solid (87% yield): mp 167-169 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ 3.86 (s, 3H), 3.99 (s, 3H), 6.82 (d, J = 8.6 Hz, 1H), 7.00 (d, J = 8.9 Hz, 2H), 7.42-7.49 (m, 3H), 7.82 (dd, J = 2.6, 8.6 Hz, 1H), 8.11 (d, J = 8.9 Hz, 2H), 8.43 (d, J = 2.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 53.8, 55.6, 59.6, 110.9, 111.6, 114.1 (×2), 119.7, 122.6, 124.4, 129.2 (×2), 130.4, 133.4, 133.9, 137.9, 145.3, 153.4, 154.1, 160.6, 163.6; HRMS calcd for C₂₁H₁₆INO₃ [M⁺] 457.0175, found 457.0183.

3-Iodobenzofuran 9{8}

The product was obtained as a pale yellow solid (90% yield): mp 130-131 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ 3.88 (s, 3H), 3.91 (s, 3H), 3.96 (s, 6H), 6.83 (s, 2H), 7.03 (d, *J* = 8.9 Hz, 2H), 7.50-7.53 (m, 3H), 8.14 (d, *J* = 8.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 55.6, 56.5 (×2), 59.7, 61.2, 105.0,

111.3, 114.2 (×2), 115.5, 117.0, 120.0, 122.6, 125.0, 128.0, 129.2 (×2), 133.2, 137.6, 153.6, 154.2, 160.6; HRMS calcd for $C_{24}H_{21}IO_5$ [M⁺] 516.0434, found 516.0437.

3-Iodobenzofuran 9{*10*}

MeO

The product was obtained as a yellow solid (91% yield): mp 128-131 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ 3.83 (s, 3H), 6.98 (d, *J* = 8.7 Hz, 2H), 7.39-7.44 (m, 1H), 7.45-7.52 (m, 3H), 7.55 (d, *J* = 8.7 Hz, 2H), 7.90 (dd, *J* = 5.1, 1.2 Hz, 1H), 8.16 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 55.6, 60.8, 111.3, 114.4 (×2), 119.5, 124.8, 125.0, 126.1, 126.5, 128.6 (×2), 131.3, 132.8, 133.9, 137.1, 151.4, 152.9, 159.2; HRMS calcd for C₁₉H₁₃IO₂S [M⁺] 431.9681, found 431.9688.

3-Iodobenzofuran 9{*11*}

The product was obtained as a yellow oil (83% yield): ¹H NMR (400 MHz, CDCl₃) δ 6.00 (s, 2H), 6.89 (d, J = 8.0 Hz, 1H), 7.06-7.12 (m, 2H), 7.41-7.54 (m, 4H), 7.91 (dd, J = 5.2, 1.1 Hz, 1H), 8.18 (dd, J = 2.9, 1.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 60.8, 101.4, 108.2, 108.8, 111.3, 119.8, 121.1, 124.9, 125.1, 126.2, 126.5, 131.3, 132.8, 135.7, 137.2, 147.1, 148.3, 151.5, 153.0; calcd for C₁₉H₁₁IO₃S [M⁺] 445.9474, found 445.9479.

3-Iodobenzofuran 9{*13*}

MeO MeO OMe

The product was obtained as a pale yellow solid (88% yield): mp 113-115 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ 3.92 (s, 3H), 3.95 (s, 6H), 6.81 (s, 2H), 7.41-7.43 (m, 1H), 7.47-7.52 (m, 3H), 7.90-7.92 (m, 1H), 8.18-8.20 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 56.4 (×2), 60.6, 61.1, 104.9 (×2), 111.3, 119.9, 124.9, 125.3, 126.2, 126.4, 131.1, 132.7, 137.4, 137.6, 151.6, 153.1, 153.5 (×2); HRMS calcd for C₂₁H₁₇IO₄S [M⁺] 491.9892, found 491.9902.

3-Iodobenzofuran 9{*14*}

The product was obtained as a colorless oil that solidified upon standing to a dark black semi-solid (91% yield): ¹H NMR (400 MHz, CDCl₃) δ 1.67-1.72 (m, 2H), 1.76-1.81 (m, 2H), 2.27-2.30 (m, 2H), 2.61-2.64 (m, 2H), 6.00 (s, 2H), 6.79-6.84 (m, 1H), 6.89 (d, *J* = 8.0 Hz, 1H), 7.08 (d, *J* = 8.0 Hz, 1H), 7.08-7.11 (m,

1H), 7.36-7.47 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 21.9, 22.7, 25.9, 26.9, 59.2, 101.3, 108.2, 108.7, 111.1, 111.4, 119.8, 121.1, 124.6, 128.1, 132.1, 135.9, 136.9, 147.0, 148.2, 152.8, 155.9; HRMS calcd for C₂₁H₁₇IO₃ [M⁺] 444.0222, found 444.0232.

3-Iodobenzofuran 9{15}

The product was obtained as a pale yellow semi-solid (88% yield): ¹H NMR (400 MHz, CDCl₃) δ 1.58-1.84 (m, 2H), 2.01-2.15 (m, 2H), 2.21-2.36 (m, 2H), 2.45-2.60 (m, 2H), 4.00 (s, 3H), 6.84 (d, *J* = 8.6 Hz, 1H), 6.89 (dd, *J* = 5.1, 2.9 Hz, 1H), 7.47-7.56 (m, 3H), 7.84 (dd, *J* = 8.6, 2.5 Hz, 1H), 8.42 (d, *J* = 2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 16.4, 25.9, 32.0, 53.8, 54.1, 61.9, 111.0, 111.8, 120.0, 124.9, 129.2, 130.4, 132.9, 134.0, 136.4, 138.0, 145.3, 153.2, 153.5, 163.7; calcd for C₂₀H₁₈INO₂ [M⁺] 431.0382, found 431.0393.

3-Iodobenzofuran 9{*16*}

The product was obtained as a pale yellow semi-solid (92% yield): ¹H NMR (400 MHz, CDCl₃) δ 1.67-1.72 (m, 2H), 1.76-1.81 (m, 2H), 2.27-2.30 (m, 2H), 2.61-2.64 (m, 2H), 3.91 (s, 3H), 3.95 (s, 6H), 6.78-6.84 (m, 1H), 6.81 (s, 2H), 7.40-7.48 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 21.9, 22.7, 25.9, 26.9, 56.5, 59.1 (×2), 61.2, 105.0 (×2), 111.1, 120.0, 124.8, 128.1, 132.3, 132.9, 137.3, 137.6, 137.7, 153.0, 153.6 (×2), 156.0; HRMS calcd for C₂₃H₂₃IO₄ [M⁺] 490.0641, found 490.0657.

