
 

 

 

Supplementary Information 

 

for 

 

Comprehensive genomic characterization defines  

human glioblastoma genes and core pathways 

 

by 

 

The Cancer Genome Atlas (TCGA) Research Network 



 

Table of Contents 
 
 
 
 

A. Supplementary Figures and Legends  

i. Figures ----------------------------------------------------------- pg  1- 8 

ii. Legends ----------------------------------------------------------- pg  9-10 

B.  Supplementary Table Legends  ----------------------------------------- pg 11-12 

i. Data tables provided as Excel File 

C. Supplementary Methods 

i. Biospecimen Collection and Processing  ------------------------ pg 14-15 

ii. Data Coordinating Center ------------------------------------------ pg 16-23 

iii. Gene Resequencing  ------------------------------------------ pg 24-29 

iv. Copy Number Analysis ------------------------------------------ pg 30-39 

v. Expression Profiling  ------------------------------------------ pg 40-42 

vi. DNA Methylation Profiling ------------------------------------------ pg 43-46 

vii. Pathway Analysis --------------------------------------------------- pg 47-48 

D. References  --------------------------------------------------------------------- pg 49-50 

 



Page 1, Figure S1 



Page 2 - Figure S2



Page 3 - Figure S3



Page 4 - Figure S4 



Page 5 - Figure S5 



Page 6 - Figure S6 



Figure S7.  Signaling Pathway Alterations (DNA Copy Number, n=206)
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Figure S8.  Signaling Pathway Alterations (DNA Copy Number and Mutations, n=91) 
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A. Supplementary Figure Legends 
 

 
Figure S1.  Biospecimen Processing and Quality Control. This figure summarizes the 
workflow for acquisition, quality control, and processing of clinically-annotated biospecimens 
into DNA and RNA for TCGA.  Tumor tissues (and case-matched source of germline DNA) are 
shipped and maintained at -196oC from the tissue source sites (TSSs).  The BCR generates and 
reviews “top” and “bottom” sections from each portion of frozen tumor that is a candidate for 
analyte generation.  These tissue in these sections must be >80% tumor nuclei and <50% 
necrotic, as subjectively determined by a pathologist reviewing a specific number of microscopic 
fields.  Those that fail this test are reentered into a sample rescue pathway that either uses 
additional portions from the original specimen and/or attempts to physically trim the candidate 
portion to meet specifications.  Approximately 1/3 of the cases failed at this step and were 
withdrawn.  Samples that pass pathology QC enter the molecular analyte (MA) production 
pipeline for concomitant DNA and RNA isolation.  MAs are checked for quality, quantity and 
the normal and tumor DNA is confirmed to be from the same individual (see Materials and 
Methods for details); those that pass are distributed to CGCCs and GSCs for characterization.  
About 1/3 of the total cases failed MA QC.  Retrieval of clinical data is initiated once a case has 
passed MA QC.  These data are entered into electronic systems, and formatted and re-coded to 
meet the NCI caBIG™ standards for Common Data Elements and approved terminologies.  
Clinical data (BCR box “Data Standardization”) and molecular profiling/sequencing data (from 
the CGCC and GSC), are submitted to the Data Coordinating Center (DCC) from where they are 
accessible according to the project’s data access policies.  
  
Figure S2.  Flow and distribution of biomolecules from BCR to TCGA centers for analyses.  Flow 
chart showing the TCGA  glioblastoma molecular analyses and their evaluation after provision of 
specimens and clinical data by  the Biospecimen Core Resource (BCR) (see Figure S1).  The data 
obtained from multiple analysis platforms is evaluated by multiple institutions and 
integrated to form a global representation of the genomic and transcriptomic alterations that occur in 
glioblastoma. 
 
Figure S3.  Kaplan-Meier survival plot for five GBM data sets.  Survival data for TCGA 
samples (n=183) were similar to survival data from four GBM data sets: Freije et al (n=46), 
Murat et al (n=63), Nutt et al (n=23), and Sun et al (n=69).  P=0.2 
 
Figure S4. Significant copy-number gains and losses. Significance of copy number alterations, 
including low- and high-level events. Orange and cyan lines represent the significance level in 
data from each of the four genomic copy number platforms. Red and blue lines represent the 
second most significant value among the data sets – values below the significance threshold 
(q=0.25) represent consistent significant events. Red and blue bars on either side represent broad 
gains and losses.  
 
Figure S5.  TP53 missense mutations identified in TCGA glioblastomas.  Virtually all mutations 
(indicated by small boxes) occur in the central DNA binding domain.  Frequent mutations were observed 
at classic p53 “hot spot” codons 175, 248, and 273.    
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Figure S6. EGFR  somatic mutations in 91 glioblastoma tumors.  Mutations cluster in the extracellular 
domain in both genes.  Splice site mutation position is given in number of bases to the closest exon (e#); 
positive = 3' of exon.   
 
Figure S7.  Copy number alterations in glioblastoma.  Frequencies of alterations by copy-number 
alteration (high-level amplifications and homozygous deletions) of genes altered in glioblastoma. 
Amplifications are shown in shades of red and homozygous deletions are shown in shades of blue. Based 
on consensus copy-number data for 206 samples (see Supplementary Methods).  

Figure S8.  Signaling pathway alterations in glioblastoma - based on mutations and  
copy number changes in 91 samples.  Frequencies of alterations by mutation or copy-number 
alteration (high-level amplifications and homozygous deletions) of genes altered in glioblastoma. 
Amplifications and activating mutations are shown in shades of red and homozygous deletions 
and inactivating mutations are shown in shades of blue. Based on 91 samples with sequencing 
and copy-number data.  
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B. Supplementary Table Legends 
 

Table S1. Summary (A) and Individual (B) listing of cases.  S1A:  Demographic summary the 
206 cases generating samples used for this paper.  S1B: Table of individual cases with associated 
demographic and basic clinical data, from which specimens were used to generate molecular 
profiles.  A: TCGA case ID: a project unique reference and root identifier for all derived 
specimens and molecular aliquots.  B: Secondary or Recurrent GBM: “No” indicates tumor 
was primary and previously untreated.  C: Gender.  D: Vital Status: vital status as of Q1, 2008.  
E: Race: using US Census Bureau standard.  F: Pathology Dx: anatomic pathology diagnosis 
(GBM = astrocytoma grade IV).  G: Age at Procedure: in years.  H: Age at Death: in years.  I: 
Sample sequenced: indicates whether or not this sample was characterized by sequencing, as 
well as genomic characterization.  J: Hypermutated: Indicates whether or not this case’s tumor 
DNA was identified as hypermutated by sequencing (see Discussion).  K: Neoadjuvant 
chemotherapy: Indicates, for secondary or recurrent samples, whether or not the patient had 
received chemotherapy (and what agent, if known) prior to surgery yielding sample analyzed in 
this paper.  L: Neoadjuvant radiation therapy: Indicates, for secondary or recurrent samples, 
whether or not the patient had been treated with radiation therapy prior to surgery yielding 
sample analyzed in this paper. 
 
Table S2.  GISTIC significant events and resident genes with copy number-correlated 
expression. 
 
Table S3.  Significant alterations identified by RAE including resident genes with 
correlated expression. 
 
Table S4.  GTS defined regions of informative CNAs. 
 
Table S5.  Phase I genes (n=601) selected for re-sequencing. 
 
Table S6.  Summary of validated somatic mutations identified in 91 samples. 
 
Table S7.  The genomic information for 1,498 DNA methylation reactions used for analyses 
of GBM tumors in a custom Illumina GoldenGate Methylation assay (OMA-003). The 
TargetID and ProbeID values are unique identifiers from Illumina during the initial probe design 
process. Each reaction, since it lies in the promoter/5’ region of a gene, is described with 
accompanying GID, Accession Number, Gene Symbol, Gene ID, chromosomal location, gene 
synonym, gene annotation and gene product description. The genomic coordinates of the probed 
CpG dinucleotide, along with its relative distance to the transcription start site and the oligomer 
DNA sequences are provided. Finally, the CpG island status of the genomic locus containing 
each CpG dinucleotide is measured using a relaxed version of the Takai and Jones CpG Island 
criteria – although all genes were determined as being located in CpG islands, the Illumina probe 
design specifications placed some reactions on the edges of CpG islands or outside of the CpG 
island. An additional 1,505 reactions covering 807 genes was also tested using the commercially 
available Illumina DNA Methylation Cancer Panel I (OMA-002). The genomic information for 
these reactions are available at www.illumina.com. In total, 2,305 genes were assayed for DNA 
methylation on the Illumina GoldenGate platform. 
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Table S8.  Copy number status of key components in p53, RB and RTK signaling pathways 
based on consensus copy number call (Supplementary methods) by 4 data sets on 206 samples. 
 
Table S9.  Copy number and mutation status of key components in p53, RB and RTK pathways 
based on data on 91 samples. 
 
Table S10. Fisher’s exact Odds ratios and p values on 91 samples. Top:  Matrix of odds ratios 
showing relationships among gene alterations included in the pathway analysis. Odds ratios 
range between zero and infinity (INF).  An odds ratio larger than 1 indicates co-occurrence of 
gene alterations beyond what would be expected by chance given the total number of samples 
altered for each of the two genes; an odds ratio less than 1 indicates a tendency toward mutual 
exclusivity of occurrence; an odds ratio of 1 indicates no association.  Bottom:  Matrix of p-
values for positive and negative associations among gene alterations noted above.  Bolded 
numbers are one-sided Fisher’s exact test p-values for the null hypothesis that the true odds ratio 
is one or less (i.e., that an apparently positive association is just chance); non-bolded numbers are 
the same but for the null hypothesis that the true odds ratio is one or greater (i.e., that an 
apparently negative association is just chance).  Orange and yellow highlight p-values <0.01 and 
<0.05, respectively, for positive association (i.e., co-occurrence); dark and light blue highlight p-
values <0.01 and <0.05, respectively for negative association (i.e., mutual exclusivity).   
 
Table S11.   Fisher’s exact Odds ratios and p values on 72 untreated samples. Same as 
above 
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SECTION I.  BIOSPECIMEN COLLECTION AND PROCESSING 
 
GBM biospecimen pathology quality control 
 
Light microscopic evaluation was performed on a hematoxylin and eosin stained section of each 
frozen tumor specimen submitted to the Biospecimen Core Resource for assessment of percent 
tumor nuclei and percent necrosis in addition to other pathology annotations (Supplementary 
Figure S1).  Each patient tumor frozen sample had top and bottom frozen sections evaluated for 
greater than or equal to 80% tumor nuclei and 50% or less necrosis.  If both the top and bottom 
sections passed these quality metrics then the sample proceeded to biomolecule analyte 
extraction (Supplementary Methods Figure 1). 

   
GBM biospecimen molecular analyte extraction  
 
DNA and RNA fractions were isolated from the tissue using an AllPrep DNA/RNA mini kit 
(Qiagen) per the manufacturer’s procedure.  Approximately 120 mg of frozen GBM tissue was 
lysed in a buffer containing guanidine-isothiocyanate to inactivate DNases and RNases and to 
ensure isolation of intact DNA and RNA with a Covaris adaptive focused acoustics tissue 
disruptor.  DNA was selectively recovered from the lysate by chromatography on a spin column. 
The column was washed and the bound DNA eluted in 0.1X TE buffer and then precipitated with 
1/10 volume of 3M sodium acetate (pH 5.5) and 2.5 volumes of absolute ethanol. TRIzol was 
added to the flow-through from the DNA capture column, which contains RNA, and the solution 
is heated at 65°C for 5 minutes. After this step, chloroform was added and the phases were 
separated by high speed centrifugation. A 10% fraction of this total RNA fraction, containing 
micro RNA, was prepared by precipitation with 1/10 volume 3M sodium acetate (pH 5.5) and 
2.5 volumes and absolute ethanol. Ethanol was added to the remaining 90% of the aqueous phase 
to provide appropriate binding conditions for RNA, and the sample was then applied to an 
RNeasy spin column, and treated with DNase I to remove residual contaminating DNA, then 
washed and eluted in 0.1X TE buffer.  Residual salts were removed from the eluted RNA by 
diafiltration with water on a VivaSpin cartridge (VivaScience, VSO122).  
 
