
Poisson-Boltzmann Calculations  
 
 To address the issue of the relative stability of anionic lipids in each leaflet of the 
membrane we have turned to electrostatic calculations. Interactions with the charged 
silica substrate can be described in a mean-field approximation by the Poisson-Boltzmann 
equation.1  

 
where φ, є and ρ are the electrostatic potential, dielectric constant, and fixed charged 
density at position r, respectively. The equation also includes a concentration (c)-
dependent Debye screening length, λ ∼ 3.04/sqrt(c) (in bulk water with dielectric constant 
78.6)2, which describes the exponential decay of electrostatic potentials due to screening 
by salts or electrolytes.  
 We have carried out numerical solutions to Eq. 1, using the complete supported 
membrane geometry illustrated in Fig.2A of the main text. The model consists of a 40 Å  
thick membrane made up of a 25 Å thick hydrocarbon core3 of dielectric constant 2 with 
no Debye screening. This is surrounded by two 7.5 Å thick interfacial regions that 
contain polar head groups and water molecules which can be considered to be at least as 
polarizable as bulk water.4 The membrane is surrounded by a symmetric 1:1 electrolyte, 
with water between the silica and the membrane is assumed to be bulk like. The silica 
substrate is a low dielectric (4.5)2 insulator, (50 Å thick) that is coated with a periodic 
lattice of negative silanol charges 1.4-3.0 Å above the silica-water interface, and placed 
10 or 15 Å below the lower membrane interface. We represent an infinite 2D lattice of 
silanol charges with 49 explicit atoms (7×7) in this periodic box (corresponding to a 
charge density of -1e per 30.25 Å2). 
 The PBEQ module of the CHARMM version 32b2 program5 was used for all 
calculations. The non-linear Poisson-Boltzmann equation6 was solved with an under-
relaxation algorithm.7 The system was placed in a 38.5 ×38.5 ×175Å3 box (grid spacing 
0.25) with periodic boundary conditions imposed. Results were found to be invariant to 
small changes in the lattice size and grid dimensions. Charges on the silica surface have 
been placed at varying distances of 1.4-3.0 Å above a silica slab, with results exhibiting 
almost no sensitivity. Each charge is represented by a single oxygen atom, for simplicity, 
with associated Born radius.8 A water-sized (1.4 Å) reentrant probe was used for the 
assignment of dielectric constants. Average potentials (expressed as kcal/mol for a 
positive test charge) at each interface of the membrane are reported within the range 16-
22 Å, above or below the membrane center, based on head group P atom distributions 
typical of POPC or POPE bilayers.9 Potentials varied by ∼0.1 kcal/mol within this range, 
and by ∼0.03 kcal/mol with lateral position (parallel to the membrane surface) thus 
allowing for straightforward averaging.  
 
 
 
 



Cholera toxin (B5 subunit) binding analysis 

 
The question to be addressed is whether, at equilibrium, the concentrations of CTB and GM1 in 
the leaflet asymmetry experiments are such that the amount of CTB bound will depend on the 
GM1 concentration. What is observed experimentally is a higher concentration of CTB bound to 
the bilayer regions. If concentrations are in a regime where CTB binding depends on receptor 
concentration, then this result would strongly suggest an enrichment of GM1 into the outer 
leaflet of the bilayer region. 
 
For estimates of binding affinities (and cross-linking, i.e., binding of CTB to multiple GM1 
molecules), we will use the results of Lauer et al. (Biochem. 41 (2002) 1742). In order to account 
for uncertainties, a range of affinities for the monovalent binding of FITC-CTB (hereafter, just 
CTB) to GM1 will be used, from 1x107 M-1 to 8x107 M-1. 
 
To perform the analysis, we follow the procedure put forth in Lauer et al., and consider the 
following set of equations (Equations 3 through 8 of Lauer et al.). In their notation, the 
concentration of GM1 is referred to as "receptor", or R, and the concentration of CTB is referred 
to as C. For conservation equations, one has 
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CT =C + f " (B1 + B2 + B3 + B4 + B5 )       (11) 
 
where RT is the total receptor (GM1) concentration expressed in number of molecules per cm2 of 
area, R is the concentration of "free" GM1 molecules/cm2 (i.e., GM1 molecules not bound to a 
CTB), Bi is the number of CTB-GM1 complexes of valency i (i.e., Bi has i GM1 molecules 
bound to a CTB molecule) in number of complexes per cm2 of area, CT is the total CTB 
concentration expressed, for convenience in nM, and f is a factor depending on experimental 
geometry that converts surface concentrations of molecules/cm2 to volume concentrations of nM.  
 