3-Iodobenzofuran 9{*17*}

The product was obtained as a pale yellow solid (87% yield): mp 123-124 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ 2.41 (s, 3H), 5.94 (s, 2H), 6.85 (d, *J* = 8.0 Hz, 1H), 7.05 (d, *J* = 8.0 Hz, 1H), 7.04-7.08 (m, 1H), 7.19 (d, *J* = 7.5 Hz, 1H), 7.33 (t, *J* = 7.7 Hz, 1H), 7.41 (s, 2H), 7.47 (s, 1H), 7.93 (s, 1H), 7.96 (d, *J* = 7.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.7, 61.3, 101.3, 108.1, 108.7, 111.3, 120.0, 121.0, 124.8, 125.1, 128.1, 128.5, 129.9, 130.2, 133.0, 135.7, 137.0, 138.3, 147.0, 148.2, 153.3, 153.8; HRMS calcd for C₂₂H₁₅IO₃[M⁺] 454.0066, found 454.0073.

3-Iodobenzofuran 9{*18*}

The product was obtained as an ivory solid (82% yield): mp 136-137 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ 3.87 (s, 3H), 3.90 (s, 3H), 6.99 (d, *J* = 8.8 Hz, 2H), 7.02 (d, *J* = 8.9 Hz, 2H), 7.51 (d, *J* = 8.5 Hz, 1H), 7.78 (dd, *J* = 1.7, 8.5 Hz, 1H), 7.82-7.87 (m, 1H), 7.86 (d, *J* = 8.8 Hz, 2H), 8.13 (d, *J* = 8.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 55.6, 55.7, 59.7, 111.0, 113.7 (×2), 114.2 (×2), 122.2, 124.1, 127.6, 129.3 (×2), 130.7, 132.7 (×2), 134.2, 154.8, 156.0, 160.8, 163.3, 195.2; HRMS calcd for C₂₃H₁₇IO₄ [M⁺] 484.0172, found 484.0180.

3-Iodobenzofuran 9{*19*}

The product was obtained as a yellow solid (84% yield): mp 147-149 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ 3.16 (t, J = 4.7 Hz, 4H), 3.83 (s, 3H), 3.89 (t, J = 4.7 Hz, 4H), 6.86 (d, J = 2.4 Hz, 1H), 6.96-6.99 (m, 1H), 6.98 (d, J = 8.9 Hz, 2H), 7.34 (d, J = 8.9 Hz, 1H), 8.08 (d, J = 8.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 51.3 (×2), 55.5, 59.9, 67.2 (×2), 108.1, 111.5, 114.0 (×2), 116.4, 122.8, 129.0 (×2), 133.1, 148.8, 149.0, 153.8, 160.3; HRMS calcd for C₁₉H₁₈INO₃ [M⁺] 435.0331, found 435.0339.

3-Iodobenzofuran 9{20}

The product was obtained as a yellow solid (82% yield): mp 112-113.5 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ 2.44 (s, 3H), 3.18 (t, *J* = 4.7 Hz, 4H), 3.90 (t, *J* = 4.7 Hz, 4H), 6.88 (d, *J* = 2.2 Hz, 1H), 7.00 (dd, *J* = 2.3, 8.9 Hz, 1H), 7.21 (d, *J* = 7.6 Hz, 1H), 7.36 (m, 2H), 7.96 (s, 1H), 7.96 (d, *J* = 8.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.8, 51.3 (×2), 61.2, 67.2 (×2), 108.3, 111.7, 116.9, 124.8, 128.1, 128.5, 130.1, 130.2, 133.1, 138.3, 148.9, 149.2, 153.9; HRMS calcd for C₁₉H₁₈INO₂ [M⁺] 419.0382, found 419.0390.

3-Iodobenzofuran 9{21}

The product was obtained as a yellow solid (81% yield): mp 141-142 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ 3.16 (t, *J* = 4.7 Hz, 4H), 3.88 (t, *J* = 4.7 Hz, 4H), 6.84 (d, *J* = 2.2 Hz, 1H), 6.96 (dd, *J* = 8.9, 2.4 Hz, 1H), 7.33 (d, *J* = 8.9 Hz, 1H), 7.36-7.40 (m, 1H), 7.87-7.89 (m, 1H), 8.13-8.14 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 51.2 (×2), 60.9, 67.2 (×2), 108.0, 111.6, 116.6, 124.5, 126.0, 126.4, 131.4, 132.8, 148.7, 148.8, 151.4; HRMS calcd for C₁₆H₁₄INO₂S [M⁺] 410.979022, found 410.9796.

3-Iodobenzofuran 9{23}

The product was obtained as a pale yellow semi-solid (51% yield): ¹H NMR (400 MHz, CDCl₃) δ 0.98 (t, J = 7.6 Hz, 3H), 1.42-1.50 (m, 2H), 1.61-1.69 (m, 2H), 3.17 (t, J = 7.2 Hz, 2H), 3.86 (s, 3H), 6.55 (d, J = 2.0 Hz, 1H), 6.63 (dd, J = 2.4, 8.8 Hz, 1H), 6.99 (d, J = 8.8 Hz, 2H), 7.24 (d, J = 8.8 Hz, 1H), 8.08 (d, J = 8.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 14.2, 20.6, 31.9, 45.0, 55.6, 59.7, 103.1, 111.6, 113.4, 114.0 (×2), 123.1, 129.0 (×2), 133.5, 145.5, 147.7, 153.5, 160.3; HRMS calcd for C₁₉H₂₀INO₂ [M⁺] 421.0539, found 421.0549.

General procedure for Suzuki-Miyaura coupling to prepare 14{1-31}

To a 4 dram vial was added the appropriate 3-iodobenzofuran **9** (0.8-1.5 mmol), boronic acid **10** (1.5 equiv), KOH (3.0 equiv) and 5 mol % Pd(PPh₃)₄ in 20:5:1 toluene/ethanol/H₂O. The solution was vigorous stirred for 5 min at room temperature, flushed with argon, and then heated to 80 °C until TLC revealed complete conversion of the starting material. Upon cooling to room temperature, the resulting reaction mixture was extracted with EtOAc. The combined organic layers were dried over MgSO₄, concentrated, and purified by either column chromatography or preparative HPLC to afford the corresponding product.