Quality Control of Molecular Analytes 
 
Matched normal patient DNA was extracted and purified from the blood or tissue using a 
QIAamp DNA Blood Midi Kit/QIAamp Mini Kit from QIAGEN. DNA and RNA from these 
purifications were quantitated by measuring optical density at A260 nm, A280 and A320 nm 
wavelengths. The purity was assessed by the A260 and A280 absorbance ratio. All DNA samples 
were further qualified by agarose gel electrophoresis to confirm molecular weight distributions.  
Suitability for use in sequencing was tested by PCR using primers that produce amplicons of the 
GAPDH gene having sizes of 435bp, 848 bp and 1960 bp.  Amplification of at least the 2 smaller 
amplicons was verified on gel electrophoresis of the PCR products to meet the Quality Control 
metrics.  To estimate the quality of the RNA, we used the RNA 6000 Nano assay on the Agilent 
Bioanalyzer. This analysis provides 2 estimates of the integrity of the 28S and 18S ribosomal 
RNA, RIN (RNA Integrity Number) and the 28S/18S ratio. Acceptable values are 28S/18S ratio 
≥ 1 or RIN ≥7.  
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Genotyping Analysis 
 
Matched normal (non-neoplastic) patient DNA was provided for each patient case qualified for 
TCGA.  DNA was extracted from whole blood (or its derivatives) using a QIAamp DNA Blood 
Midi Kit (Qiagen).  For a subset of patient cases, disease-free tissue collected from a site distant 
from the tumor was provided, and genomic DNA was extracted using the QIAamp Mini Kit 
(Qiagen).  To permit DNA-fingerprint-based tracking of all of the derivative samples, and to 
confirm the matching between the tumor and control DNA samples from each patient, 
genotyping for highly polymorphic DNA markers was performed with the AmpFlSTR® 
Identifiler™, a short sequence-specific tandem repeat (SSTR) multiplex PCR assay (Promega, 
Madison, WI) which co-amplifies 15 SSTRs and the Amelogenin marker, the latter for gender 
identification. 
 
 

 
 
Supplementary Methods Figure 1.  Flowchart of sample flow through the Biospecimen 
Core Resource. 
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 SECTION II  DATA COORDINATING CENTER 
 
Data Flow and Organization 
 
The Biological Collection Resource (BCR) receives tissues and clinical metadata from Tissue Collection 
Centers (e.g. MD Anderson). The BCR provides each TCGA center with biospecimen analytes (DNA and 
RNA) and their corresponding sample identifiers (IDs). The BCR also transfers the clinical metadata and 
IDs to the TCGA Data Coordinating Center (DCC). Clinical data is represented using the 
BiospecimenCoreResource model. Those IDs persist with the results of each analyte.  
 
Each center transfers their platform’s data to the DCC in a compressed archive containing the 
experimental results of a set of assays conducted on a set of samples. Each archive represents many 
experimental assays from the same platform performed on many samples of the same tumor type. An 
experiment (i.e. complete study) for TCGA is defined as the sum of the results of assays for a particular 
platform from a particular center for all samples of a particular tumor type. That is, an experiment for a 
particular center is composed of all the assays of a particular platform for all the samples of a particular 
tumor type. An experiment may be represented by many archives.  
 
Genomic Sequencing Centers (GSC) submit trace files to the NCBI Trace Archive. GSCs also transfer 
trace-to-ID relationship files and mutations to the DCC. Cancer Genomic Characterization Centers 
(CGCC) transfer experimental results for characterization assays (e.g. gene expression, copy number 
variation, and methylation). The MAGE-TAB specification is used to model and represent array-based 
data.  
 
Transferred archives are distributed by the DCC to the TCGA public FTP site; data that are considered 
restricted are removed. Restricted data are distributed to the TCGA secure FTP (SFTP) site. In addition, 
restricted and unrestricted data are deposited into caBIG compatible repositories. The TCGA Data Portal 
provides user-friendly access to the FTP and SFTP sites. The DCC maintains relationships between all 
the data type and tracks metrics and ultimate locations of all data transferred. 
 
As TCGA includes many centers using different platforms, TCGA organizes data by data type 
and data level. Each platform can potentially produce many kinds of data (data types) depending 
on the platform. For example, SNP-based platforms are the most complex in that the platform 
yields three data types: SNP, Copy Number Results, and Loss of Heterozygosity (LOH). The 
current TCGA platforms and the data types they produce are listed in Supplementary Methods 
Tables 1 through 3. 
 
The concept of TCGA data level segregates raw data from derived data from higher-level 
analysis or interpreted results for each data type, platform, and center. Each center and platform 
may have a slightly different concept of data level depending on their data types, platforms, and 
the algorithms used for analysis. A normalized list of TCGA data levels for each data type is 
found below.   
 
An in depth description of TCGA data enterprise including data classification and organization, 
how to access the data, and a description of how to aggregate TCGA data is presented in TCGA 
Data Primer (http://tcga-data.nci.nih.gov/docs/TCGA_Data_Primer.pdf).   
 

http://tcga-data.nci.nih.gov/docs/TCGA_Data_Primer.pdf
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Data Access 
 
All data is submitted to and processed by the TCGA Data Coordination Center (DCC). The DCC 
distributes data as bulk downloads and provides access to that data via three methods: 

1. Bulk downloads 
a. Open Access (ftp://ftp1.nci.nih.gov/tcga/) 
b. Controlled Access (sftp://caftps.nci.nih.gov) 

2. TCGA Data Portal: Search-by-File and Archive  
(http://tcga-data.nci.nih.gov/tcga/findArchives.htm)   

3. TCGA Data Portal: Data Access Matrix  
(http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm)  

 
Bulk download sites have a particular directory structure that classifies distributed data files. The 
bulk download directory structure is depicted in Supplementary Methods Figure 2.That 
classification allows perusing for and location of particular datasets. Downloading of multiple 
archives or data sets is possible if a FTP/SFTP smart client is used. For example, all the 
characterization archives can be downloaded in one queue by downloading the CGCC directory.  
This classification facilitates programmatic download of data by using a consistent directory 
structure and naming process. 
 
The TCGA Portal Search-by-File and Archive provides a user-friendly and searchable view of 
the FTP and SFTP sites. The Data Access Matrix (DAM), an application within the Portal, 
facilitates the download of specific data sets by cross-selecting a combination of center, 
platform, data type, data level, or batches of samples. The result of those selections is a subset of 
TCGA data files specific to those selections.  
 
The TCGA Pilot Project produces large volumes of genomic information derived from human 
tumor specimens collected from patient populations, and grants access to significant amounts of 
clinical information associated with these specimens. The aggregated data generated is unique to 
each individual and, despite the lack of any direct identifying information within the data, there 
is a risk of individual re-identification by bioinformatic methods and/or third-party databases. 
Because patient privacy protection is paramount to NIH and TCGA, human subjects protection 
and data access policies are implemented to minimize the risk that the privacy of the donors and 
the confidentiality of their data will be compromised. As part of this effort, data generated from 
TCGA are available in two tiers. 
 
The Open-Access Data tier is a publicly accessible tier of data that cannot be aggregated to 
generate a dataset unique to an individual. The open-access data tier does not require user 
certification for data access. The Controlled-Access Data tier is a controlled-access tier with 
clinical data and individually unique information. This tier requires user certification for data 
access.  
 
For more information on these tiers see http://cancergenome.nih.gov/dataportal/data/access/.  
To learn how to gain access to the Controlled-Access data see 
http://cancergenome.nih.gov/dataportal/data/access/closed/. 
 

ftp://ftp1.nci.nih.gov/tcga/
http://tcga-data.nci.nih.gov/tcga/findArchives.htm
http://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm
http://cancergenome.nih.gov/dataportal/data/access/
http://cancergenome.nih.gov/dataportal/data/access/closed/
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Data Freezes 
 
The DCC will provide a list of the archives that comprise each data freeze. That list represents all 
the most current new and revised data up to a certain date. Notification of a data freeze is posted 
to the public TCGA Data listserv (https://list.nih.gov/archives/tcga-data-l.html) and a TCGA 
Portal news item is also available. The Freeze lists are always published in the public FTP site 
under the “other” directory 
(e.g.ftp://ftp1.nci.nih.gov/tcga/other/TCGA_Data_Freeze_20080311.txt). The lists are always 
labeled by the date of the freeze. The contents of the Freeze file are tab-delimited and contain the 
following columns: archive_name, data_added (to the DCC Bulk Distribution site), and url (a 
direct URL to download the corresponding archive). Although data continues to be submitted 
and distributed after a data freeze, the freeze lists should be used as a reference for conducting 
analysis on common data sets. A freeze list may be referenced in publications using the date of 
the freeze (e.g. TCGA data freeze 03/11/2008). 
 
Mapping of Characterization Platforms to a Common Genome 
 
The vendors of TCGA array-based platforms provide platform-specific array design files that 
map probes to the genome or genetic elements. Each vendor may have used a different genomic 
build or have a different method of computing their mapping. It is advantageous for all probes 
from all TCGA platforms to be mapped using the same method and genomic build to facilitate 
integration the results of those platforms. The DCC was tasked to do that mapping. 
 
The purpose of the DCC mapping was to:  

1. Align all sequences targeted by TCGA platforms to the same build of the genome 
2. Use the same methods and assumptions across all platforms for the alignment. 
3. Provide a single format for alignment of all platforms. 
4. Provide an explicit mapping of the relationships between features on arrays and 

composite measures such or genes. 
5. Provide a “reasonable” estimate of the genomic locations of genes targeted by the 

composites described in #4 
 
Reporters targeting genomic DNA were aligned to Genome Build 36.1 using BLAT.  Reporters 
targeting RNA were aligned to a transcript database. The transcript database was aligned to 
Genome Build 36.1 to provide a mapping between transcript coordinates and chromosomal 
coordinates.  The implementation of BLAT and transcript alignment was through the algorithm 
and software implementation SpliceMiner (http://discover.nci.nih.gov/spliceminer/) 51.  If no 
match was found, the reporters were aligned to Genome Build 36.1 as for genomic DNA targets.  
If a reporter aligned to a transcript, then the reporter was not aligned to genome directly. The 
transcript database being used is the SpliceMiner database composed of RefSeq 36.1 and 
GenBank 161 complete coding sequences. For genotyping arrays (e.g. Affymetrix SNP arrays 
and Illumina arrays) the target sequences of both alleles were aligned to the genome. The desired 
scenario is that only one (the common allele) will match build 36.1. In this case, the distinct 
reporters of both alleles will have the same genome coordinates. A useful alias is the dbSNP ID 
of these reporters.  
 

https://list.nih.gov/archives/tcga-data-l.html
ftp://ftp1.nci.nih.gov/tcga/other/TCGA_Data_Freeze_20080311.txt
http://discover.nci.nih.gov/spliceminer/
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Chromosome location are reported using the following syntax: GenomeBuild:Chromosome 
number:ChromosomeStart-ChromosomeEnd:strand (e.g.[36.1:chr3:1234-1890:+]). A comma is 
used to indicate gaps in a match, such as would be founds for reporters spanning exon-exon 
junctions (e.g.[36.1:chr3:1234-1890,2456-5432,9032-12300:+]). 
 
If a reporter does not have a perfect match in either build 36.1 of the genome or the transcript 
database (in the case of expression arrays) the chromosomal coordinates were reported as “NA” 
and the composite as “NOMATCH”.  If multiple perfect matches are found, all will be reported 
separated by commas.  
 
To validate the SpliceMiner software and algorithm, a separate validation procedure was 
executed by members of TCGA cross platform genome alignment committee.To help the 
comparison between SpliceMiner and the validation alignment efforts an auxiliary file with the 
matched transcripts for each RNA reporter was generated. 
 
