
Toward Accurate Reconstruction of Functional Protein Networks:

Supporting Information

Nir Yosef et al.

Analyzing the apoptosis data set

The APT protein set was manually assembled and contains 77 proteins known to act as the core

machinery of the apoptotic pathways in Humans. Among those are key regulators of apoptosis

such as different Caspases (Kumar, 2007; Bao & Shi, 2007), the Bcl-2 family of proteins (Youle

& Strasser, 2008), death receptors and their ligands (Locksley et al, 2001), and several caspase

substrates. We consider a subgroup of six caspase substrates as the anchor points of the apoptosis

core machinery. These substrates are directly responsible for different events that lead to the

collapse of the cell such as chromatin condensation, DNA fragmentation, disruption of the cell’s

cytoskeleton etc.

The APT set, the anchor points and the subnetwork models generated by the different methods

are available as Supplemental Material. In the following we examine the biological significance

of the obtained subnetworks from two perspectives: biological case analysis as well as large scale

systematic validation.

Biological case analysis. Caspase3 activation by the extrinsic pathway involves the extracellular

binding of death ligands to different death receptors. Adaptor proteins (such as FADD) are then

recruited to the death receptors, which in turn recruit initiator caspases (Bao & Shi, 2007) such

as caspase8, that lead to the activation of the effector caspases: caspase3 and caspase7 (Kumar,

2007). SI Figures 1a–c present the ways by which the three main death ligands (FASL, TNF and

TRAIL (TNFSF10)) are linked to the APT node in the different models. The global approach

correctly channeled the ligands through FADD (SI Figure 1c). Conversely, the shortest pathways

to the APT node, found individually for each ligand (i.e., the local approach) do not go through

the canonical FADD or caspase8, which seems less plausible (SI Figure 1a). The Charikar-0.25
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algorithm gave an intermediate solution connecting two ligands out of the three through FADD

(SI Figure 1b). Interestingly, this case resembles the adversary example in SI Figure 5. The global

approach seeks the best solution for all three ligands concomitantly, and chooses to connect them

through a single adaptor, whereas the local approach seeks the best solution independently for each

ligand, resulting in less plausible pathways.

Another example is the Bcl-2 family of proteins, one of the key regulators of the apoptotic

machinery. In the models produced by the global approach and the Charikar-0.25 algorithm, the

Bcl-2 family members were grouped together in a single connected component, reflecting their

well-studied biological function during apoptosis (Youle & Strasser, 2008) (light blue nodes in SI

Figures 1f and 1e, respectively). The local approach on the other hand divided these proteins into

six connected components of sizes 1 to 3, scattered al over the network (SI Figure 1d).

Functional coherence based on manual annotation. For a more systematic comparison, we

classified the proteins in the APT set into 14 functional groups (see legend of SI Figure 1). We

then measured the functional coherence of a subnetwork model as the tendency of the different

functional groups to be clustered together (Supporting Methods). As in the gene ontology based

measure (Figure 2), the results in SI Figure 2 show a clear increase in accuracy as we go from the

local to the global extreme. We also experimented with a less refined partition (using 8 groups)

and achieved similar results (data not shown). The partition into the functional groups is available

as Supplemental Material.

Biological case analysis of the TLM system

Comparative analysis

Inspection of specific pathways and proteins within the Steiner tree (global) and the Charikar-α

models shows the superiority of the latter methods, and in particular of the Charikar-0.25. A good

example of these differences is provided by Est1/Est2/Est3, three well-characterized telomeric pro-

teins (Zakian, 1996) that are all included in the telomerase machinery group we assembled. Est

encodes a subunit of telomerase, the nucleoprotein complex in charge of synthesizing telomeric

DNA repeat (Counter et al, 1997). Est1/Est3 are accessory proteins that regulate the recruitment

of telomerase to the telomere (Evans & Lundblad, 1997). Est2 appears unconnected to the rest of

the network in the Steiner tree model, the Charikar-0.5 model and the Charikar-0 model, but is
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connected to to other nodes in the graph in the Charikar-0.25 model. Similarly, the Steiner tree

model has Est1 unconnected, and Est3 only connected to a single protein, Fyv13. In contrast, both

Est1 and Est3 are well connected in all the Charikar-α models. Two additional well-characterized

telomeric proteins, Stn1 and Cdc13 (Grandin et al, 1997) appear as unconnected or sparsely con-

nected in the Steiner tree model, whereas they are hubs connecting telomeres to replicative and

checkpoint functions in the Charikar-α models.