2,3,5-Trisubstituted benzo[b]furan 14{6}

The product was obtained as a pale yellow oil that solidified upon standing to a yellow solid (88% yield): ¹H NMR (400 MHz, CDCl₃) δ 3.81 (s, 3H), 3.83 (s, 3H), 3.88 (s, 3H), 6.85 (d, *J* = 8.8 Hz, 2H), 6.95 (d, *J* = 8.8 Hz, 2H), 7.01 (d, *J* = 8.7 Hz, 2H), 7.43 (d, *J* = 8.7 Hz, 2H), 7.47 (dd, *J* = 1.7, 8.5 Hz, 1H), 7.52-7.55 (m, 1H), 7.53 (d, *J* = 8.8 Hz, 2H), 7.57 (s, 1H), 7.61 (d, *J* = 8.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 55.48, 55.50, 55.56, 111.2, 114.1 (×2), 114.3 (×2), 114.7 (×2), 115.5, 116.0, 117.9, 123.7, 125.3, 128.5 (×2), 128.6 (×2), 131.1 (×2), 131.3, 134.5, 136.3, 151.2, 153.3, 159.0, 159.2, 159.8; HRMS calcd for C₂₉H₂₅O₄[M+H⁺] 437.1753, found 437.1744.

2,3,5-Trisubstituted benzo[*b*]furan 14{22}

The product was obtained as a pale yellow oil that solidified upon standing to a yellow solid (73% yield):

¹H NMR (400 MHz, CDCl₃) δ 2.35 (s, 3H), 3.81 (s, 6H), 3.96 (s, 3H), 5.99 (s, 2H), 2.03 (s, 2H), 6,88 (d, J = 7.9 Hz, 1H), 7.03-7.08 (m, 2H), 7.11-7.15 (m, 1H), 7.18-7.23 (m, 1H), 7.43-7.50 (m, 2H), 7.56-7.63 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 21.8, 56.5 (×2), 61.3, 101.4, 107.0 (×2), 108.2, 108.8, 111.4, 117.7, 118.3, 121.0, 124.4, 127.6, 127.9, 128.5, 129.5, 130.5, 130.8, 131.0, 136.3, 136.7, 137.8, 138.3, 147.0, 148.3, 151.5, 153.5, 153.9 (×2); HRMS calcd for C₃₁H₂₇O₆ [M+H⁺] 495.1808, found 495.1802. **2,3,5-Trisubstituted benzo**[*b*]furan 14{24}

The product was obtained as a pale yellow oil that solidified upon standing to a yellow solid (69% yield): ¹H NMR (400 MHz, CDCl₃) δ 3.81 (s, 3H), 3.87 (s, 3H), 6.86 (d, *J* = 8.9 Hz, 2H), 6.96 (d, *J* = 8.5 Hz, 4H), 7.33 (d, *J* = 8.6 Hz, 2H), 7.55 (d, *J* = 8.5 Hz, 1H), 7.62 (d, *J* = 8.9 Hz, 2H), 7.71 (dd, *J* = 1.7, 8.5 Hz, 1H), 7.84 (d, *J* = 8.8 Hz, 2H), 7.97 (d, *J* = 1.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 55.5, 55.7, 110.6, 113.8 (×2), 114.2 (×2), 116.2, 116.4 (×2), 122.5, 123.1, 124.0, 127.0, 128.7 (×2), 130.7, 131.0, 131.1 (×2), 132.9 (×2), 133.4, 152.1, 156.1, 156.2, 160.0, 163.4, 196.6; HRMS calcd for C₂₉H₂₃O₅ [M+H⁺] 451.1545, found 451.1548.

2,3,5-Trisubstituted benzo[b]furan 14{25}

The product was obtained as a yellow oil that solidified upon standing to a yellow solid (85% yield): ¹H NMR (400 MHz, CDCl₃) δ 3.11 (t, *J* = 4.7 Hz, 4H), 3.80 (s, 3H), 3.87 (t, *J* = 4.7 Hz, 4H), 3.88 (s, 3H), 6.84 (d, *J* = 8.9 Hz, 2H), 6.91-7.10 (m, 2H), 7.01 (d, *J* = 8.7 Hz, 2H), 7.39 (d, *J* = 8.7 Hz, 2H), 7.40-7.43 (m, 1H), 7.56 (d, *J* = 8.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 51.74 (×2), 55.46, 55.48, 67.2 (×2), 106.8, 111.4, 114.0 (×2), 114.7 (×2), 115.6, 115.9, 123.7, 125.4, 126.5, 128.4 (×2), 131.1 (×2), 131.4, 149.4, 151.4, 159.1, 159.7; HRMS calcd for C₂₆H₂₆NO₄ [M+H⁺] 416.1862, found 416.1851.

2,3,5-Trisubstituted benzo[b]furan 14{27}

The product was obtained as a yellow oil that solidified upon standing to a yellow solid (83% yield): ¹H NMR (400 MHz, CDCl₃) δ 3.10 (t, *J* = 4.7 Hz, 4H), 3.86 (t, *J* = 4.7 Hz, 4H), 3.89 (s, 3H), 6.91 (d, *J* = 2.3

Hz, 1H), 6.98 (dd, J = 2.4, 8.9 Hz, 1H), 7.04 (d, J = 8.7 Hz, 2H), 7.18 (d, J = 1.2, 5.1 Hz, 1H), 7.23-7.25 (m, 1H), 7.40-7.43 (m, 1H), 7.42 (d, J = 8.7 Hz, 2H), 7.55 (dd, J = 3.0, 1.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 51.6 (×2), 55.5, 67.2 (×2), 106.8, 114.4, 114.6 (×2), 115.0, 115.8, 116.5, 122.7, 124.9, 125.8, 126.1, 131.1, 131.2 (×2), 132.2, 148.5, 149.3, 159.4; HRMS calcd for C₂₃H₂₂NO₃S [M+H⁺] 392.1320, found 392.1312.