TCGA array design files contain the following tab-delimited columns in the order specified:  

• X_Block – metacolumn  
• Y_Block – metarow 
• X – x-coordinate on the array  
• Y – y-coordinate on the array 
• Feature_ID – Unique ID (one ID per reporter) 
• Reporter_ID –ID of the sequence being measured  
• Nucleic acid type – reporter is a transcript or genomic DNA 
• Reporter_chr_coords – the reporter’s chromosomal coordinates for all mappings on the 

genome 
• Composite – the composites that the reporter matched (e.g. gene symbol)  
• Composite_chr_coords – the union of all chromosomal coordinates of all sequences 

comprising the target of the composite 
• Aliases – any original information that should be retained (e.g. Affymetrix probe set ID, 

dbSNP ID, vendor reported target) 
 
The resulting TCGA ADFs are located at ftp://ftp1.nci.nih.gov/tcga/other/integration/.  
 
 

ftp://ftp1.nci.nih.gov/tcga/other/integration/


 
 
Supplementary Methods Figure 2.  Download directory structure and URL construction 
Each rectangular object represents a directory of a particular type except “Files,” which represent data 
files and the leaves of the hierarchy. Each level in the hierarchy represents a level in the directory 
structure. Colors are only meant to distinguish a level from its parent and children levels. Objects with 
dashed outlines represent planned directories. Arrowed lines represent the direction further down the 
hierarchy. Large dashed-arrowed lines indicate that directories for each level do exist but they are not 
shown to save space in the diagram. Small dashed-arrowed lines indicate that child directories for each 
level are planned. Wide-horizontal dashed lines indicate the directory level across objects. Blue text in 
objects represents the part of the directory path that should be concatenated onto the Root URL in the case 
of using the HTTP or HTTPS protocol or onto the Access Control URL in the case of using the FTP or 
SFTP protocols. For example, to download the HT_HG-U133A SDRF file listed at the File level, the 
following URLs would be appropriate: http://tcga-
data.nci.nih.gov/tcgafiles/ftp_auth/distro_ftpusers/anonymous/tumor/gbm/cgcc/broad.mit.edu/ht_hg-
u133a/transcriptome/broad.mit.edu_GBM.HT_HG-U133A.1.2.0/broad.mit.edu_GBM.HT_HG-
U133A.1.sdrf.txt or ftp://ftp1.nci.nih.gov/tcga/tumor/gbm/cgcc/broad.mit.edu/ht_hg-
u133a/transcriptome/broad.mit.edu_GBM.HT_HG-U133A.1.2.0/broad.mit.edu_GBM.HT_HG-
U133A.1.sdrf.txt. 
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Supplementary Methods Table 1 - TCGA Platforms and Data Types 

Type Center Platform Data Type (Base-
Specific) 

BCR intgen.org Biospecimen Metadata - Complete Set Clinical-Complete Set 
BCR intgen.org Biospecimen Metadata - Minimal Set Clinical-Minimal Set 
CGCC broad.mit.edu Affymetrix Genome-Wide Human SNP 

Array 6.0 
SNP-Copy Number 
Results 

CGCC broad.mit.edu Affymetrix Genome-Wide Human SNP 
Array 6.0 

SNP-LOH 

CGCC broad.mit.edu Affymetrix Genome-Wide Human SNP 
Array 6.0 

SNP 

CGCC broad.mit.edu Affymetrix HT Human Genome U133 
Array Plate Set 

Expression-Gene 

CGCC hms.harvard.edu Agilent Human Genome CGH 
Microarray 244A 

CGH-Copy Number 
Results 

CGCC jhu-usc.edu Illumina DNA Methylation OMA002 
Cancer Panel I 

DNA Methylation 

CGCC jhu-usc.edu Illumina DNA Methylation OMA003 
Cancer Panel I 

DNA Methylation 

CGCC lbl.gov Affymetrix Human Exon 1.0 ST Array Expression-Exon 
CGCC lbl.gov Affymetrix Human Exon 1.0 ST Array Expression-Gene 
CGCC mskcc.org Agilent Human Genome CGH 

Microarray 244A 
CGH-Copy Number 
Results 

CGCC stanford.edu Illumina 550K Infinium HumanHap550 
SNP Chip 

SNP-Copy Number 
Results 

CGCC stanford.edu Illumina 550K Infinium HumanHap550 
SNP Chip 

SNP-LOH 

CGCC stanford.edu Illumina 550K Infinium HumanHap550 
SNP Chip 

SNP 

CGCC unc.edu Agilent 244K Custom Gene Expression 
G4502A-07-1 

Expression-Gene 

CGCC unc.edu Agilent 244K Custom Gene Expression 
G4502A-07-2 

Expression-Gene 

CGCC unc.edu Agilent 8 x 15K Human miRNA-
specific microarray 

Expression-miRNA 

GSC broad.mit.edu Applied Biosystems Sequence data Mutations 
GSC broad.mit.edu Applied Biosystems Sequence data Trace-Gene-Sample 

Relationship 
GSC genome.wustl.edu Applied Biosystems Sequence data Mutations 
GSC genome.wustl.edu Applied Biosystems Sequence data Trace-Gene-Sample 

Relationship 
GSC hgsc.bcm.edu Applied Biosystems Sequence data Mutations 
GSC hgsc.bcm.edu Applied Biosystems Sequence data Trace-Gene-Sample 

Relationship 
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Supplementary Methods Table 2 – Description TCGA Data Levels pertaining to Data 
Types 

Data Type 
(Base-Specific) Level 1 (Raw) 

Level 2 
(Normalized/Process
ed) 

Level 3 
(Interpreted/Segm
ented) 

Level 4 (Sumary 
Finding/ROI) 

Clinical-
Complete Set 

Clinical data 
for 1 patient NA NA NA 

Clinical-
Minimal Set 

Clinical data 
for 1 patient NA NA NA 

CGH-Copy 
Number 
Results 

Raw signals 
per probe 

Normalized signals 
for copy number 
alterations of 
aggregated regions, 
per probe or probe set 

Copy number 
alterations for 
aggregated/segment
ed regions, per 
sample 

Regions with 
statistically 
significant copy 
number changes 
across samples 

SNP-Copy 
Number 
Results NA 

Copy number 
alterations per probe 
or probe set 

Copy number 
alterations for 
aggregated/segment
ed regions, per 
sample 

Regions with 
statistically 
significant copy 
number changes 
across samples  

SNP-LOH NA 
LOH calls per probe 
set 

Aggregation of 
regions of LOH per 
sample 

Statistically 
significant LOH 
across samples 

SNP 
Raw signals 
per probe  

Normalized signals 
per probe or probe set 
and allele calls  NA 

Statistically 
significant SNPs 
across samples 

DNA 
Methylation 

Raw signals 
per probe  

Normalized signals 
per probe or probe set 

Methylated 
sites/genes per 
sample 

Statistically 
significant 
Methylated 
sites/genes across 
samples 

Expression-
Exon 

Raw signals 
per probe  

Normalized signals 
per probe or probe set 

Expression calls for 
Exons/Variants per 
sample 

Statistically 
significant 
exons/variants 
across samples 

Expression-
Gene 

Raw signals 
per probe  

Normalized signals 
per probe or probe set 

Expression calls for 
Genes per sample 

Statistically 
significant genes 
across samples 

Expression-
miRNA 

Raw signals 
per probe  

Normalized signals 
per probe or probe set 

Expression calls for 
miRNAs per 
sample 

Statistically 
significant miRNAs 
across samples 

Trace-Gene-
Sample 
Relationship 

Trace file; 
Trace ID-
sample 
relationship NA NA NA 

DNA Sequence 
Mutations NA Putative mutations 

Validated somatic 
mutations 

Statistically 
significant 
mutations across 
samples 
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Supplementary Methods Table 3 - Description of TCGA Data Levels 

Level 
Number Level Type Description Example 

1 Raw 

Low-level data for a single 
sample, not normalized across 
samples, and not interpreted for 
the presence or absence of 
specific molecular 
abnormalities.  

Sequence trace file; Affymetrix 
.CEL file 

2 
Normalized/
Processed 

Data for a single sample that 
has been normalized and 
interpreted for the presence or 
absence of specific molecular 
abnormalities.  

Putative mutation call for a 
single sample; 
amplification/deletion/LOH 
signal for a probed locus in a 
sample; expression signal of a 
probe or probe set for a sample 

3 
Segmented/I
nterpreted 

Data for a single sample that 
has been further analyzed to 
aggregate individual probed loci 
into larger composite or 
contiguous regions.  

Validated mutation call for a 
single sample; 
amplification/deletion/LOH 
signal of a region in the genome 
for a sample; expression signal 
of a gene for a sample 

4 

Summary 
Finding 
(ROI) 

A quantified association, across 
classes of samples, among two 
or more specific molecular 
abnormalities, sample 
characteristics, or clinical 
variables.  

A finding that a particular 
genomic region (a “region of 
interest”) is found to be 
amplified in 10% of TCGA 
glioma samples. 
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SECTION III.  GENE RESEQUENCING 
 
We targeted an initial set of 601 genes, comprised of 7932 coding exons (see Supplementary 
Table 5), for the initial phase of re-sequencing. These exons, plus 15 bases of adjacent sequence, 
were divided evenly among three sequencing centers.  The individual samples used for the 
analysis were from batches 1 through 4, supplied as amplified whole genome DNA to the 
sequencing centers by the TCGA Biospecimen Core Resource. The de-identified individual IDs 
along with specimen IDs are provided in Supplementary Table ii. 
 
Amplification primers were designed for all exons at the start of the project.  The primer design 
process included a validation step with control DNA to ensure a high level of success and data 
quality.  Likewise, individual DNA samples were also tested with control primers to ensure 
quality and quantity.  Following PCR and exon re-sequencing using fluorescence-based Sanger 
chemistry on ABI 3730xl automated sequencers, the resulting data were screened for mutations 
through a series of automated and manual steps.  A supplemental round of “confirmation” 
sequencing served to verify putative mutations, all of which were subsequently validated 
utilizing an orthogonal genotyping or sequencing method.  All sequence traces were deposited in 
the NCBI Trace Archive 52 under randomized trace names to prevent de-identification of the 
patients 53. Annotation provided with each trace is sufficient to link the traces for a single gene in 
a single individual, or to a 1 Mb segment, whichever is shorter. Annotation to permit linkage of 
all traces from a single individual is deposited in the TCGA Data Coordination Center (DCC) 
(http://cancergenome.nih.gov/dataportal/).  Putative variants were identified using Polyphred 6.1 
54, Polyscan 3.0 55, SNPdetector 3 56,57, and SNPCompare 58.  SNPs and indels were screened 
against dbSNP for position/allele match. 
 
Putative single nucleotide variants were validated by genotyping on either the Sequenom or 
Illumina Golden Gate platforms, using TaqMan or Biotage assays, and/or by 454-based re-
sequencing. A subset of putative variants was also verified by second-pass sequencing. Verified 
and validated mutations were used for subsequent mutational analysis. 
 
Putative indels were validated by a round of 454-based sequencing.  Since the 3730 and 454 
sequencing technologies utilize different chemistries and detection methods, the 454 provides 
anindependent platform for validating sequence variants. We mapped 454 reads to the human 
reference sequence (hg36) using BLAT with alignments refined by cross_match 59, and 
subsequent analysis identified gap positions, permitting validation of the indel positions initially 
predicted from 3730 data.  The validated indels then were cross-referenced with the best BLAT 
alignments to determine the overall 454 sequence coverage in tumor and matched normal sample 
pairs. Indels detected by 3730-based sequencing were then aligned to their cognate 454 indels, 
by matching indels of the same type, of similar size (within 2 bp), and at a similar chromosomal 
position (within 2 bp).  This step was performed separately for normal and tumor samples.  
When multiple 454-detected indels matched a target, the one with the highest number of 
supporting reads was retained.  We tracked validation status by populating the list of targeted 
indels with the 454 read coverage, detected indels, and the number of indel-supporting reads.  
Validation was achieved when sufficient read coverage for both samples and a pre-determined 
threshold fraction of reads containing the indel were reached. 
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Background mutation rate estimation and significant gene test 
 
Synonymous mutations identified in 601 genes were further evaluated to assess their somatic 
status as described above and were used in combination with codon usage of targeted regions to 
estimate the background mutation rate in GBM. The background mutation rate was then used in 
statistical calculations to identify significantly mutated genes (see below). 