Another manifestation of the superiority of the Charikar-α models is given by the checkpoint

proteins Rad53 and Tel1. These two protein kinases are the yeast orthologs of mammalian Chk2 and

Atm, respectively, and have been shown to play an important role in the response to DNA damage

such as double-strand breaks (Branzei & Foiani, 2006). Surprisingly, it was recently found that

they are also important in preventing attempts by the cells to repair the natural chromosomal ends

as if they were double-strand breaks (Viscardi et al, 2005). Rad53 is connected in the Charikar-

0.25 and 0.5 models to the telomere protein Cdc13, and to the DNA checkpoint proteins Mec1

(the yeast ortholog of mammalian ATR), Dun1, and nucleolin/Nsr1. In contrast, the Steiner

tree model retained only the checkpoint links to Mec1 and Dun1 (the Charikar-0 model shows

only links to Cdc13 and Dun1). In the case of Tel1, the Charikar-0 and 0.25 models link Tel1

to the telomere through the single-stranded DNA binding protein Rfa1 and the Mismatch repair

Msh2/Exo1 nucleases. In contrast, both the Steiner tree model and the Charikar-0.5 model trace

the connection between Tel1 and the telomeres through a long pathway that also requires additional

proteins, such as the MRX complex and the Sgs1 helicase (Steiner tree) or the Rsc transcription

mediator (Charikar-0.5).

Biological insights from the TLM system – the RSC case

The Charikar 0.25 model predicts that mutations in the essential gene RSC8, encoding a subunit

of the RSC chromatin remodeling complex (Cairns et al, 1996), should exhibit long telomere phe-

notypes. Using a constitutively destabilized (DAmP) allele of the gene citepSchuldiner-05, we have

experimentally confirmed this Prediction (SI Figure 3). The Charikar 0.25 model placed Rsc8p

as the major hub connected to Rsc2p, Npl6p and Htl1p, other components of the RSC chromatin

remodeling complex (SI Figure 3) (Wilson et al, 2006). Surprisingly, the model suggests Sin3p

and Sap30p as the upstream proteins connected to Rsc8p. Together with Rpd3, Sin3p and Sap30p

form a histone deacetylase complex involved in silencing at telomeres (Sun & Hampsey, 1999).

Recent studies have implicated RSC, together with additional chromatin remodeling enzymes, in
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promoter-dependent transcription initiation (Carey et al, 2006). Upstream to Sin3p, the Charikar

0.25 model placed Opi1p and Dep1p. These two genes encode transcriptional regulators of phos-

pholipid biosynthetic genes(Lamping et al, 1994; Sreenivas & Carman, 2003). This network suggest

a new telomere length regulation pathway. The Opi1p and Dep1p could affect Sin3 activity (either

directly, or, most likely, through a signal transduction pathway involved phospholipids). The SIN3

histone deacetylase would then cooperate with RSC to control transcription of telomere-length

regulating genes.

Supporting Methods

Large scale performance measures

Predictive score. Measures the ability to recover new unannotated proteins that are relevant to

a system of interest using cross validation. In each iteration we hide the annotation of a subset of the

terminal proteins and measure how well the resulting model managed to recover them. The recovery

success is measured using the Jaccard measure (Yosef et al, 2006) accompanied by a hypergeometric

p-value. For the TLM data set we use 2-fold cross validation, dividing the proteins in two groups

according to their experimental source ((Askree et al, 2004) and (Gatbonton et al, 2006), proteins

that were reported in both are randomly distributed among the groups). For the APT data set we

use 2-fold cross validation based on random partitioning of the proteins and repeat this procedure

100 times. Notably, we repeated this experiment with various cross validation levels ranging from

leaving out a single protein to 20% of the proteins. We obtained qualitatively similar results to

the ones in Figure 2 in all cases except for the leave one out extreme where the global approach

performed better than the local one (data not shown). In both data sets, the p-values from the

different cross validation repeats are combined into a single p-value using Fisher’s method (Fisher,

1948). We report the mean jaccard value of the subnetwork models that had a significant p-values

(p ≤ 0.05).