2,3,5-Trisubstituted benzo[b]furan 14{28}

The product was obtained as a yellow oil that solidified upon standing to a yellow solid (71% yield): ¹H NMR (400 MHz, CDCl₃) δ 3.12 (t, *J* = 4.7 Hz, 4H), 3.88 (t, *J* = 4.7 Hz, 4H), 4.03 (s, 3H), 6.86-6.92 (m, 2H), 7.02 (d, *J* = 8.9 Hz, 1H), 7.16-7.30 (m, 1H), 7.44 (d, *J* = 8.9 Hz, 1H), 7.55-7.59 (m, 1H), 7.69 (dd, *J* = 2.3, 8.5 Hz, 1H), 8.33 (d, *J* = 1.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 51.6 (×2), 53.9, 67.2 (×2), 101.3, 106.4, 111.5, 111.6, 113.2, 116.1, 121.7, 123.2, 125.9, 126.3, 126.7, 130.8, 131.8, 140.5, 147.7, 149.1, 163.9; HRMS calcd for C₂₂H₂₁N₂O₃S [M+H⁺] 393.1273, found 393.1270.

2,3,5-Trisubstituted benzo[*b*]furan 14{31}

The product was obtained as a yellow oil that solidified upon standing to a dark yellow solid (68% yield): ¹H NMR (400 MHz, CDCl₃) δ 0.94 (t, *J* = 7.3 Hz, 3H), 1.37-1.48 (m, 2H), 1.57-1.75 (m, 6H), 1.87-1.94 (m, 2H), 3.10 (t, *J* = 7.2 Hz, 2H), 3.64-4.05 (m, 2H), 3.81 (s, 3H), 5.49 (t, *J* = 3.3 Hz, 1H), 6.63-6.69 (m, 2H), 6.82 (d, *J* = 8.9 Hz, 2H), 7.14 (d, *J* = 8.7 Hz, 2H), 7.32 (d, *J* = 9.3 Hz, 1H), 7.38 (d, *J* = 8.6 Hz, 2H), 7.56 (d, *J* = 8.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 14.2, 19.3, 25.5, 30.7, 31.8, 45.6, 55.5, 62.7, 96.8, 111.4, 112.7, 114.0 (×2), 115.7, 116.1, 117.0 (×2), 118.1, 123.9, 126.7, 128.4 (×2), 131.0, 131.5, 148.2, 151.0, 156.6, 159.6; HRMS calcd for C₃₀H₃₄NO₄ [M+H⁺] 472.2488, found 472.2456.

General procedure for carbonylative Suzuki coupling to prepare 14{32-45}

A mixture of 3-iodobenzofuran 9 (0.1 mmol), boronic acid 10 (1.1 equiv), K_2CO_3 (3.0 equiv), NaI (3.0 equiv) and 3 mol % PdCl₂(PPh₃)₂ in anisole (2.0 mL) were added to a vial with a magnetic stir bar under an Ar atmosphere. After sealing the vial, the atmosphere was changed to carbon monoxide and the reaction mixture was kept at 80 °C for 12 h with vigorous stirring. Upon cooling to room temperature, the reaction mixture was diluted with EtOAc. The crude product was purified by column chromatography on

silica gel with ethyl acetate/hexanes as the eluent to afford both the corresponding carbonyl-containing product 14{32,34,36,38,40,42,44} and the direct coupling product 14{33,35,37,39,41,43,45}.

2,3,5-Trisubstituted benzo[*b*]furan 14{34}

The product was obtained as a pale yellow oil (44% yield): ¹H NMR (400 MHz, CDCl₃) δ 3.81 (s, 3H), 3.94 (s, 3H), 5.99 (s, 2H), 6.70 (d, *J* = 8.7 Hz, 1H), 6.85-6.89 (m, 1H), 6.86 (d, *J* = 9.0 Hz, 2H), 7.00-7.07 (m, 2H), 7.49 (dd, *J* = 1.8, 8.4 Hz, 1H), 7.58 (d, *J* = 8.4 Hz, 1H), 7.63 (d, *J* = 9.0 Hz, 2H), 7.70 (d, *J* = 0.8 Hz, 1H), 8.07 (dd, *J* = 2.4, 8.7 Hz, 1H), 8.62 (d, *J* = 2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 54.3, 55.6, 101.3, 108.2, 108.7, 111.1, 111.4, 114.3 (×2), 115.5, 119.3, 121.1, 121.9, 124.8, 127.5, 129.1, 130.3 (×2), 135.8, 137.5, 139.7, 147.1, 148.2, 151.3, 153.3, 158.3, 158.6, 161.1, 166.9, 189.9; HRMS calcd for C₂₉H₂₂NO₆ [M+H⁺] 480.1447, found 480.1456.

2,3,5-Trisubstituted benzo[b]furan 14{38}

The product was obtained as a pale yellow oil (41% yield): ¹H NMR (400 MHz, CDCl₃) δ 3.82 (s, 3H), 3.83 (s, 3H), 3.88 (s, 3H), 3.91 (s, 6H), 6.73 (s, 2H), 6.83 (d, *J* = 8.9 Hz, 2H), 6.86 (d, *J* = 8.9 Hz, 2H), 7.47-7.53 (m, 1H), 7.58-7.65 (m, 2H), 7.69 (d, *J* = 8.9 Hz, 2H), 7.89 (d, *J* = 8.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 55.56, 55.69, 56.4 (×2), 61.2, 104.8 (×2), 111.3, 113.9 (×2), 114.2 (×2), 115.2, 119.7, 122.2, 124.6, 129.6, 130.0 (×2), 130.8, 132.5 (×2), 132.55, 137.55, 137.61, 143.7, 153.5 (×2), 160.9, 163.88, 163.93; HRMS calcd for C₃₂H₂₉O₇ [M+H⁺] 525.1913, found 525.1918.

2,3,5-Trisubstituted benzo[b]furan 14{39}

The product was obtained as a pale yellow oil that solidified upon standing to a yellow solid (31% yield): ¹H NMR (400 MHz, CDCl₃) δ 3.82 (s, 3H), 3.89 (s, 6H), 3.91 (s, 6H), 6.76 (s, 2H), 6.87 (d, *J* = 8.9 Hz, 2H), 7.02 (d, *J* = 8.6 Hz, 2H), 7.45 (d, *J* = 8.7 Hz, 2H), 7.45-7.48 (m, 1H), 7.49-7.58 (m, 2H), 7.61 (d, *J* = 8.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 55.49, 55.51, 56.5 (×2), 61.2, 105.0 (×2), 111.2, 114.1 (×2), 114.7 (×2), 115.9, 118.2, 123.5, 124.1, 125.2, 128.6 (×2), 131.1 (×2), 131.2, 137.0, 137.4, 138.2, 151.5, 153.5 (×2), 153.6, 159.2, 159.9; HRMS calcd for C₃₁H₂₉O₆ [M+H⁺] 497.1964, found 497.1967.