 
Indel annotation 
 
Boundaries of insertion, deletion and complex rearrangements are annotated as follows (see also 
Reporting Mutations, "MAF file format", below) 
 
Insertions: 

o Start Position is the base before the insertion site 
o End Position is the base after the insertion site 
o The reference sequence is reported as - 
o The inserted sequence is reported on the positive genomic strand 
o When multiple alignments are possible the position is reported as the 3' most alignment 

on the annotated gene's strand. 
 
Deletions: 

� Start Position is the first base deleted 
� End Position is the last base deleted 
� The reference sequence is reported as the sequence from the Start Position to the End 

Position on the positive genomic strand 
� The deleted sequence is reported as – 
� When multiple alignments are possible the position is shifted to the 3' most alignment on 

the annotated gene's strand. 
 
Complex Indels and Insertions and Deletions with multiple complex alignments: 

� Start Position is the first base deleted or first base of the repeat 
� End Position is the last base deleted or the last base of the repeat 
� The reference sequence is reported as sequence deleted from the Start Position to End 

Position on the positive genomic strand 
� The inserted sequence is reported as the sequence that replaces the reference sequence on 

the positive genomic strand 
 
Reporting mutations (MAF file, data definitions and formats) 
 
Somatic mutations and germline SNPs are deposited at the DCC in MAF files. The following 
data are reported in a candidate variation file prior to validation: 
 
Somatic mutations: 

� Missense and nonsense 
� Splice site, defined as within 2 bp of the splice junction  
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� Silent mutations  
� Indels that overlap the coding region or splice site of a gene or the targeted region of a 

genetic element of interest.   
 
SNPs and indels: 

� Germline, missense and nonsense (LOH will not be validated) 
� Indels that overlap the coding region or splice site of a gene, or the targeted region of a 

genetic element of interest.   
 
All candidate somatic missense, nonsense, splice site and indels are processed through 
"validation" by an independent (orthogonal) genotyping method as described above. Selected 
silent mutations may be processed through genotyping as well to help determine the background 
mutation rate. Verified and/orvalidated somatic mutations are reported in a separate MAF file 
deposited with the DCC. No germline (SNP or indel) candidates are processed through 
validation. However, if the validation process reveals a given candidate somatic variation event 
to be germline or loss of heterozygosity, those validated data are reported in the validation file. 
 
MAF file format. 
The MAF file has the following columns: 

o Hugo_Symbol -- the HUGO symbol for the gene, e.g. EGFR 
o Entrez_Gene_Id -- the entrez gene id, e.g. 1956 
o GSC Center -- the genome sequencing center reporting the variant: BCM, Broad, 

or WUGSC 
o NCBI_Build -- NCBI build number, currently build 36 
o Chromosome -- chromosome number without prefix, e.g. X 
o Start_position -- mutation start coordinate (1-based coordinate system) 
o End_position -- mutation end coordinate (inclusive, 1-based coordinate system) 
o Strand -- one of  "+" or "-".  
o Variant_Classification -- one of Missense_Mutation, Nonsense_Mutation, Silent, 

Splice_Site_SNP, Frame_Shift_Ins, Frame_Shift_Del, In_Frame_Del, In_Frame_Ins or 
Splice_Site_Indel 

o Variant_Type -- one of SNP, Ins or Del 
o Reference_Allele -- the plus strand reference allele at this position 
o Tumor_Seq_Allele1 -- tumor sequencing (discovery) allele 1 
o Tumor_Seq_Allele2 -- tumor sequencing (discovery) allele 2 
o dbSNP_RS -- dbSNP id, e.g. rs12345 
o dbSNP_Val_Status -- dbSNP validation status, e.g. by_frequency. 
o Tumor_Sample_Barcode -- tumor sample identifier. 
o Matched_Norm_Sample_Barcode -- normal sample identifier. 
o Match_Norm_Seq_Allele1 -- matched normal sequencing allele 1 
o Match_Norm_Seq_Allele2 -- matched normal sequencing allele 2 
o Tumor_Validation_Allele1 -- tumor genotyping (validation) allele 1 
o Tumor_Validation_Allele2 -- tumor genotyping (validation) allele 2 
o Match_Norm_Validation_Allele1 -- matched normal genotyping (validation) allele 1 
o Match_Norm_Validation_Allele2 -- matched normal genotyping (validation) allele 2 
o Verification_Status -- one of Valid, Wildtype, Unknown 
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o Validation_Status -- one of Valid, Wildtype, Unknown. 
o Mutation_Status -- one of Somatic, Germline, LOH, or Unknown 

 
Mutation filtering 
 
The sequencing results from each sequencing center were reported in a .maf file listing the 
details of each candidate mutation.  The .maf files included the sample identifier, genomic 
coordinates (“site”), nucleotide change, and predicted functional consequences (missense, 
nonsense, synonymous, splice_site, etc.) of each candidate mutation, as well as the mutation 
status (germline, LOH, or somatic), and the validation or verification status of the mutation.  The 
first step in analysis of the mutation data was to combine the .maf files from all centers into a 
.mut file containing at most one record for each site-sample pair.  In the process of combining 
the files, care was taken to detect and resolve conflicts between multiple records for the same 
site-sample. 
 
As part of our sequencing pipeline, non-synonymous mutations were subjected to an orthogonal 
validation or re-sequencing (verification) step to decrease the prevalence of false positives.  In 
our analysis we considered only those mutations that were confirmed by validation or 
verification to be actual somatic mutations.  Synonymous (“silent”) mutations were subjected to 
manual review to confirm their status as actual somatic silent mutations.  Lists of non-silent and 
silent somatic mutations can be found at http://tcga-
data.nci.nih.gov/docs/somatic_mutations/tcga_mutations.htm. 
 
We examined the distribution of mutation rates across samples in order to identify hypermutated 
tumors.  We plotted the number of non-silent mutations and silent mutations for untreated and 
treated samples (Fig. 2a-2b). We identified 7 hypermutated samples among the treated samples 
using a standard outlier test. Samples with number of mutations > 75th peercentile + 2*IQR were 
considered outliers. 
 
Background rate estimation 
 
In order to identify genes that were mutated at a higher rate than would be expected from random 
background mutation, it was necessary to develop an estimate of the background mutation rate in 
the set of 72 GBMs carried forward in the sequencing analysis.  To estimate the background 
mutation rate, we analyzed a subset of the filtered mutations that were highly likely to be 
passenger mutations.  We looked at synonymous mutations, which are generally assumed to be 
functionally neutral 60.  In the set of 72 GBMs, there were 98 silent mutations, distributed over a 
total coverage of 75,710,450 sequenced bases.  Dividing these two numbers yielded a silent 
mutation rate of 1.29 ± 0.13 x 10

-6

mutations per total bases. To convert this background silent 
mutation rate to the background non-silent mutation rate (per total bases), it was necessary to 
estimate the expected ratio of silent to non-silent mutations, to correct for the fact that more 
bases are at risk for non-silent mutations than silent.  

We weighted the set of all possible mutations according to the relative mutation rates in three 
different DNA contexts: (1) C’s and G’s in CpG dinucleotides; (2) other C’s and G’s; and (3) 
A’s and T’s.  These three relative mutation rates were determined directly from the data.  The 
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mutations used to compute the observed context-specific relative mutation rates were the set of 
all 98 silent mutations, plus a subset of the non-silent mutations: the 52 non-silent mutations 
that remained after the top 40 most highly mutated genes (based on their total number of 
mutations) were removed from the data set.  These 52 mutations were considered to be 
predominantly passenger mutations, because they were in the least significantly mutated genes.  
They were included in the calculation in order to increase the robustness of the background rate 
estimation.  The context-specific relative rates calculated from this set of 150 mutations were as 
follows:  6.08 ± 0.83 for CpG, 1.20 ± 0.13 for other C+G, and 0.20 ± 0.05 for A+T (all 
normalized to an overall rate of 1.0).  Applying these as weights to the set of all possible 
mutations yielded an expected silent-to-non-silent ratio of 0.350 ± 0.041, the observed rate of 
silent mutations by this ratio yielded our estimate of the non-silent BMR (baseline mutation 
rate) of 3.70 ± 0.57 x 10-6. All data and parameters used for BMR calculation can be found in 
http://tcga-
data.nci.nih.gov/docs/publications/gbm_2008/TCGA_GBM_Level4_Significant_Genes_by_M
utations_DataFreeze2.xls. 

Note that using only the 98 silent mutations yield similar values: 4.60 ± 0.78 for CpG, 1.18 ± 
0.16 for other C+G, and 0.20 ± 0.07 for A+T, expected silent-to-non-silent ratio of 0.342 ± 
0.049 and BMR of 3.78 ± 0.66 x 10-6. 

Identification of significantly mutated genes 
 
We explored two methods of tallying mutations.  The first method simply grouped all mutations 
together.  For each gene we calculated the observed number of mutations and the total bases 
sequenced.  We calculated a p-value for the gene based on these numbers and the BMR 
estimated above, using the binomial distribution.  These p-values were then corrected for 
multiple hypotheses (601 genes) by the Benjamini and Hochberg FDR procedure 61.  Genes with 
an FDR (q) value of 0.1 or less were considered to be significantly mutated.  Choosing this FDR 
cutoff insured that the expected fraction of false positives in our list of significantly mutated 
genes is not more than 10%. 
  
Our second method took into account the DNA context of each mutation, in order to correct for 
the different context-specific mutation rates (for example, background mutation in CpG 
dinucleotides occur at >30-fold higher rate than in As or Ts). We considered four categories of 
mutations: the three categories listed above, plus a category for indels.  The background mutation 
rate for indels was estimated from the indel mutations occurring in the non-top-40 genes (since 
there are no indel silent mutations).  We combined the binomial distributions for the four 
mutation categories into a score for each gene, sg, which was the sum of negative logarithms of 
the binomial distribution for each category 62.  Finally, to account for the multiple possible ways 
of achieving the observed score, we examined each possible permutation of mutations across the 
four categories and summed the probability of every permutation that yielded a score at least as 
high as the score for the observed permutation.  This yielded a p value for the gene.  After FDR 
correction, genes with a q value ≤ 0.1 were considered to be significantly mutated.  Results and 
data used for these analyses can be found in http://tcga-
data.nci.nih.gov/docs/publications/gbm_2008/TCGA_GBM_Level4_Significant_Genes_by_Mut
ations_DataFreeze2.xls. 
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Robustness of significant gene list 
 
We tested how strongly the list of significant genes depended on the estimated BMR by 
repeating the analysis using the upper and lower ends of the 95% confidence interval calculated 
on our estimate for the BMR.  These were 4.82 and 2.58 x 10

-6

, respectively. We also examined 
the effect of changing which analysis method we used (simple or with-categories).  We found 
that the list was extremely robust to these changes, with the same 8 genes being consistently 
identified as significant. We also used the BMR and relative rates as calculated based on the 
silent mutations alone (excluding the 52 non-silent mutations in the non-top 40 genes) and 
found the same 8 genes to be significant. Since there are no silent indel mutations it was unclear 
how to estimate the indel relative background mutation rate without using some non-silent 
mutation. Therefore we used the value from the foregoing analysis, which yielded the same 
results. 