In our case, we can calculate f as follows. The surface-bound molecules are in a concentration of 
#/cm2, we assume the total surface area to be 4 cm2, yielding a total number of molecules, N, to 
be (#/cm2)(4 cm2). Then, N is converted to nM by multiplying by (1 mole/6.023x1023 
molecules), dividing by the volume (assumed to be 3 ml in our case) and converting ml to liters. 
The final conversion factor is f = 2.215x10-12. 
 
As explained in Lauer et al., one may express the values of Bi in terms of C, R and the 
equilibrium constants K1 and Kxl, where K1 is the fundamental association constant and Kxl is the 
surface aggregation or cross-linking constant (Kxl is K2 of Lauer et al.). Thus, B1 = 5K1CR, B2 = 
(4/2)KxlRB1, B3 = (3/3)KxlRB2, B4 = (2/4)KxlRB3, and B5 = (1/5)KxlRB4. These expressions 
account for the degeneracy factors associated with having five binding sites on each CTB 
molecule. Thus, for example, if K1 is defined as the ratio of the fundamental rate constants for 
the binding/release of a single domain of the CTB molecule and a GM1 molecule, then the 
equilibrium relation involving B1 can be written as 
 



! 

K
1

=
B
1

5C " R
         (12) 

 
where the factor of 5 accounts for the presence of five empty binding sites on each CTB 
molecule. Likewise, the equilibrium for the initial cross linking step (conversion of B1 to B2) can 
be described as   
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recognizing the singly bound complex retains four open sites for additional receptor binding, 
while the doubly bound complex has two sites for receptor release. Similar considerations yield 
the remaining relationships. 
 
Continuing to follow Lauer et al. by denoting X = KxlR, one obtains, 
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where B is the total amount of bound CTB (in molecules/cm2), which is the quantity measured 
experimentally. Then, from Equations (10) and (11), 
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and 
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where f is as calculated above. Combining these equations to eliminate C, 
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which is an expression of one unknown (R). An Igor macro was written to calculate the function 
g(R), where 
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and the zeros of g(R) were found numerically (using the "findroots" command of Igor) for fixed 
values of K1, Kxl, CT and RT. This process determines R that solves Equation (17). Once R is 
determined, then C can be found from Equation (16), and with both C and R known, B can be 
found from Equation (14), or alternatively calculated as (CT-C)/f. 
 
In performing these calculations, the values used for K1, Kxl, CT and RT were chosen as follows. 
Values of RT were chosen to correspond to GM1 concentrations ranging from 0.1 mole% to 4 
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Figure 2. Concentration of CTB bound to the surface as a function of 
GM1 concentration in supported membrane for a range of K1 values. 

mole%. For example, for GM1 present at 1 mole%, RT = 1.6x1012 molecules/cm2 (see above, just 
after Equation (3)). Preparation of CTB solution involves using 60 $l of 0.5 mg/ml concentration 
stock solution, and diluting to 3 ml. CTB molecular weight is 58000 g/mole (Lai, J. Biol. Chem. 
252 (1977) 7249). Using these numbers, we obtain 
 

! 

[CTB] =

0.5  mg

0.001 l

" 

# 
$ 

% 

& 
' 

1 g

1000  mg

" 

# 
$ 

% 

& 
' (6(10

)5
 l)

0.003 l

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

1 mole

58000  g

" 

# 
$ 

% 

& 
' =1.7(10

)7
 M  (12) 

 
so C = 170 (nM). Kxl was taken from Lauer et al. to be 1.1x10-12 cm2. A range of K1 values are 
discussed in Lauer et al, so calculations were done for K1 ranging from 0.01 nM-1 to 0.08 nM-1 
(i.e., 1x107 M-1 to 8x107 M-1). 
 
For each set of fixed values, B, the bound CTB concentration in molecules/cm2 was calculated. 
Results are shown in Figure 2.  
 
There are two important results from this set of calculations. First, as apparent in Figure 2, in the 
concentration regimes where these experiments were performed (e.g., GM1 concentrations of 1 

mole%, potentially enriched 
up to 2 mole% in the bilayer 
region), the amount of bound 
CTB varies approximately 
linearly with GM1 
concentration (only slight 
deviation from linearity is 
observed for even the smallest 
value of the fundamental 
affinity constant). Second, 
taking the cross-sectional area 
of a CTB molecule to be 25 
nm2 (corresponding to a circle 
of radius 2.8 nm), a full close-
packed monolayer of CTB 
would correspond to a surface 
coverage of #4x1012 
molecules/cm2, so the 
predicted coverages at 1 
mole% GM1 are about 0.3 of 
a monolayer, while at 2 mole 
% GM1, the coverage is about 
0.6 monolayer (exact values 

depend on the choice of K1). These estimates of surface coverage are quite consistent with the 
observed coverages inferred from elipsometry data, lending further support to the analysis 
provided here. 
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