General procedure for Sonogashira coupling to prepare 14{46-77}

To a 4 dram vial was added the appropriate 3-iodobenzofuran **9** (0.8-1.5 mmol), the alkyne **6** (1.2 equiv), 3 mol % $PdCl_2(PPh_3)_2$, 3 mol % CuI, DMF (1.5 mL) and Et_2NH (1.5 mL). The solution was stirred at room temperature and flushed with argon, and then heated to 50 °C until TLC revealed complete conversion of the starting material. The solution was allowed to cool and diluted with EtOAc. The combined organic layers were dried over MgSO₄, concentrated, and purified by either column chromatography or preparative HPLC to afford the corresponding product.

2,3-Disubstituted furo[*b*]**pyridine 14**{49}

The product was obtained as a yellow oil that solidified upon standing to a dark yellow solid (77% yield): ¹H NMR (400 MHz, CDCl₃) δ 2.51 (br s, 1H), 3.85 (s, 3H), 4.70 (s, 2H), 6.98 (d, *J* = 9.0 Hz, 2H), 7.19 (dd, *J* = 8.3, 4.8 Hz, 1H), 7.70 (dd, *J* = 8.2, 1.1 Hz, 1H), 8.22 (d, *J* = 9.0 Hz, 2H), 8.56 (dd, *J* = 4.8, 1.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 51.8, 55.6, 75.9, 97.2, 98.0, 114.4 (×2), 118.2, 119.3, 122.1, 128.1 (×2), 146.2, 146.8, 149.0, 159.8, 161.2; HRMS calcd for C₁₇H₁₄NO₃ [M+H⁺] 280.0974, found 280.0987. **2,3,5-Trisubstituted benzo**[*b*]furan 14{62}

The product was obtained as a pale yellow oil that solidified upon standing to a yellow solid (79% yield): ¹H NMR (400 MHz, CDCl₃) δ 2.18 (br s, 1H), 2.88 (t, *J* = 6.3 Hz, 2H), 3.87 (s, 3H), 3.93 (br s, 2H), 3.99 (s, 3H), 6.82 (d, *J* = 8.5 Hz, 1H), 7.00 (d, *J* = 8.9 Hz, 2H), 7.40 (dd, *J* = 1.7, 8.5 Hz, 1H), 7.49 (dd, *J* = 1.9, 8.5 Hz, 1H), 7.68 (d, *J* = 1.3 Hz, 1H), 7.83 (dd, *J* = 2.5, 8.5 Hz, 1H), 8.21 (d, *J* = 8.9 Hz, 2H), 8.43 (d, *J* = 2.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 24.7, 53.8, 55.6, 61.5, 74.2, 94.2, 97.6, 110.9, 111.5, 114.3 (×2), 118.1, 123.0, 124.0, 127.7 (×2), 130.6, 131.2, 133.6, 138.0, 145.3, 152.9, 157.3, 160.5, 163.6; HRMS calcd for C₂₅H₂₂NO₄ [M+H⁺] 400.1549, found 400.1552.

2,3,5-Trisubstituted benzo[b]furan 14{67}

The product was obtained as a pale yellow oil that solidified upon standing to a yellow solid (82% yield): ¹H NMR (400 MHz, CDCl₃) δ 3.86 (s, 3H), 3.91 (s, 3H), 3.96 (s, 6H), 6.83 (s, 3H), 6.94 (d, *J* = 8.8 Hz, 2H), 7.44 (dd, *J* = 5.1, 3.0 Hz, 1H), 7.48-7.53 (m, 2H), 7.57 (d, *J* = 8.8 Hz, 2H), 7.82 (d, *J* = 1.0 Hz, 1H), 7.98 (dd, *J* = 5.1, 0.8 Hz, 1H), 8.16 (dd, *J* = 3.0, 0.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 55.6, 56.5 (×2), 61.2, 79.6, 96.9, 105.0 (×2), 111.4, 114.4 (×2), 115.5, 118.8, 123.9, 124.9, 125.8, 126.4, 130.2, 131.8, 133.2 (×2), 134.2, 135.4, 137.6, 137.8, 153.1, 153.6 (×2), 154.5, 160.1; HRMS calcd for C₃₀H₂₅O₅S [M+H⁺] 497.1423, found 497.1421.

2,3,5-Trisubstituted benzo[*b*]furan 14{75}

The product was obtained as a pale yellow oil that solidified upon standing to a yellow solid (83% yield): ¹H NMR (400 MHz, CDCl₃) δ 3.19 (t, *J* = 4.7 Hz, 4H), 3.85 (s, 3H), 3.90 (t, *J* = 4.7 Hz, 4H), 6.93 (d, *J* = 8.6 Hz, 2H), 6.99 (dd, *J* = 2.3, 8.9 Hz, 1H), 7.17 (d, *J* = 2.2 Hz, 1H), 7.36 (d, *J* = 8.9 Hz, 1H), 7.38-7.43 (m, 1H), 7.57 (d, *J* = 8.6 Hz, 2H), 7.93 (d, *J* = 5.1 Hz, 1H), 7.98-8.20 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 51.4 (×2), 55.6, 67.3 (×2), 79.9, 96.7, 98.7, 107.0, 111.6, 114.3 (×2), 115.6, 116.3, 123.5, 125.7, 126.3, 130.4, 132.0, 133.2 (×2), 148.6, 148.8, 154.4, 160.0; HRMS calcd for C₂₅H₂₂NO₃S [M+H⁺] 416.1320, found 416.1317.

2,3,5-Trisubstituted benzo[b]furan 14{77}

The product was obtained as a pale yellow oil that solidified upon standing to a yellow solid (86% yield): ¹H NMR (400 MHz, CDCl₃) δ 1.30-1.62 (m, 8H), 2.12-2.30 (m, 2H), 2.51 (s, 1H), 3.16 (t, *J* = 4.7 Hz, 4H), 3.91 (t, *J* = 4.7 Hz, 4H), 6.95 (dd, *J* = 8.9, 2.5 Hz, 1H), 7.05 (d, *J* = 2.3 Hz, 1H), 7.35 (d, *J* = 8.9 Hz, 1H), 7.40 (dd, *J* = 5.1, 3.0 Hz, 1H), 7.87 (dd, *J* = 5.1, 1.2 Hz, 1H), 8.05 (dd, *J* = 3.0, 1.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 23.6 (×2), 25.4, 40.3 (×2), 51.4 (×2), 67.2 (×2), 69.6, 76.0, 98.1, 100.7, 106.8, 111.6, 116.3, 123.6, 125.6, 126.3, 130.4, 131.8, 148.6, 148.7, 154.5; HRMS calcd for $C_{24}H_{26}NO_3S$ [M+H⁺] 408.1633, found 408.1628.