Effect of decreased sample size 
 
We examined the effect of sample size by simulating experiments with a smaller number of 
samples.  We analyzed 1000 random subsets of the 72 samples, in which the subsets contained 
12, 24, or 48 randomly chosen samples.  We tabulated the fraction of trials in which each gene 
was found to be significant in these smaller subsets.  With a subset of 12 samples, only two of 
the 8 genes in Figure 2b (PTEN and TP53) had a greater than 50% chance of being discovered as 
significant.  With 24 samples, only five genes (PTEN, TP53, ERBB2, PIK3CA, and EGFR) did.  
Using 48 samples and the context-based method for assessing significance (the second method 
described above) we were able to discover all of the 8 genes regardless of which of the three 
background mutations rates (low, mid and high) was used. The simpler method, however, 
yielded between 6 and 8 genes depending on the background mutation rate. This shows that the 
robustness of our gene list is due in part to the large sample size. Finally, it is important to note 
that there may be other genes beyond the identified 8 that have a genuine role in the development 
of GBM, but which would require even more samples than the 91 analyzed in order to be 
identified as statistically significant. 
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SECTION  IV.  COPY NUMBER ANALYSES 
 
A. Generation of Level 1 and 2 Copy Number Data 
 
A.1) Agilent 244K Arrays 
 
Harvard Medical School / Dana-Farber Cancer Institute 
 
Derivation of log2 ratios 
Raw data were generated from scanned images using Agilent Feature Extraction Software 
(v9.5.11). The median background signal values of each channel are subtracted from the median 
signal values of the features (probes) of the corresponding channel to obtain the background 
corrected intensity values for each probe for both channels. Background corrected values from 
duplicated probes on an array are then merged by taking the median across the duplicating 
probes. The log2 ratios of background corrected values for the sample channel over the reference 
channel are then calculated.  
 
Normalization  
An in-house R package, aCGHNorm, is used for the normalization of the log2 ratio data. The 
normalization procedure involves the application of an invariant set LOWESS normalization 
algorithm to log2 ratio data. The algorithm assumes, in this case, that the majority of probe log2 
ratios do not change and are independent of the background corrected intensities of the probes. 
To build the LOWESS model, the log2 ratios and the background corrected intensities of the 
sample and reference channels are used and a big window (21 probes) smoothing process is 
applied to log2 ratio after sorting by chromosome position. After mode-centering based on 
median-smoothed log2 ratio, unchanged probes (median-smoothed log2 ratio around zero) are 
then used to build the LOWESS model. The invariant set LOWESS normalization is applied 
iteratively to the log2 ratio data set until the sum of difference of LOWESS input and output log2 
ratio is zero or stabilized. The artifact of the differences in probe GC content on log2 ratios is 
corrected by applying LOWESS using probe GC %, regional GC % (GC % of 20 KB of genome 
sequence containing the probe sequence), and log2 ratio. Data generated by the normalization 
process are then merged with in-house annotation data to form a data set containing probe name, 
chromosomal location, and normalized log2 ratio for each sample. Biological annotations are 
obtained by BLASTing the probe sequences against the genome. 
 
Quality Control 
A number of measurements are used to check for potential quality problem at various stages. i) 
Probes that are flagged out as non-uniform or saturated by Agilent feature extraction software are 
excluded; ii) Probes whose median signal values are lower than that of the background are 
considered faint and are also excluded; iii) The percentages of probes that are flagged during 
feature extraction or faint are calculated and arrays with over 5% of probes flagged out or being 
faint are considered as low quality; iv) The square root of the mean sum squares of variance in 
log2 ratios between consecutive probes arranged along chromosomes are calculated and used as 
another measurement of array quality. An array with a value over 0.30 is considered as low 
quality. 
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The raw data were obtained by the Feature Extraction program (v9.5.3.1) provided by Agilent. 
Although this program does normalize the two channels, this simple normalization misses an 
effect related to the local GC content within the probe region on the genome. These genomic-
based artifacts can cause problems in the downstream analysis so a more complex normalization 
procedure was implemented to remove this effect. In addition, the usual intensity-dependent bias 
also needs to be normalized out. Therefore, a two step approach was used: first, a multi-
dimensional LOWESS fit of log2 ratio to 3 vectors representing genomic GC percentage 
averaged over windows of 200bp, 2kbp, and 50kbp at each probe location;  secondly, an 
intensity-dependent LOWESS fit on a set of invariant points. After this normalization, the log 
ratio (converted to the usual log base 2 convention) is generated for each sample, replicate 
probes are merged and the output is the normalized log ratio along with probe id and genomic 
coordinates (Level 2 data). 
 
The following QC measures are computed on each sample: derivative noise, median background 
intensity in each channel and also the number of segments after segmentation (described below). 
In addition, the probe intensities and distribution of flagged probes are plotted to look for spatial 
artifacts or other potential defects in hybridization. Any samples that fail any of these tests are 
removed from further analysis. For the quantitative measures, a sample is flagged as failed if any 
measure deviates by more than three standard deviations from the mean of samples run through 
the MSKCC microarray facility. 
 
 
A.2) Affymetrix SNP Array 6.0 
 
SNP 6.0 data are processed from raw CEL files to segmented copy–number data using a 
GenePattern pipeline, which runs the following modules: 

SNPFileCreator: this converts raw Affymetrix .CEL files to a single value for each probeset 
representing a SNP allele or a copy number probe. The module first performs brightness 
correction by scaling the probe-level values for each CEL file so that the sample-specific median 
value is 1000. Next, MBEI 63 is used to map probe-level values in each sample to a reference 
sample (chosen as the normal sample which has a total intensity closest to the median total 
intensity in the plate). Next, multiple probes are summarized using median polish across the 
samples in the plate (96 samples). 

CopyNumberInference: this module converts summarized intensities, which are expressed in an 
arbitrary scale, to copy number values by estimating a probeset-specific linear calibration curve 
(background and scale).  SNP probesets and copy-number probesets (CN) are handled separately.  
For CN probesets, the conversion is performed by using prior measurements of intensity in 5 cell 
lines with varying numbers (1 to 5) of X chromosomes and extrapolating to the entire genome 64.  
For SNP probesets, the background and scale are estimated using the allele-specific cluster 
centers (i.e. mean intensities of the A and B probesets for the three possible genotypes; AA, AB, 
and BB) produced by the Birdseed algorithm 65. Birdseed is applied only to normal samples 
within the analyzed plate that pass a quality control (FQC call rate ≥ 86%, Birdseed call rate > 
90%).  
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RemoveCopyNumberOutliers: the Remove_CN_Outliers GP module is used to filter inconsistent 
estimated copy-number values.  A value is considered to be an outlier if it satisfies several outlier 
criteria relative to neighboring values (treating CN probes and SNP probes identically) on the 
same sample, considered separately in the 5’ and 3’ directions: 

Measure the median copy-number of the 5 nearest neighbors in the given direction.  If the 
difference between the median and the value under consideration is greater than 0.3, and the 
difference between their log2 values is greater than log2(6), the value is called an outlier. If the 
value is an outlier with respect to both its left neighbors and its right neighbors, it is replaced 
with the median of the three values centered on itself. 

DivideByNormals: systematic bias in copy-number estimation is removed using 5-Nearest-
Neighbor normalization 66.  For each tumor, the 5 most similar normal samples are identified 
among the entire TCGA normal samples (using Euclidean distance between log2-ratios measured 
on the entire genome except regions of known CNVs and the X and Y chromosomes). Next, the 
average log2-ratio of these normal samples are subtracted, at each position, from the tumor’s 
log2-ratios. 

Quality Control: we remove tumor samples that fail Birdseed quality control.  In addition, 
samples are rejected if either their copy-number noise level (proportional to the median of 
pairwise absolute differences of log2-ratios of adjacent probes) or their number of segments as 
found by the segmentation is an outlier. We call a value an outlier if it falls k*IQRs (inter 
quartile range) above the third quartile. We use k=1 for the noise level and k=2 for number of 
segments. If several samples pass quality control for a single patient, the one with lowest noise is 
selected.  In all, 169 tumors passed quality control for the SNP 6.0 platform. 
 
A.3) Illumina 550K SNP Arrays 
 
Raw data are given in the IDAT files, which are the binary data files produced by the Illumina 
scanner, one for each color channel of each sample, that contain the average intensity data for 
each SNP averaged over >20 beads. These files can be read by the Illumina BeadStudio analysis 
software to produce all the other data files.  All the genotype calls for each sample, as well as a 
cluster file that defines the genotype cluster positions for each SNP, are provided in the DCC 
data portal. The raw intensity values and genotyping quality scores are exported from the 
Illumina BeadStudio software. 
 
The Illumina Beadstudio software is used to generate normalized intensity values for each allele 
of every SNP, the logR (log of total intensity, summed over both alleles) and B allele frequency 
values for each SNP, as well as the differences in logR and B allele frequency between each pair 
of tumor and normal samples. Such pairwise differences are the basis of inferring copy number 
changes. 
 
Additional normalized logR and B allele frequency data files were obtained from our custom 
normalization procedures. We developed these procedures to correct for additional sources of 
noise or bias, such as sample-specific, bead pool-specific, and SNP-specific effects in the 
intensity data that have not been adequately removed by Illumina's genotyping software.  
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Summary tables of CNVs discovered for each sample based on our segmentation software are 
provided at the DCC data portal. 
 
B) Generation of Level 3 and 4 Copy Number Data: Segmentation and  Identification of 
Regions of Interest 
 
B.1) Segmentation 
 
For each data set, segmentation of normalized log2-ratios was performed using the Circular 
Binary Segmentation (CBS) algorithm version 1.12.0 for Affymetrix or version 1.13.3 for 
Agilent data 67,68 with 10,000 permutations, an alpha value of 0.01, and undo splits (undo.sd=1). 
Post segmentation, we applied an additional level of normalization which centers the segment 
values around 0.  This step was performed slightly differently between the centers; either setting 
the mode of the histogram of segment means, weighted by the number of probes per segment, to 
0 or by subtracting the median segment value from all segments. Segmented data are available as 
Level 3 data from the DCC data portal site.  
 
B.2) Genomic Identification of Significant Targets in Cancer (GISTIC) 
 
We applied three variations of the GISTIC algorithm 66 on the selected segmented data for each 
center using the GISTIC GenePattern module (the latter two variations were developed as part of 
this study).  The quality control steps for the Affymetrix SNP 6.0 arrays described above were 
applied to data from all platforms and yielded 4 data sets including 197 Agilent (HMS) samples, 
195 Agilent (MSKCC) samples, 169 SNP6.0 samples and 194 Illumina 550K samples. These 
sets include at least one high quality sample representing each of the 206 characterization 
samples.  
 
The three GISTIC variations are:  
 

(i) Standard GISTIC: which uses a low-level cutoff (determined by estimating the noise 
in each platform) to find significant variation of all types; both broad low-level 
alterations and focal high level alterations.  We used the output of this method to 
identify the broad regions which are significantly altered.  

(ii) Focal GISTIC: uses sample-specific high-level thresholds (one for amplifications and 
one for deletions) in order to focus on focal gains or losses which are beyond the 
levels observed in whole chromosome arms in a given sample. We use this analysis to 
identify significant focal high-level events. 

(iii) Focal GISTIC with arm-peel-off: This variant addresses the issue that some samples 
exhibit “choppy” gains or losses, which may cause GISTIC to identify individual 
significant regions for different parts of (what seems to be) the same chromosomal 
alteration. To avoid these “spurious” peaks we changed GISTIC’s peel-off step to 
remove in each sample all segments in a chromosome arm which has an altered 
segment that covers the identified peak.  
 

Standard GISTIC requires threshold parameters indicating the minimal copy-number variation 
sufficient to contribute to significance calculations.  These parameters—one for amplification 
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and one for deletion--are determined by analyzing a histogram of segment copy-numbers and 
finding the first valleys to the left and right of the central peak at 0, representing the noise level. 
These threshold parameters are found independently for each center. In Focal GISTIC with and 
without arm-peel-off, thresholds are determined independently for each sample by identifying 
the maximum and minimum (for amplification and deletion, respectively) of medians observed 
for each chromosome arm, plus a small buffer (set to be the threshold values used for the 
Standard GISTIC).  These aggressive thresholds result in all variation greater than half a 
chromosome arm being ignored, leaving only the focal high-level events. 
 
All GISTIC runs were performed with cap-values (in log2-space) of -1.5 and 1.5 (0.7 copies and 
5.65 copies) on each sample, i.e. any value above 1.5 was replaced by 1.5 and values below -1.5 
were replaced with -1.5.  These cap values were used to limit problems of hyper-segmentation 
that occur particularly in regions with extreme values due different attenuation curves of adjacent 
probes. 
 
