

Structure and mechanism of Cu- and Ni-substituted analogs of metallo- β - lactamase L1

Zhenxin Hu,[‡] Lauren J. Spadafora,[‡] Christine E. Hajdin [‡] Brian Bennett,^{II} and Michael W. Crowder[‡]

[‡]Department of Chemistry and Biochemistry, 160 Hughes Hall, Miami University, Oxford, OH 45056; "National Biomedical EPR Center, Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226-0509

Figure S1. EPR spectra of Cu-L1. (A) difference spectrum generated by subtraction of the spectrum from Cu-L1 recorded at 0.1 mW, 10 K, from that recorded at 2 mW, 10 K. (B) Computer simulation assuming two Cu(II) ions with $g_{\parallel} = 2.284$, $A_{\parallel}(Cu) = 15.5 \times 10^{-3} \text{ cm}^{-1}$, $g_{\perp} = 2.055$, A_{\perp} (Cu) = 1.10 x 10⁻³ cm⁻¹, and a Cu-Cu distance of 5 Å. The contribution of ¹⁴N

superhyperfine was neglected in the simulation. (C) Experimental spectrum of Cu-L1 recorded at 2 mW, 10 K. (D) Expanded view of high-field region.