General procedure for Heck coupling to prepare 14{78-98}

To a 4 dram vial was added the appropriate 3-iodobenzofuran **9** (0.8-1.5 mmol), the styrene **12** (1.2 equiv), 5 mol % Pd(OAc)₂, *n*-Bu₄NI (1.0 equiv), Na₂CO₃ (2.5 equiv) and DMF (1.5 mL). The solution was stirred at room temperature and flushed with argon, and then heated to 80 °C until TLC revealed complete conversion of the starting material. The solution was allowed to cool and diluted with EtOAc. The combined organic layers were dried over MgSO₄, concentrated, and purified by either column chromatography or preparative HPLC to afford the corresponding product.

2,3-Disubstituted furo[b]pyridine 14{81}

The product was obtained as a yellow oil that solidified upon standing to a dark yellow solid (72% yield): ¹H NMR (400 MHz, CDCl₃) δ 3.90 (s, 3H), 3.91 (s, 3H), 3.94 (s, 3H), 6.88 (d, *J* = 8.3 Hz, 1H), 7.07 (d, *J* = 8.9 Hz, 2H), 7.11 (d, *J* = 1.9 Hz, 1H), 7.17-7.25 (m, 3H), 7.74 (dd, *J* = 1.3, 8.2 Hz, 1H), 7.81 (d, *J* = 8.9 Hz, 2H), 8.22 (d, *J* = 16.1 Hz, 1H), 8.63 (dd, *J* = 1.3, 4.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 55.6, 56.1, 56.1, 109.8, 111.4, 113.9, 114.6 (×2), 116.1, 117.7, 119.0, 119.3, 123.3, 129.7 (×2), 131.5, 132.7, 145.7, 147.5, 148.1, 148.9, 149.1, 156.1, 160.7; HRMS calcd for C₂₄H₂₂NO₄ [M+H⁺] 388.1549, found 388.1548.

2,3,5-Trisubstituted benzo[b]furan 14{83}

The product was obtained as a pale yellow oil that solidified upon standing to a yellow solid (69% yield): ¹H NMR (400 MHz, CDCl₃) δ 3.84 (s, 3H), 3.87 (s, 3H), 3.88 (s, 3H), 6.93 (d, *J* = 8.8 Hz, 2H), 6.97-7.05 (m, 4H), 7.16-7.31 (m, 2H), 7.48 (d, *J* = 8.7 Hz, 2H), 7.45-7.56 (m, 2H), 7.59 (d, *J* = 8.9 Hz, 2H), 7.77 (d, *J* = 8.9 Hz, 2H), 8.02 (d, *J* = 1.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 55.59, 55.61, 55.61, 111.4, 113.8, 114.38 (×2), 114.40 (×2), 114.45 (×2), 118.2, 119.1, 123.8, 124.0, 127.6 (×2), 128.8 (×2), 129.5 (×2), 130.5, 130.8, 130.9, 134.7, 136.6, 153.76, 153.78, 159.1, 159.4, 160.2; HRMS calcd for C₃₁H₂₇O₄ [M+H⁺] 463.1909, found 463.1921.

2,3,5-Trisubstituted benzo[b]furan 14{85}

The product was obtained as a pale yellow oil that solidified upon standing to a yellow solid (76% yield): ¹H NMR (400 MHz, CDCl₃) δ 3.84 (s, 3H), 3.88 (s, 3H), 6.01 (s, 2H), 6.89-6.95 (m, 1H), 6.93 (d, *J* = 8.7 Hz, 2H), 7.04 (d, *J* = 8.9 Hz, 2H), 7.07-7.15 (m, 2H), 7.21 (s, 1H), 7.25 (d, *J* = 1.5 Hz, 1H), 7.44-7.55 (m, 4H), 7.77 (d, *J* = 8.9 Hz, 2H), 7.98 (d, *J* = 1.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 55.59, 55.62, 101.3, 108.4, 108.8, 111.4, 113.8, 114.4 (×2), 114.5 (×2), 118.2, 119.2, 121.2, 123.7, 124.1, 127.6 (×2), 128.8, 129.5 (×2), 130.5, 130.8, 136.5, 136.7, 147.0, 148.2, 153.8, 153.9, 159.4, 160.2; HRMS calcd for C₃₁H₂₅O₅[M+H⁺] 477.1702, found 477.1708.

2,3,5-Trisubstituted benzo[*b*]furan 14{92}

The product was obtained as a pale yellow oil that solidified upon standing to a yellow solid (76% yield): ¹H NMR (400 MHz, CDCl₃) δ 2.45 (s, 3H), 3.84 (s, 3H), 6.01 (s, 2H), 6.88-6.95 (m, 3H), 7.07-7.13 (m, 2H), 7.19-7.32 (m, 3H), 7.36-7.42 (t, *J* = 7.6 Hz, 1H), 7.44-7.57 (m, 4H), 7.62 (d, *J* = 7.8 Hz, 1H), 7.66 (s, 1H), 8.00 (d, *J* = 1.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.8, 55.6, 101.4, 108.4, 108.8, 111.5, 114.4 (×2), 114.9, 118.0, 119.4, 121.2, 124.4, 125.4, 127.7 (×2), 128.5, 128.6, 128.8, 129.7, 130.8, 130.9, 131.0, 136.5, 136.7, 138.7, 147.0, 148.2, 153.8, 154.0, 159.5; HRMS calcd for C₃₁H₂₅O₄ [M+H⁺] 461.1753, found 461.1759.