GISTIC reports regions of interest with an associated q-value, which were obtained by multiple 
hypotheses correction (Benjamini-Hochberg False Discovery Rate procedure) and represent an 
upper bound on the expected fraction of false positives in the resulting list. Regions with q-
values below 0.25 are considered significant and are reported.  GISTIC also outputs the genes 
and miRNAs contained within these regions.  
 
To combine GISTIC results from several centers, we merged regions that overlap to any extent. 
We designate merged-regions that were formed by regions from at least two centers as 
‘validated’ (see Table 2). The other regions include regions of interest that were detected only by 
a single center, possibly due to higher coverage in a particular genomic region or due to center-
specific artifacts. As an example, using the SNP6.0 we were able to detect focal deletions in the 
CSMD1 gene which were not observed by the other platforms most likely due to the higher-
resolution of the SNP6.0 platform in that region. 
 
Copy-Number Variants: 
 
Before applying the GISTIC analysis we remove genomic regions which are associated with 
copy-number variations (CNVs). This step is necessary to avoid significant GISTIC peaks which 
are due to copy-number variations that appear in large enough fractions of samples. We 
compiled a list of genomic regions of CNVs by combining several sources. The combined list 
was used in all of the GISTIC runs. The sources for CNV regions are: 
 

1) CNVs found in a SNP6.0 analysis of all HapMap normals 69. 
2) CNVs identified in at least two independent publications listed in the Database of 

Genomic Variants (DGV, http://projects.tcag.ca/variation, version 3): 70-79 
3) CNVs found in TCGA matched normals by an automated search (see B.3, below). 
4) CNVs found in TCGA matched normals by manual investigation of preliminary GISTIC 

regions. 
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Gene-specific calls for genes in regions of interest 
 
For each center, each patient, and each gene in the list of genes found within validated significant 
regions, a “call” was produced indicating the extent of copy-number alteration observed for that 
gene.  Alteration magnitudes were gauged for each sample according to the extreme of alteration 
over the gene’s region, compared to the Standard and Focal (sample-specific) copy-number 
thresholds as follows: 
 

-∞ to Hemizygous Threshold:    Called Homozygous Deletion 
Hemizygous to Standard Deletion Threshold:  Called Hemizygous Deletion 
Standard Deletion to Standard Amplification: Called Neutral 
Standard Amplification to High-level Amplification:  Called Low-level Amplification 
High-level Amplification to ∞:    Called High-level Amplification 

 
From the table of center-specific gene calls, a combined call is determined for each patient and 
each gene.  Using the same approach as for calling a region ‘reliable’, we combined the center-
specific calls by taking the most extreme call which is supported by at least half the centers with 
available data (i.e. two centers if all centers had data). For example, if two centers observe No 
Alteration and two observe Low-level Amplification, the combined call is Low-level 
Amplification (ambiguous cases were not observed for this data set).  There was a high level of 
agreement between centers (>85%) attesting to the high quality of the data and calling method.  
 
 
B.3) RAE 
 
In total, 216 glioblastoma tumors and 84 normal samples processed on the Agilent 244k platform 
at MSKCC were analyzed with RAE 80(RAE is available at 
http://cbio.mskcc.org/downloads/rae). Briefly, the RAE algorithm adapts to the noise 
characteristics of individual tumors producing sample-specific sigmoid-shaped discriminators of 
single-copy gain (A0), amplification (A1), hemizygous loss (D0), and homozygous deletion (D1). 
These are combined across samples in a common set of genomic regions derived from 
segmentation breakpoints of all tumors. A background model of random aberrations is produced 
through permutation of segmental DNA incorporating features of human recombination as a 
proxy for benign genetic turnover. Finally, RAE assesses the statistical significance of genomic 
gains and losses by comparing observed lesions across tumors to these random aberrations. 
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Supplementary Methods Figure 3: Genome-wide copy-number aberrations in GBM 
identified with RAE. The false discovery rate (q-value, left axis) and score (right axis) for 
statistically significant copy-number aberrations (light and dark blue respectively) in genomic 
coordinates (chromosomes indicated at center, centromere in red, acrocentric arms in black). The 

threshold for significance (FDR ≤ 10%) is indicated (horizontal green lines) as are identified 
regions of interest. Both independently significant amplification (A1, red) and homozygous 
deletion (D1, green) are also indicated (see Supplementary Methods text). 

Input to RAE was level-3 individual-sample segmentation produced by the MSKCC CGCC 
pipeline (see section B.1). Each sample was normalized by first deriving the distribution of total 
autosomal segmentation at a width (bandwidth) based on each tumor’s derivative noise, then 
identifying the diploid peak inside the bandwidth of this density distribution and centering the 
position of this peak to log2 of zero. These normalized profiles were then analyzed as previously 
described80. The HapMap reference normalization step, used for single-channel Affymetrix data, 
was excluded as the Agilent platform co-hybridizes a reference normal. A false discovery rate of 
<10% was the threshold for significance and from which regions of interest (ROI) were 
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identified with a two-stage algorithm incorporating the intrinsic error of segments spanning each 
loci of the genome (Supplementary Table 3). The assessment of total genomic loss was 
supplemented with regions of homozygous deletion significant at the same threshold in a model 
that excluded monoallelic losses. This is intended to detect uncommon biallelic events having 
little evidence of hemizygous loss (Supplementary Table 3). 
 
Finally, a repository was created for the purpose of excluding known and presumed germline 
copy-number polymorphism from the GBM analysis. In total, 84 normal TCGA samples from 
the Agilent 244k platform were selected to profile copy-number polymorphism. Samples were 
segmented with CBS (see B.1) and transformed as previously described80. Any locus (segment) 
exceeding A0 (single-copy gain) or D0 (hemizygous loss) of 0.99 was considered altered and 
presumed polymorphic. These events were combined with variants identified by trusted studies 
obtained from the Database of Genomic Variants (DGV, http://projects.tcag.ca/variation, version 
3) 73 (see B.2), and from the analysis of the HapMap collection 69.  Consequently, regions 
identified by RAE from the tumor analysis, but appearing in two or more of these sources and 
having sequence coverage >50% were excluded as presumed polymorphism. 
 
For each isoform of all autosomal genes in RefSeq (hg18), RAE additionally assigns a discrete 
copy-number alteration status in each tumor. These are determined from the values of the 
individual alteration detectors: A0, A1, D0, and D1. One of five classes are assigned to each 
gene/tumor: homozygous deletion (-2), hemizygous loss (-1), copy-neutral (0), single-copy gain 
(1), and multi-copy amplification (2). Formally, the region(s) of the unified breakpoint profile 
(UBP) derived by RAE that span the coding locus of a given isoform are identified. For genes 
spanned by a single region, single-copy gain is assigned to tumors with values of A0>0.9 and 
A1<0.5. Amplification requires the same of A0 and A1≥0.5. A gene is hemizygous for values of 
D0>0.9 and D1<0.9, while homozygous deletion requires that both D0 and D1 exceed 0.9. In the 
event of discontinuous coverage of the coding locus by regions that harbor intragenic 
breakpoints in copy-number segmentation, the region of extreme value in either A0 or D0 
determines the assignment per the aforementioned thresholds. 
 
B.4) Genome Topography Scan (GTS) 
 
The GTS algorithm was run on both SNP and aCGH datasets according to methodology 
previously described 81. Briefly, GTS analyzes a set of copy number profiles to generate scores 
for each genomic position which summarize CNA recurrence, amplitude, and focality across 
samples. Focality is determined by a model of CNA formation which considers the potential 
joining of non-contiguous genomic regions during chromosomal rearrangement.  GTS identifies 
genomic loci which appear to be focally targeted by CNA, even if seen rarely in the dataset. The 
algorithm is implemented in R (GTS R package, available at http://cbio.mskcc.org/brennan). 
 
GTS cross-platform comparison: 139 unique tumor profiles were identified for which SNP data 
passed QC (Broad Institute, Affymetrix platform) and for which matching aCGH datasets were 
available (MSKCC, Agilent platform).  To account for platform differences in signal saturation, 
segment means were normalized between platforms according to a polynomial regression.  GTS 
was run with gene weighting and chromosomal linkage.  Genes were ranked by GTS scores 
derived from each platform, excluding regions of known or suspected copy number variation 
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(CNV).  The 200 genes with top-ranked GTS scores in the aCGH dataset were compared to the 
GTS rankings derived from the SNP dataset. For amplifications, 78% of the top 200 aCGH-
identified genes were ranked within the top 400 SNP-identified genes.  For deletions, the 
comparable overlap was 63%.  The regions identified in common are given in Supplemental 
Table 4.  In addition to the 139 paired samples in the comparative study, GTS was also run 
separately on the full set of 203 aCGH profiles (Agilent, MSKCC).  
 
Enrichment for cancer-relevant genes at loci of focal CNA was assessed by Fisher's Exact test, 
considering the subset of genes from the Cancer Gene Census which did not reside in regions of 
known or suspected CNV. There is significant overrepresentation of cancer-relevant genes in 
these focally altered sets, as assessed by comparison with the Cancer Gene Census list 82, both 
for amplified regions (odds ratio 7.34, p<0.00001) and deletions (odds ratio 3.5, p=0.01). 

 

C.  Loss of Heterozygosity Analysis (LOH)

Only samples with paired normals were used for LOH analysis.  In total, 137 samples from the 
Illumina platform and 100 from the Affymetrix 6.0 platform were used. 

 

Supplementary Methods Figure 4. 
Loss of Heterozygosity Analysis 
The left and the right panel show the 
LOH regions from the on Affymetrix 
and Illumina arrays, respectively. 
 The dark blue shows LOH that 
overlaps with copy number changes.  
The light blue shows the copy-neutral 
LOH, which is most common on 17p, 
and which would impact the p53 
gene. 
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Affymetrix data 

Allele-specific copy numbers and genotypes for normal samples were generated using the 
Birdseed algorithm and Affymetrix 6.0 array pipeline for all SNP probes 64,65.  SNP probes that 
were not heterozygous in a normal sample were discarded from its matched tumor sample.  For 
each remaining SNP locus, each allele was then divided into either max or min channels, 
depending on which allele was greater than the other.  The max and min channels were 
segmented separately using circular binary segmentation (CBS).  The combined list of 
breakpoints from both channels was used to calculate the median copy number of each segment 
for each channel.  Segments less than 10 SNPs in length were removed before further analysis.   

Calls were made for copy neutral and copy loss LOH separately based on the copy number of the 
min and max allele.  Copy neutral LOH was called when the min allele was <0.5 copies and the 
max allele was between 1.5 and 2.3 copies.  Copy loss LOH was called when the min allele was 
less than 0.5 copies and the max allele was less than 1.5 copies.   

 

Illumina data 

The allelic ratio differences between each tumor and its normal control (delta B frequencies) 
were calculated at markers where the normal sample was genotyped as heterozygous.  These 
values were subjected to circular binary segmentation (alpha=0.001, nperm=5000) to identify 
segments of LOH.  The copy number data was then used to create a matrix, where 1 represents 
copy number change (post-segmentation log ratio means > 0.2 or < -0.2) and -1 represents no 
copy number change (means between -0.2 and 0.2).  The LOH data was multiplied by this copy 
number matrix and cutoffs were applied to call LOH.  Copy loss LOH was called when values 
were >0.25 and copy neutral LOH was called when values were < -0.25.  Segments less than 10 
SNPs were removed before further processing. 
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SECTION V.  EXPRESSION PROFILING 
 
A.  Affymetrix Exon 1.0  
 
Sample verification and RNA QC    
Total RNA samples (n = 201) were received from Biospecimen Core Resource (BCR). Samples 
were normalized to approximately 100ng/ul concentration to perform the sample QC.  Total 
RNA concentration, quality and protein contamination were determined by Nanodrop 
measurements.  RNA integrity number (RIN) and 28s/18s ratio were determined by the 
Bioanalyzer (Agilent, Santa Clara, CA).  To evaluate the possible DNA contamination in RNA, 
quantitative RT-PCR was performed using iScript one Step RT-PCR Kit SYBR Green assay, and 
delta CT values were computed against controls to check if the samples exceeded the genomic 
DNA contamination of 10ng/ul.  All the quality values computed at LBNL CGCC were used to 
compare to the quality data provided by BCR.  For each microarray experiment, with each batch 
of GBM samples, we included three universal RNA samples as controls for the experiment.  We 
used Universal Human Reference RNA (Stratagene) Cat# 740000 (Stratagene, La Jolla, CA.), 
Human Universal Reference Total RNA Cat# 636538 (BD Clontech, Palo Alto, CA), and Brain 
total RNA Cat# R1234035-50 (Biochain Institute, Hayward, CA).   
 
