

Supporting Information

Sun et al. 10.1073/pnas.0812624106

Fig. S1. Metadynamics simulation starting from Phase II ($P4_2$ /mnm) at 60 GPa and 600 K with a 16 CO₂ molecules supercell. Gaussian parameters are width 20 (kbar·Å³)^{1/2} and height 400 kbar·Å³. The enthalpy evolution shows an intermediate state at steps 41–49, the structure of this state is shown in *d*. After optimization, this half polymeric intermediate structure can be fit to *P*-4 or *P*-42₁m space group. The simple one (*P*-42₁m) is used to calculate the Raman spectra as a representative for the partially polymeric intermediate state between phase II and the final layered phase (*P*-4m2). The intermediate states in experiment with different polymeric concentrations might be more complex than this simple representative structure (*P*-42₁m).

Fig. 52. Enthalpy evolution for metadynamics simulation starting from Phase III (*Cmca*) at 80 GPa and 100 K, with 32 CO₂ molecules. Slightly larger Gaussian parameters [width 7 (kbar·Å³)^{1/2} and height (50 kbar·Å³)] are used in this simulation, resulting in a rapid transition. Right inset is the supercell of the final $P4_{1}2_{1}2$ structure looked along [001] direction.

DN A C