Functional coherence. We compute for each terminal protein the union of all paths connecting

it to the root node, and call this path-collection a pathway. For each such pathway P we derive

a functional enrichment score based on the gene ontology (GO) annotations (Harris et al, 2004)

of its members (discarding the ends of the pathway). The enrichment of each GO class within

P is computed by a hypergeometric p-value. This p-value is compared to 100 p-values obtained
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by randomly selecting connected components of the same size, yielding an empirical p-value. The

reported functional coherence scores are the fraction of pathways with at least 3 inner nodes that

were significantly coherent (empirical p-value lower than 0.05).

We use an additional measure for the apoptosis models. Specifically, we divide the terminal

proteins into several finely tuned functional groups (SI Figure 1). For each pair of vertices we

calculate the similarity of their neighborhoods using the Jaccard measure as in (Goldberg & Roth,

2003). The distribution of similarity values for pairs within the same functional group is then

compared to the distribution of pairs that span different groups using the Wilcoxon rank-sum test.

The reported functional coherence scores (SI Figure 2) are the mean jaccard values. As before,

we only report significant cases (p ≤ 0.05). Notably the results are qualitatively similar to those

obtained with the gene ontology based measure.

Monochromaticity. The monochromaticity of a pathway P reflects the coherence of the effect of

the TLM proteins it contains on telomere length. It is the larger between the fraction of short-effect

TLM proteins in P and the fraction of long-effect TLM proteins in P . This measure is motivated

by the observation that proteins on the same TLM-related pathway tend to have a similar effect

on the telomere length (Shachar et al, 2008). We report the mean monochromaticity across all

pathways.

Phenotype vs. location (PvL). The PvL measure quantifies the correspondence between the

effect of a protein and its location in the subnetwork. The knockout of TLM genes may have effects

of varying magnitude on telomere length, leading to slight, moderate or large alterations (short

or long) (Askree et al, 2004; Gatbonton et al, 2006). We quantify the correspondence between

the location of a protein in the resulting network model and the magnitude of its phenotype, by

considering the extent to which TLM proteins that occupy internal nodes have a stronger effect

on telomere length than leaf nodes (Shachar et al, 2008). To rule out the putative effect of the

distance of TLM network proteins from the telomere binding proteins, we also compute a partial

correlation index that factors out the distance (Shachar et al, 2008).

Model validation based on new TLM data

We define the success rate of a model with respect to experimental data of both positive and

negative cases (genes that exhibited/ did not exhibit defects in telomere length) as the mean of the
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true positive rate and the true negative rate.

To predict a phenotype (short/long) for non-terminal proteins we define the effect of a path

from a TLM node to the TELOMERE node according to the phenotype of the participating TLM

proteins. The effect can be either long if most proteins have a long effect on telomere length,

short in the opposite case, or undecided if it contains equal numbers of shortening and elongating

proteins. We then classify a given unannotated protein to the long class if all the pathways to

which it belongs are either long or undecided and at least one of them is long. Similarly, we classify

a protein as short if all the pathways in which it is involved are either short or undecided and at

least one of them is short. If none of these conditions hold, we leave this protein as undecided. The

reported accuracy measure is the percentage of correctly predicted phenotypes out of all phenotypes

predicted as either short or long.

The Charikar-α algorithm

For convenience, we describe the algorithm for directed graphs, as an undirected edge can be

replaced by two oppositely directed edges. The algorithm does not operate directly on the input

graph but rather on its transitive closure, namely, it is assumed that between every pair of nodes u

and v there exists an edge (u, v) with a cost equal to the weight of the shortest path between them.

Given such a transitive closure G, a root node r, and a set of terminals X, the algorithm finds a

low cost subgraph connecting the terminals to the root, where the relative importance of the overall

cost and the costs of the specific terminal-root paths is determined by α. We define the density

of a subgraph H as d(H) = C(H)
k(H)α+0.5 where C(H) is the sum of edge weights in H and k(H) is

the number of terminals in H. The algorithm operates in an iterative manner; at each iteration, a

2-level tree (i.e., a tree in which the distance of a leaf from the root is at most 2) with a low density

is identified, and the set of nodes covered by this tree is removed from X. Upon termination, the

algorithm returns the union of all these identified trees. (See Algorithm 1 for pseudocode of the

algorithm.)

Implementation details

We applied the Charikar-α algorithm to the TLM data set with three different α values (0, 0.25, 0.5).