Whole transcript sense target labeling assay 
2 µg of total RNA was subjected to ribosomal RNA removal procedure using Ribominus kit by 
Invitrogen Corporation (Carlsbad, CA). Double-stranded cDNA was synthesized from rRNA 
depleted RNA with random hexamers tagged with a T7 promoter sequence (T7-(N)6 primer).  
The Double-stranded cDNA was then used as a template for T7 RNA polymerase producing 
cRNA.  A second cycle of cDNA synthesis was performed using random hexamers to reverse 
transcribe the cRNA from the first cycle to produce single-stranded DNA (using dATP, dTTP, 
dGTP, and dUTP) in the sense orientation. cDNA was fragmented using DNA glycosylase 
(UDG) and apurinic/apyrimidinic endonuclease 1 (APE1).  The fragmented DNA was then 
labeled with terminal deoxynucleotidyl transferase that conjugates biotinylated nucleotides. 5.5 
µg of this biotin–labeled DNA was hybridized overnight with Affymetrix Human Exon1.0 ST 
microarrays and washed and scanned on Affymetrix GeneChip® Scanner 3000 7G scanner with 
an autoloader, according to the instructions from Affymetrix GeneChip Whole-TranscriptSense 
Target–Labeling Assay manual. Each scanned CEL image of the array was checked for any 
significant artifacts. 
 
Data Processing 
RMA was applied in combination with affymetrix.aroma to all 201 CEL files that met final 
quality control. This generated gene centric expression values, using a CDF file based on 
remapping of probes to the human genome 36.1 resulting in expression values for 18,632 genes. 
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B.  Agilent 244K Whole Genome Expression Array 
 
mRNA labeling 
One to 2 ug of total RNA of sample and Stratagene Universal Human Reference were amplified 
and labeled using Agilent’s Low RNA Input Linear Amplification Kit. The total yield of 
amplified RNA (aRNA) and Cy dye incorporation was measured by NanoDrop.  
 
Array Hybridization and Imaging 
Sample and reference (7-10 ug of each) were co-hybridized to a Custom Agilent 244K Gene 
Expression Microarray.  Arrays were scanned on an Agilent Scanner and probe information was 
obtained with Agilent’s Feature Extraction Software. Each scanned image is viewed for visible 
artifacts, and if multiple artifacts are present, the array is rejected. Agilent Feature Extraction 
software creates a QC report for each array that includes: (1) Net Signal Statistics:  Signal range 
distributions for the red and green channels are presented and compared. Samples with large 
differences between the red and green channel for net signal are flagged as samples/arrays to be 
watched. (2) Distribution of Outliers: Samples with the % feature non-uniformity >1% are 
flagged as samples/arrays to be watched. (3) MA plots:  Log of the Processed Signal is plotted 
versus Log of the Ratio (R/G) for each gene to help identify biases in intensity or dye. (4) 
Reproducibility of SpikeIns (an internal hybridization control):  reproducibility of Agilent 
SpikeIns are measured by % coefficient of variation (<15) and SpikeIn linearity with R2 values 
close to 1. If any array fails three of the QC criteria it is rejected.  The 206 samples used in this 
study all passed quality control.  
 
Data Processing 
Data was lowess normalized and the ratio of the Cy5 channel (sample) and Cy3 channel 
(reference) was  log2 transformed to create gene expression values for 18,624 genes. 
 
C.Agilent 8x15K Human microRNA Microarray  
 
miRNA Labeling 
100-400ng of total RNA was labeled by ligation to cyanine 3-pCp molecules using the Agilent 
miRNA Micorarray labeling protocol (Agilent Technologies, Santa Clara, CA) using T4 ligase 
(NEB, Ipswich, MA). 
 
Array Hybridization 
Labeled miRNAs were hybridized to Agilent 8 x 15K Human miRNA-specific microarrays 
overnight. Arrays were scanned on an Agilent Technologies Scanner and probe information was 
obtained with Agilent’s Feature Extraction Software.  Each scanned image is viewed for visible 
artifacts. Agilent’s Feature Extraction output reports four main microRNA-specific quality check 
criteria, including: (1) Additive Error Estimate, measure of the background. Samples with 
additive error between 5-12 counts/pixel are flagged as watched, samples with additive error 
greater than 12 counts/pixel are flagged as failed. (2) Percentage of Feature Population Outliers: 
samples with populations outlier between 7-10% are flagged as watched; samples with 
population outlier greater than 10% are flagged as failed. (3) Median Percent Coefficient of 
Variation (%CV) for replicate probes: measure of reproducibility. Samples with %CV between 
8-15% are flagged as watched; samples with %CV greater than 15% are flagged as failed. (4) 
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75th Percentile of Total Gene Signal. Samples with 75th percentile total gene signal less than 35 
are flagged as watched.  Any sample that failed any of the first three criteria is repeated. All 
samples used in this study passed quality control. 
 
Data Processing 
Data was quantile normalized on the probe level. Signals from probes measuring the same 
microRNA are summed up to generate gene-centric total gene signal, followed by log2 
transformation. Distance Weighted Discrimination (DWD) method is applied to data for batch-
correction. 
 
D. Affymetrix HT-HG-U133A 
 
Sample Labeling 
One µg of total RNA was converted to complementary RNA (cRNA) target using the 
Genechip® HT One-Cycle cDNA synthesis Kit (Affymetrix 900687) and the GeneChip®  HT 
IVT Labeling Kit (Affymetrix 900688).  Total RNA was first reverse transcribed using a T7-
Oligo(dT) Promoter primer in the first strand cDNA synthesis reaction. Following RNAse H-
mediated second strand cDNA synthesis, the double stranded cDNA was purified and served as a 
template for in an in vitro transcription (IVT) reaction. The IVT reaction was carried out in the 
presence of T7 RNA Polymerase and a biotinylated nucleotide analog / ribonucleotide mix for 
cRNA amplification and biotin labeling. The biotinlyated cRNA targets were then cleaned up 
and fragmented. 
 
Array Hybridization 
Samples were analyzed using Affymetrix HT-HG-U133A peg arrays (Affymetrix 900751). The 
hybridization and subsequent washing and staining were performed on the Affymetrix 
GeneChip® Array Station (GCAS) automation platform. 
 
Data Processing 
Of the 205 samples received by the Broad Institute, 204 Profiles of good quality were generated, 
where a very low percentage present indicated that hybridization failed for one sample. RMA (1) 
was applied in combination with affymetrix.aroma (2) in order to generate gene centric 
expression values, using a CDF file based on remapping of probes to the human genome 36.1. 
This resulted in expression values for 12,042 genes. 
 
E.  Creation of a unified Expression Dataset 
 
For all gene expression analyses, a single gene expression data set was created. Each Affymetrix 
expression data sets were log transformed and the mean (or median) value was subtracted. As the 
Agilent platform generates log ratio data, only mean subtraction was applied. The resulting three 
expression data matrices were merged using the median value where three measurements were 
available (199 samples and 11,681 genes). The average value was used where two values were 
available, and the single value was used when a single value was available. Following this 
method, a data set consisting of 206 samples and 19,692 genes was generated. 
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SECTION VI.  DNA METHYLATION PROFILING 
 
Our approach for the TCGA is a two-tiered one which, first, involves pharmacological treatment 
of representative human GBM cell lines with DNA demethylating agents followed by 
transcriptome analysis. In the second tier, candidate genes identified from cell lines are used to 
generate a custom Illumina GoldenGate array with the capacity to monitor DNA methylation at a 
single CpG dinucleotide within 1,498 gene promoters. By including also the Illumina DNA 
Methylation Cancer Panel I platform, which queries methylation of 808 gene promoters, we 
analyzed more than 2,300 loci in the collection of TCGA GBM samples. 
 
A.  Identification of Candidate DNA Hypermethylated Genes  
 
Cell treatment.   
We performed drug treatment of four GBM cell lines (U87, T98 and D54MG; obtained from Dr. 
Greg Riggins, Johns Hopkins Oncology Center) and the human glioblastoma derived 
neurosphere cell line HSR-GBM1 (previously designated 20913; obtained from Dr. Angelo 
Vescovi, StemGen Inc.)83 according to protocols developed for identification of the 
hypermethylome in colorectal cancer cell lines84. Briefly, log phase cells were cultured with 5 
μM 5aza-2’-deoxycytidine (DAC; Sigma) for 96 hours, replacing media and DAC every 24 
hours; or 300 nM Trichostatin A (Sigma) for 18 hours. Mock treatments were performed in 
parallel with PBS or ethanol instead of drugs.   
 
Microarray analysis.   
Total RNA was isolated, quantified, and checked for purity and integrity as previously 
described84. Sample amplification, labeling, and purification were carried out as previously 
described84 using reagents and protocols from Agilent Technologies. Whole transcriptome 
screens were performed using Human 4x44K arrays from Agilent Technologies and the Agilent 
G2565BA scanner84. Mock and DAC samples were co-hybridized on a single array in parallel 
with mock and TSA samples and the complete collection of arrays have been deposited in the 
GEO Database (http://www.ncbi.nlm.nih.gov). 
 
Data analysis and identification of hypermethylome candidate genes.  
Raw data were processed and analyzed using the R statistical computing platform85 and packages 
from Bioconductor bioinformatics software project86. The log ratio of red signal to green signal 
was calculated after LoEss normalization as implemented in the limma package from 
Bioconductor87. Mock/TSA changes (X axis) were plotted against mock/DAC (Y axis), and the 
characteristic spike of gene expression changes including DNA hypermethylated genes was 
visualized. Top tier (TT) probes were identified as having a greater than 2-fold change after 
DAC treatment and between 0.7 and 1.4 fold change after TSA treatment. Probes belonging to 
the next tier (NT) had identical parameters to the TT except that they fell within a zone of DAC 
responsiveness between 1.4 and 2.0 fold. In total, 3,703 genes were identified: 578 from TT, 
1,070 from NT of U87; 573 from TT, 980 from NT U87 dye swap; 945 from TT, 1,225 from NT 
of T98; 272 from TT, 453 from NT of D54MG. It should be noted that the total number of genes 
(3,703) is lower than the sum of all TT and NT genes due to gene overlap. 
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Localizing probes to genes 
The Agilent 4x44k human whole transcriptome array contains 1,639 control probes and 41,000 
unique probes, containing 30,982 putative unique genes. Using the EnsEMBL Perl Application 
Programming Interface we mapped the exact genomic location of the 41,000 unique probes on 
EnsEMBL release 42 (NCBI assembly 36). Approximately 70% of the probes showed identity 
with an overlapping RNA species or transcript. We located another 5% of probes by extending 
the search for transcript matches 2 kb 5’ or 3’ of the probe location. Together, these approaches 
linked 30,854 probes (74%) with a transcript. The 3,703 genes from the GBM hypermethylome 
were mapped to this database, and 2,811 genes were identified.   
 
Identifying CpG Islands 
The 2,811 GBM candidate hypermethylome genes were first searched for a CpG island using the 
CpG island definition implemented in the newcpgreport package of EMBOSS88,89 
(http://emboss.bioinformatics.nl/) with a sliding window of 100 nucleotides, a minimal length of 
200 nucleotides, a minimal GC% of 50% and a minimal observed/expected ratio higher than 
60%. Application of these criteria generated 68% of genes with CpG islands. We further 
extended our search to sequences 300 nucleotides up and downstream of the transcription start 
site (TSS) and genes containing CpG islands identified in both searches were pooled90. Taken 
together, we identified CpG islands in 72% of the candidate hypermethylome genes. 
 