2,3,5-Trisubstituted benzo[*b*]furan 14{95}

The product was obtained as a yellow oil that solidified upon standing to a yellow solid (64% yield): ¹H NMR (400 MHz, CDCl₃) δ 2.32 (s, 3H), 3.19 (t, *J* = 4.7 Hz, 4H), 3.93 (t, *J* = 4.7 Hz, 4H), 2.88 (s, 3H), 6.98-7.04 (m, 1H), 7.02 (d, *J* = 8.9 Hz, 2H), 7.11 (d, *J* = 8.6 Hz, 2H), 7.10 (s, 1H), 7.12 (s, 1H), 7.38 (d, *J*

= 2.3 Hz, 1H), 7.43 (d, J = 8.9 Hz, 1H), 7.54 (d, J = 8.6 Hz, 2H), 7.72 (d, J = 8.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 21.4, 51.8 (×2), 55.6, 67.3 (×2), 108.1, 111.6, 113.4, 114.5 (×2), 115.7, 120.9, 122.1 (×2), 123.6, 127.3 (×2), 128.7, 129.5 (×2), 129.6, 136.0, 148.6, 149.9, 150.1, 154.5, 160.2, 169.8; HRMS calcd for C₂₉H₂₈NO₅ [M+H⁺] 470.1967, found 470.1978.

2,3,5-Trisubstituted benzo[b]furan 14{97}

The product was obtained as a yellow oil that solidified upon standing to a yellow solid (64% yield): ¹H NMR (400 MHz, CDCl₃) δ 2.33 (s, 3H), 3.19 (t, *J* = 4.7 Hz, 4H), 3.93 (t, *J* = 4.7 Hz, 4H), 7.03 (dd, *J* = 2.3, 8.9 Hz, 1H), 7.13 (d, *J* = 8.5 Hz, 2H), 7.16-7.34 (m, 2H), 7.37 (d, *J* = 2.1 Hz, 1H), 7.43 (d, *J* = 8.9 Hz, 1H), 7.44-7.47 (m, 1H), 7.54-7.58 (m, 1H), 7.56 (d, *J* = 8.5 Hz, 2H), 7.70 (d, *J* = 1.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.4, 51.8 (×2), 67.3 (×2), 108.1, 111.7, 114.1, 115.5, 116.1, 120.2, 122.2 (×2), 124.2, 126.6, 126.7, 127.4 (×2), 128.4, 130.2, 132.1, 135.8, 148.7, 149.8, 150.2, 169.8; HRMS calcd for C₂₆H₂₄NO₄S [M+H⁺] 446.1426, found 446.1435.

General procedure for carboalkoxylation to prepare 14{99-121}

A mixture of 3-iodobenzofuran **9** (0.1 mmol), 5 mol % dppf, 3 mol % Pd(OAc)₂, and TEA (2.0 equiv) in MeOH (1.0 mL) and DMF (1.0 mL) was flushed with an atmosphere of carbon monoxide. The solution was stirred at room temperature and then heated to 70 °C until TLC revealed complete conversion of the starting material. The solution was allowed to cool and diluted with EtOAc. The separated organic layer was washed with water and brine; dried over MgSO₄; and concentrated *in vacuo*. The crude product was purified by either column chromatography or preparative HPLC to afford the corresponding product.

2,3,5-Trisubstituted benzo[b]furan 14{106}

The product was obtained as a colorless oil that solidified upon standing to a white solid (71% yield): ¹H NMR (400 MHz, CDCl₃) δ 3.87 (s, 3H), 3.89 (s, 3H), 3.96 (s, 3H), 7.01 (d, *J* = 8.8 Hz, 2H), 7.02 (d, *J* = 9.0 Hz, 2H), 7.49-7.56 (m, 2H), 7.59 (d, *J* = 8.8 Hz, 2H), 8.05 (d, *J* = 9.0 Hz, 2H), 8.17 (d, *J* = 1.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 51.8, 55.60, 55.62, 107.8, 111.2, 113.8 (×2), 114.4 (×2), 120.7, 122.2, 124.5, 127.9, 128.8 (×2), 131.3 (×2), 134.4, 137.5, 153.0, 159.2, 161.4, 161.9, 164.9; HRMS calcd for C₂₄H₂₁O₅ [M+H⁺] 389.1389, found 389.1397.

2,3,5-Trisubstituted benzo[b]furan 14{109}

The product was obtained as a colorless oil that solidified upon standing to a white solid (76% yield): ¹H NMR (400 MHz, CDCl₃) δ 3.89 (s, 3H), 3.96 (s, 3H), 4.00 (s, 3H), 6.85 (d, *J* = 8.6 Hz, 1H), 7.01 (d, *J* = 9.0 Hz, 2H), 7.46 (dd, *J* = 8.5, 1.9 Hz, 1H), 7.55 (d, *J* = 8.5 Hz, 1H), 7.85 (dd, *J* = 8.6, 2.6 Hz, 1H), 8.06 (d, *J* = 9.0 Hz, 2H), 8.14 (d, *J* = 1.4 Hz, 1H), 8.45 (d, *J* = 2.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 51.9, 53.8, 55.6, 107.7, 111.0, 111.5, 113.8 (×2), 120.8, 122.0, 124.2, 128.1, 130.7, 131.4 (×2), 134.4, 138.0, 145.4, 153.2, 161.5, 162.1, 163.6, 164.7; HRMS calcd for C₂₃H₂₀NO₅ [M+H⁺] 390.1341, found 390.1346.

2,3,5-Trisubstituted benzo[b]furan 14{110}

The product was obtained as a pale yellow oil that solidified upon standing to a yellow solid (69% yield): ¹H NMR (400 MHz, CDCl₃) δ 1.04 (t, *J* = 7.4 Hz, 3H), 1.57-1.58 (m, 2H), 3.89 (s, 3H), 4.01 (s, 3H), 4.34 (t, *J* = 6.7 Hz, 2H), 6.85 (d, *J* = 8.6 Hz, 1H), 7.02 (d, *J* = 9.0 Hz, 2H), 7.48 (dd, *J* = 1.9, 8.5 Hz, 1H), 7.57 (d, *J* = 8.5 Hz, 1H), 7.85 (dd, *J* = 2.6, 8.6 Hz, 1H), 8.06 (d, *J* = 9.0 Hz, 2H), 8.19 (d, *J* = 1.4 Hz, 1H), 8.44 (d, *J* = 2.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 10.9, 22.4, 53.8, 55.6, 66.6, 108.0, 111.0, 111.6, 113.8 (×2), 115.5, 120.8, 122.1, 124.2, 128.3, 130.7, 131.4 (×2), 134.3, 138.0, 145.3, 153.3, 161.5, 163.6, 164.4; HRMS calcd for C₂₅H₂₄NO₅ [M+H⁺] 418.1654, found 418.1659.