Our theoretical analysis (Table 1) indicates that the best approximation ratio guarantee with re-

spect to the combined goal is attained at α = 0.25. The two other α values lead to different solutions

than those obtained by the extreme approaches and, notably, provide optimal approximation guar-
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antees for different choices of the normalizing factor c (it can be shown that for c = OPTL√
k·OPTG

the

best α is 0, and for c =
√

k·OPTL
OPTG

the best α is 0.5, where k is the number of terminal nodes).

For the local optimization approach we computed the union of all the shortest paths from the

terminals to the root. For the Steiner tree construction (the global approach) we used the mini-

mum spanning tree heuristic (Gilbert & Pollak, 1968) which guarantees a factor 2 approximation

ratio. Notably, most subsequent approximation algorithms for the problem, including the tight-

est approximation algorithm known (Gilbert & Pollak, 2005), rely on the minimum spanning tree

heuristic as a first step (Gropl et al, 2001). Hence, these algorithms are amenable to the worst-case

scenario depicted in SI Figure 5, and do not provide a better tradeoff with the local approach then

the minimum spanning tree heuristic.

In both the shortest paths, Steiner tree and intermediary (Charikar-α) algorithms there might

exist few solutions with the same best score. To avoid an arbitrary choice among equally-good

solutions, we adjusted our implementations to record multiple solutions. This was done by 100

random shuffling of the order by which the algorithms process their input, and taking the union of

all solutions obtained.

Approximation ratios of the Charikar-α algorithm

In the following we denote β = α + 0.5. Let X denote the set of terminals, k denote the number

of terminals, and r denote the root. We assume that the input graph is directed and that between

every pair of nodes u and v there exists an edge (u, v) with a cost Cu,v equal to that of a shortest

path between u and v in the original graph. We further assume, without loss of generality, that all

terminals are at the leaves of any Steiner tree (otherwise, connect the real terminal to a dummy

terminal and add a zero cost edge). For a subtree T , we denote its total cost by C(T ), the number

of terminals it spans by k(T ), and its density by d(T ) = C(T )/[k(T )β].

Let T be a 2-level tree rooted at a node r. T can be decomposed into a set of 2-level trees by

separately considering each of the nodes adjacent to the root. Let v be such an adjacent node.

Denote by Tv the tree rooted in r and containing v and the set of terminals connected to v. Denote

the latter by Xv, and let kv = |Xv|.

Theorem 1. Charikar-α approximates FL to within a factor of O(k
1
2
+α).

Proof. Let T denote the tree returned by the Charikar-α algorithm. For a node v adjacent to r,

let OPT (r, Xv) be the sum of shortest paths from r to Xv. From the construction of T it follows
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that for all t ∈ Xv,
C(Tv)

kβ
v
≤ Cr,t

1β = Cr,t. Thus:

C(Tv) ≤ kβ
v ·mint∈XvCr,t

≤ kβ
v ·

OPT (r, Xv)
kv

≤ kβ−1
v ·OPT (r, Xv)

Let Wv be the sum of weights of shortest paths from the r to Xv in Tv. Using the above bound we

have:

Wv ≤ kv · C(Tv) ≤ kβ
v ·OPT (r, Xv)

Finally, let W and OPTL be the sums of weights of shortest paths from r to X in T and in the

original graph, respectively. Denote by N(r) the set of nodes adjacent to r in T . It follows that

W =
∑

v∈N(r)

Wv

≤
∑

v∈N(r)

kβ
v ·OPT (r, Xv)

≤ kβ ·OPTL = k0.5+α ·OPTL

Theorem 2. Charikar-α approximates FG to within a factor of O(k1−α).

Proof. We prove the theorem by extending the lemmas and theorems given in (Charikar et al, 1999)

to our definition of density. For a given graph, we denote by ST (r, X) the Steiner tree problem

with a root r and a terminal set X.

Definition 1. An f(k) partial approximation procedure for the Steiner tree problem ST (r, X) is

a procedure which constructs a tree T ′ rooted at r and spanning k′ terminals in X such that:

d(T ′) = C(T ′)
k′β ≤ f(k) · C(TOPT )

kβ where TOPT is the optimal solution.