Eliminating promoters with repeat sequences. 
The presence of low complexity CpG-rich sequences within gene promoters may bias the 
identification of CpG island containing genes within the hypermethylome. We used the 
RepeatMasker (http://www.repeatmasker.org) to eliminate gene promoter regions containing 
LINE, SINE, ALU and other repetitive genomic elements. This analysis reduced the number of 
probes associated with a CpG island by 6%.  
 
Selecting Autosomal Genes. 
Non-autosomal genes may undergo allelic changes in expression due to DNA methylation 
dependent X-inactivation, perhaps resulting in spurious methylation values in human tumor 
samples. Thus, only autosomal genes were considered for the GoldenGate custom GBM 
platform. 
 
B.  Generation of a Custom GoldenGate Platform.   
 
All autosomal transcript and probe IDs selected from the TT and NT probe lists were annotated 
as gene IDs that include the Ref Seq ID, NCBI Gene ID, HGNC ID and precise genomic 
coordinates. The Gene IDs for all candidate loci were submitted to Illumina for GoldenGate 
Methylation probe generation. Illumina first provided an in silico probe design for each gene 
using genomic coordinates between -500 and +200 nucleotides relative to the TSS. Oligomer 
sequences with known polymorphisms were removed from selection, since this could result in 
annealing mismatches during analysis of primary tumor tissue samples. 

Each designed reaction is assigned a predictive performance score using a proprietary 
Illumina algorithm. This score is scaled from 0 to 1 and is based on performance experience at 
Illumina with prior designs and considers various oligonucleotide characteristics, such as G:C 
content, CpG density, self-complementarity, cross-hybridization to bisulfite-converted sequences 
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for other regions in the genome, as well as other parameters. We selected one reaction with the 
highest quality score for each gene locus and the reactions were ranked in order of decreasing 
quality score. The top 1,536 probes are retained for submission to Illumina based on quality 
score (a vast majority of which were above 0.8) and probes with the same quality score are 
resolved by transcript ranking. Illumina synthesized An Oligonucleotide Pool for Methylation 
Assays (OMA) specifically for use with TCGA GBM specimens. We refer to this panel as 
OMA-003. 

 In addition to the custom Illumina Goldengate gene panel, we also determined DNA 
methylation levels of 1,505 CpG dinucleotides spanning 808 gene regions on the commercially 
available Illumina DNA Methylation Cancer Panel I. This array is pre-selected to include genes 
previously shown to be methylated in human cancers, as well as candidate tumor suppressor 
genes, oncogenes, genes involved in DNA repair, apoptosis, cell cycle regulation, differentiation, 
and imprinting. We refer to this panel as OMA-002. 
 
Illumina Bead Array Technology to generate methylation data.  
 We processed 213 TCGA GBM samples from 195 patients. Each GBM tumor sample (1 
µg genomic DNA) was converted with bisulfite using the EZ96 DNA Methylation Kit (Zymo 
Research, Orange, CA, cat #D5004) and eluted in an 18 µl volume. We retained 3 µl for use in 
post-bisulfite quality control experiments to determine the completeness and recovery of bisulfite 
conversion in the sample set. The Illumina GoldenGate DNA methylation assays were performed 
on all bisulfite-converted TCGA samples according to manufacturer’s specifications for the 
custom GBM reaction set. A pair of probes are used for each assay, one designated M capturing 
methylated molecules, retains the complement to the unconverted cytosine, while the second, 
designated U complements the converted uracil. Intensities for each probe are an average of 
approximately 30 background subtracted, replicate measurements. The beta value, the calculated 
DNA methylation value for each locus is determined as: M / (U + M). We extracted U and M 
intensities and calculated beta values and detection p-values (the statistic after comparison of the 
intensities for each locus versus a panel of negative controls) for each locus and sample 
according to Illumina specifications. Beta value measurements with accompanying detection p-
values > 0.05 were not significantly different from the panel of negative controls and were re-
labeled as “N/A.” After reducing the custom OMA-003 to practice on TCGA and control 
samples, we determined that 38 reactions performed poorly in more than 50% of TCGA samples, 
so these were masked from all analyses, leaving a total of 1,498 total reactions. For both OMA-
002 and OMA-003 data sets, we also eliminated samples for which < 80% of the data points with 
detection p-value > 0.05 in order to ensure that data from high quality analyzed samples were 
released. 
 
Selecting Cancer-Specific Hypermethylated Genes 

Using Illumina OMA-002 or OMA-003 β-values obtained from the TCGA tumor 
samples, we first defined criteria to reduce the number of probes with high methylation in brain 
samples from non-cancer patients, and showing appropriate values for cell line controls, to 
generate a list of “cancer-specific" hypermethylated genes. Prior to filtration, DNA methylation 
profiles for patients with multiple samples were averaged. When multiple probes were available 
for the same gene, these were not averaged, but left in the dataset, in parallel. Steps of the 
algorithm include: 
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1. β values were scaled for each probe so that β’ = (β - min(β))/((max(β) - min(β)). This 
scaling allows probes with a limited dynamic range of β values but which otherwise 
perform well available for downstream filtration. 

2. Establish criteria, by default β’ L = 0.25 and β’ H = 0.75, to delineate nominally 
unmethylated, partially methylated and fully methylated sample groups for each probe. 

3. The genes must satisfy these criteria: 
(a) unmethylated in negative control samples 
(b) methylated in positive control samples 
(c) unmethylated in all available normal samples 
(d) partially methylated (β’  > 0.25)  in at least 5% of primary tumors 
(e) fully methylated (β’  > 0.75) in at least 2.5% of primary tumors 

 
Because there are so few normal brain and so many GBM tumor samples, we expect that even if 
normals and tumors are equally (un)methylated, any outlying samples with high methylation 
values will tend to be tumors. In general, by requiring a few fully methylated samples, we hope 
to reduce the total number of partially and completely methylated samples required while still 
exercising some control over type I error. Under the assumption that a null correlation coefficient 
taken over N samples is approximately normally distributed with variance equal to 1/N, the 
threshold of -0.3 for the correlation coefficient would roughly correspond to a p-value of 0.005, 
but more importantly, we found this threshold to correspond to promising patterns of methylation 
which may be found in the Level 4 data on the DCC.   
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Supplementary Methods Figure 
5.  Schematic of the Methylation 
Screen. A two-tiered approach to 
identify and screen the GBM 
hypermethylome was developed.  
The first tier involves identification 
of the hypermethylated genes in 
GBM cell lines.  GBM cell lines 
were treated with DAC or TSA, 
and gene expression monitored 
on 4x44K Agilent arrays.   
Mock/TSA changes (X axis) were 
plotted against mock/DAC (Y 
axis), and the characteristic spike 
of gene expression changes 
resulting from demethylation 
indicated by a green triangle.  
After data analysis candidate 
hypermethylated genes were 
filtered as shown and Illumina 
Goldengate probes identified.  A 
custom Illumina Bead Array 
containing 1,498 probes allowing 
methylation analysis of an equal 
number of genes was generated. 
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SECTION VII.  PATHWAY ANALYSIS 
 
Genomic profiles  
 
For the analysis of signaling pathways affected in glioblastoma, we included all validated 
somatic mutations reported in Supplemental Table 6 as well as gene-specific copy-number 
alterations (Section IV). Note that several types of alteration were excluded from the pathway 
analysis reported here: hemizygous deletions, alterations of microRNA genes and epigenetic 
alterations.  
 
Copy number data from four different data acquisition platforms were analyzed using one or 
more of three different computational methods and reported as gene-specific amplification calls 
(gain or high-level amplification) and deletion calls (hemizygous or homozygous deletion). The 
following combinations of computational methods and experimental platforms were used: 

• GISTIC on all four platforms (Affymetrix SNP6, Broad; Agilent, HMS; Agilent, 
MSKCC; Illumina, Stanford) 

• RAE on Agilent, MSKCC 
• GTS on Agilent, HMS 

See Section IV for details on platforms and methods. Consensus calls from the different analyses 
were derived by requiring that a call was supported by at least two independent platforms and 
two independent methods. 
 
Integration of mutation and copy-number data with pathway information 
 
Initial inspection of validated somatic mutations and copy number variation using the Cancer 
Genome Workbench (CGWB, http://cgwb.nci.nih.gov) indicated that the majority of genomic 
alterations affected three well-known signaling pathways:  the TP53 apoptotic pathway; the RB1 
cell cycle arrest pathway; EGFR and other growth-factor receptors and PI-3 kinase / AKT 
signaling.  
 
To further investigate the involvement of these pathways, we gathered detailed pathway 
information from the literature and pathway databases. We based our selection of genes and 
interactions on a pathway diagram published in a review article of alterations in glioblastoma 91, 
and then used pathway data from a number of publicly available databases via the Pathway 
Commons portal (http://www.pathwaycommons.org) to expand and modify the core pathway 
map at different levels of detail. Diagrams of the three individual sub-pathways are used in Fig. 
5, and the more detailed global pathway figure, which shows connections between the sub-
pathways, is used in Supplementary Figures 7 and 8. These pathway maps focus on 
glioblastoma-relevant genes with alterations in one or more samples in this study, i.e., genes or 
gene products without alterations are not shown. 
 
We systematically tallied all mutations and all copy number alterations in the genes in these 
pathways. Using both mutation and copy-number data, alternative alterations of individual genes 
and sub-pathways in different samples emerged. These patterns are shown in a sample-by-
sample fashion for mutations and copy-number alterations in 91 samples in Supplemental Table 
9, and for copy-number alterations in 206 samples in Supplemental Table 8. The overall 
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frequencies of alterations in each gene are shown in Fig. 5 and Supplementary Figures 7 and 8. 
In these figures, high-level amplification events are indicated in shades of red, and homozygous 
deletion events are indicated in shades of blue. Mutations in genes known to be frequently 
deleted were considered as inactivating mutations and also indicated in shades of blue, while 
mutations in genes known to be frequently amplified were considered as activating mutations 
and indicated in shades of red. Saturated red indicates a frequency of activation of 25% or 
higher, and saturated blue indicates a frequency of inactivation of 25% or higher. We note that 
frequent alterations in glioblastoma within the RB1 pathway were previously reported based on 
lower-resolution technology 92.  
 
The more comprehensive pathway figure (Supplementary Figures 7 and 8) was generated using 
the Mondrian software plugin (http://cbio.mskcc.org/mondrian/) in the Cytoscape network 
visualization software (http://cytoscape.org). Detailed data on all of the genetic alterations and 
expression profiles derived in this TCGA study can be viewed using Mondrian in any one or two 
of three dimensions: (1) by sample (2) by gene affected and (3) by data type. Details can be 
viewed either as heatmaps or as color levels in a GBM-specific pathway map, with interactive 
panning through the set of GBM samples. Software access, as well as access to the interactive 
data profiles, is available on the MSKCC Computational Biology Cancer Genomics website 
(http://cbio.mskcc.org/cancergenomics/gbm/). 
 
Statistical Methods 
 
On the basis of a statistical model of random assignment of alterations to genes, the probability 
that a given sample would have at least one aberration in each of the three pathways was 
calculated by identifying for each pathway the number of samples that did or did not have at 
least one aberration and calculating from those numbers the expected number of samples for 
which all three pathways would have at least one aberration. The p-values for mutual exclusivity 
of aberrations within pathways were calculated by comparing the expected (from the background 
model) and actual (as observed) numbers of samples among those with at least one aberration 
that had exactly one aberration.  In the case of the Rb pathway, CDKN2B was omitted from the 
calculation because of its similarity to CDKN2A. 
 
Fisher’s exact odds ratios and one-tailed p-values, shown in Supplemental Tables 10 and 11, 
respectively, were calculated in the open-source R programming environment (R.app GUI 1.23 
(4932), S.Urbanek & S.M.Iacus, R Foundation for Statistical Computing, 2008) using the 
“fisher.test” function. Each colored gene-sample pair in Supplemental Table 9 was coded as a 
“1”; all others were coded as “0” (no alteration).  The resulting frequencies of 1’s and 0’s 
generated a two-by-two table for each gene. Positive and negative associations (conditioned on 
the marginals) were then assessed by Fisher’s exact test.  Interpretations of the odds ratios and 
one-tailed p-values are given in the respective Table legends. 
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