2,3,5-Trisubstituted benzo[b]furan 14{115}

The product was obtained as a pale yellow oil that solidified upon standing to a yellow solid (80% yield): ¹H NMR (400 MHz, CDCl₃) δ 3.92 (s, 3H), 3.96 (s, 6H), 4.01 (s, 3H), 6.83 (s, 2H), 7.42 (dd, *J* = 5.1, 3.1 Hz, 1H), 7.51-7.57 (m, 2H), 7.92 (dd, *J* = 1.2, 5.1 Hz, 1H), 8.16 (d, *J* = 1.2 Hz, 1H), 8.62 (dd, *J* = 1.2, 3.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 52.0, 56.5 (×2), 61.2, 105.7 (×2), 107.8, 111.2, 115.5, 121.3, 125.1, 125.5, 127.5, 128.1, 129.6, 130.6, 137.9, 138.2, 152.9, 153.6 (×2), 157.5, 164.7; HRMS calcd for C₄₆H₄₄O₁₂NS₂ [2M+NH₄⁺] 866.2305, found 866.2322.

2,3,5-Trisubstituted benzo[b]furan 14{118}

The product was obtained as a colorless oil that solidified upon standing to a white solid (71% yield): ¹H NMR (400 MHz, CDCl₃) δ 2.43 (s, 3H), 4.72 (s, 2H), 6.00 (s, 2H), 6.89 (d, *J* = 7.9 Hz, 1H), 7.07-7.14 (m, 2H), 7.22-7.26 (m, 2H), 7.30 (d, *J* = 8.1 Hz, 1H), 7.38 (t, *J* = 8.1 Hz, 1H), 7.44 (d, *J* = 8.5 Hz, 2H), 7.52-7.62 (m, 2H), 7.88-7.93 (m, 2H), 8.26 (d, *J* = 1.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.7, 65.0, 101.4, 108.3, 108.8, 111.6, 121.0, 121.2, 122.1 (×2), 125.1, 127.1, 127.6, 128.3, 128.4 (×2), 129.4, 130.3, 131.7, 135.9, 137.9, 138.1, 138.9, 147.2, 148.3, 150.0, 153.4, 162.7, 163.2; HRMS calcd for C₃₀H₂₃O₆ [M+H⁺] 479.1495, found 479.1502.

2,3,5-Trisubstituted benzo[b]furan 14{119}

The product was obtained as a colorless oil that solidified upon standing to a pale yellow solid (74% yield): ¹H NMR (400 MHz, CDCl₃) δ 3.89 (s, 3H), 3.90 (s, 3H), 3.92 (s, 3H), 7.00 (d, *J* = 8.9 Hz, 2H), 7.03 (d, *J* = 9.0 Hz, 2H), 7.58 (d, *J* = 8.5 Hz, 1H), 7.79 (dd, *J* = 8.5, 1.8 Hz, 1H), 7.88 (d, *J* = 8.9 Hz, 2H), 8.08 (d, *J* = 9.0 Hz, 2H), 8.45 (d, *J* = 1.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 52.0, 55.6, 55.7, 108.0, 111.0, 113.7 (×2), 113.9 (×2), 121.6, 125.2, 127.26, 127.31, 130.7 (×2), 131.4 (×2), 132.8, 134.7, 155.5, 161.7, 162.5, 163.3, 164.5, 195.5; HRMS calcd for C₂₅H₂₁O₆ [M+H⁺] 417.1338, found 417.1347.

2,3,5-Trisubstituted benzo[b]furan 14{121}

The product was obtained as a yellow oil that solidified upon standing to a yellow solid (54% yield): ¹H NMR (400 MHz, CDCl₃) δ 3.18 (t, *J* = 4.7 Hz, 4H), 3.88 (t, *J* = 4.7 Hz, 4H), 4.74 (s, 2H), 7.05 (dd, *J* = 9.0, 2.5 Hz, 1H), 7.27 (d, *J* = 8.5 Hz, 2H), 7.34-7.40 (m, 1H), 7.43-7.50 (m, 3H), 7.65 (d, *J* = 2.3 Hz, 1H), 7.91 (dd, *J* = 5.2, 1.2 Hz, 1H), 8.63 (dd, *J* = 3.0, 1.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 51.2 (×2), 64.9, 67.2 (×2), 107.0, 109.4, 111.6, 116.5, 122.3 (×2), 125.5, 127.5, 128.2, 128.4 (×2), 130.0, 130.5, 139.1, 148.7, 149.3, 150.0, 158.7, 163.1; HRMS calcd for C₄₈H₄₆N₂O₁₀S₂ [2M+NH₄⁺] 874.2594, found 874.2607.

S27

OMe

S29

OMe

3-Iodobenzofuran 9{7} OMe MeO cho103 ---0.00 -8.10 -7.81 -7.45 -7.45 -7.01 7.01 6.99 (6.99 -3.99 -3.86 8.430 8.424 -7.249 7.013 7.008 6.991 6.835 6.835 8.124 8.119 8.106 8.106 7.838 7.832 7.837 7.817 7.817 69.2 84.2 6<u>7</u> 4 4. 8.5 8.4 8.3 8.2 8.1 8 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7 6.9 6.8 6.7 f1 (ppm) 2.01---0.97-1 1.96-1 1.01 2.91 - I 3.02 12 11.5 8.5 8 7.5 7 4 11 10.5 10 6 5.5 f1 (ppm) 4.5 9.5 9 6.5 5 3.5 2.5 1.5 0.5 ò 3 ż 1 $\begin{array}{c} -130.35\\ \sim 129.18\\ -129.67\\ -124.43\\ -124.43\\ \sim 111.57\\ -122.56\\ \sim 110.03\end{array}$ $\frac{133.89}{-133.39} - 133.39$ cho103 -163.60-160.56<154.09 153.44 137.91 -137.91 77.55 --59.58 --55.56 ~53.76 -160.56 <154.09 <153.44 -114.12 7111.57 7110.93 -119.67 165 140 135 f1 (ppm) 145 130 110 160 155 150 125 120 115 30 180 170 160 150 140 130 120 110 f1 (ppm) 100 90 80 70 60 50 40

3-Iodobenzofuran 9{*18*}

MeO

O

OMe

500

2,3,5-Trisubstituted benzo[*b*]furan 14{62}

O

OMe

512

S78

S82

2,3,5-Trisubstituted benzo[b]furan 14{110}

OMe

2,3,5-Trisubstituted benzo[b]furan 14{118}

2,3,5-Trisubstituted benzo[b]furan 14{121}

S88