Let Ψ(r, X) denote a partial approximation procedure. This procedure can be applied iteratively

such that in each iteration the terminals which were already linked to the root are removed from

X. Let us denote the iterative procedure as Φ(r, X).

Lemma 3. Given Ψ(r, X) and an f(k) partial approximation procedure for ST (r, X), where f(x)
x

is a decreasing function of x, the algorithm Φ(r, X) gives a k1−β
∫ k
0

f(x)
x dx approximation for
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ST (r, X).

Proof. Let us denote the tree returned by Ψ(r, X) as T1, and the number of terminals in T1 as k1.

We prove the claim by induction on k, the size of the terminal set. The base case k = 1 follows

as C(T1) ≤ f(1) · C(TOPT ) ≤
∫ 1
0

f(x)
x dx (by the decreasing property of f(x)

x ). Suppose the claim is

true for all values less than k. Since d(T1) = C(T1)

kβ
1

≤ f(k) · C(TOPT )
kβ , we have:

c(T1) ≤ kβ
1 · k

1−β · f(k)
k
· C(TOPT )

≤ k1−β · C(TOPT ) ·
∫ k

k−kβ
1

f(x)
x

dx

If k1 = k then the claim clearly follows. Suppose k1 < k, and let X1 be the set of terminals in

T1. Let T2 be the tree returned by the call to Φ(r, X \X1). By the inductive hypothesis, we have

c(T2) ≤ (k − k1)1−β ·
∫ k−k1

0
f(x)

x dx. Taking the union of T1 and T2 we obtain:

c(T1) + c(T2) ≤

k1−β · C(TOPT ) ·
∫ k

k−kβ
1

f(x)
x

dx

+(k − k1)1−β ·
∫ k−k1

0

f(x)
x

dx

≤ k1−β · C(TOPT ) ·
∫ k

0

f(x)
x

dx

Lemma 4. The trees TBEST chosen during the while loop of the Charikar-α algorithm are 2k
1
2

partial approximation for the ST (r, X) problem.

Proof. Let T
(2)
OPT be the optimal 2-level tree that solves ST (r, X) (recall that we are working with

the transitive closure of the graph). Consider an outgoing edge (r, v) in T
(2)
OPT , such that the subtree

Tv (rooted at v) is the minimum density subtree of T
(2)
OPT . Notice that Tv is exactly a 1-level tree.

Let v′ be the child of r with minimal density, namely d(Tv′) = w(r,v)+C(Tv′ )

kβ

v′
is minimum. It is easy

to see that for 0.5 ≤ β ≤ 1 we get d(Tv′) ≤ d(Tv) ≤ d(T (2)
OPT ).

It follows that:

d(TBEST ) = d(Tv′) ≤ d(T (2)
OPT ) =

C(T (2)
OPT )
kβ

A rooted tree in a transitively closed graph can be transformed into an l-level tree defined on the
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same set of nodes, while blowing up the overall cost by no more than O(lk1/l) (Zelikovsky, 1997).

Using this fact we obtain a partial approximation bound of 2k1/2:

d(TBEST ) ≤ 2k1/2 C(TOPT )
kβ

Combining lemmas 3 and 4, we get that the approximation ratio of Charikar-α is no more than

k1−β ·
∫ k

0

2x1/2

x
dx = 4k1.5−β = 4k1−α

which completes the proof of the theorem.

Theorem 5. Charikar-α approximates the combined objective c · FG + FL to within a factor of

O(kmax{1−α, 1
2
+α}).

Proof. Let H be the subgraph returned by the Charikar-α algorithm. Let H∗ be an optimum

solution under the combined objective. Clearly, c·FG(H∗)+FL(H∗) ≥ c·OPTG+OPTL = 2·OPTL.

It follows that the approximation ratio is bounded by R = c·FG(H)+FL(H)
2·OPTL

. Plugging into this ratio

the bounds proved in Theorems 1 and 5 we conclude:

R ≤ c · 4k1−α ·OPTG + k0.5+α ·OPTL

2 ·OPTL

=
(4k1−α ·+k0.5+α) ·OPTL

2 ·OPTL
= O(kmax{1−α,0.5+α})
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Figure Legends

SI Figure 1. APT network models. Top: The FADD example. Bottom: Whole network

views. The nodes are color coded according to their functional groups. The Bcl-2 family of proteins

is colored in light blue. In both panes the results are displayed in the following order (from left to

right): shortest paths, Charikar-0.25, and Steiner tree.

Figure 2. Functional coherence of the different apoptosis models. The Jaccard coefficient

measures the extent to which the manual partition of the APT proteins into groups is reflected by

the model.

SI Figure 3. RSC subunit interactions. Left: the inferred subnetwork. Green frame: sub-

units of the RSC complex; Red frame: histone deacetylase complex; Blue frame: Opi1 and Dep1

transcriptional regulators. Yellow nodes: essential proteins that showed a TLM phenotype in our

new experimental data set. Other nodes are color coded as in Figure 3. Right: Telomere Southern

blot of the essential gene RSC8 from the DAmP Yeast Library. DNA was digested with XhoI and

probed with telomeric sequences and with unique genomic sequences used as markers (Askree et al,

2004). A red line marks the telomere size of the wild-type strain.

SI Figure 4. Protein phosphatase activity plays a central role in determining telomere

length. Nodes are color coded as in Figure 3.

SI Figure 5. The local-global tradeoff. Blue nodes: terminals, orange node: root, gray

nodes: other members of the network. A. A toy example in which the optimal Steiner tree TG

is given by the dashed edges and the optimal shortest-paths solution TL is given by the solid

edges (the edge between tk and r is shared between both solutions). Here, FL(TG) = k(k + 1)/2,

FL(TL) = k + (k − 1)ε. Hence, the approximation ratio attained by TG w.r.t. the local criterion

is Ω(k). In fact, when comparing TG and TL w.r.t. the combined function c · FG + FL we find

that the approximation ratio of the Steiner-tree solution w.r.t. the combined function is Ω(k) as

well. (Moreover, in this example, the minimum spanning tree heuristic for Steiner tree construction

(Gilbert & Pollak, 1968) will output TG. Hence, all approximation algorithms that use this heuristic

as a starting point will follow the same approximation bounds.) B. An example in which the optimal

Steiner tree TG is given by the dashed lines and the optimal shortest-paths solution TL is given
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by the solid lines. Here FG(TL) = k while FG(TG) = 1 + ε and, hence, the approximation ratio

attained by TL w.r.t. the global criterion is Ω(k). By comparing TG and TL w.r.t. the combined

criterion we see that the approximation ratio achieved by the shortest-paths solution is Ω(k).

SI Figure 6. TLM network models. Green nodes: TLM proteins whose mutants have elon-

gated telomeres; blue nodes: TLM proteins whose mutants have short telomeres; beige nodes -

TLM protein from the literature whose effect (short or long) on telomere length is not readily

available; red nodes: protein products of essential genes (not on the TLM list); grey nodes: protein

products of non essential genes and not on the TLM list; purple: the TELOMERE anchor node.

The paths from the TLM proteins to the telomere in the Steiner tree model tend to be very long

while in the Charikar-0.25 and shortest paths the networks are centered around the telomere and

the paths are substantially shorter.

SI Figure 7. Performance on the apoptosis data using different length penalties.

Presented measures include functional coherence (fraction of functionally coherent pathways) and

the predictive score. Length penalty values were determined according to the weight of an edge at

the 10th percentile and at the 50th percentile.

SI Algorithm 1. Pseudocode of the Charikar-α algorithm. The procedure DT (v, k′)

returns a lowest-density 1-level tree in the transitive closure G rooted at v and containing k′

terminals. The density of a tree T is d(T ) = C(T )/[k(T )α+0.5] where C(T ) is the sum of edge

weights in T , and k(T ) is the number of terminals it contains. We denote by V (T ) the vertex set

of T .
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Algorithm 1
1: procedure Charikar-α(G, r, X, α)
2: If not all terminals in X are reachable from r then return ∅
3: T ← ∅
4: k ← |X|
5: while k > 0 do
6: TBEST ← ∅
7: dBEST ←∞
8: for each v ∈ V and each k′, 1 ≤ k′ ≤ k do
9: T ′ ← DT (v, k′) ∪ {(r, v)}

10: If d(T ′) < dBEST then
11: TBEST ← T ′, dBEST ← d(T ′)
12: end for
13: T ← T ∪ TBEST

14: k ← k − |X ∩ V (TBEST )|
15: X ← X \ V (TBEST )
16: end while
17: return T
18: end procedure

Tables

Table 1: Empirical approximation ratios of the different approaches on the TLM data.

Method FG FL c · FG + FL

Shortest paths ≤ 2.24 1.00 ≤ 1.62

Charikar-0 ≤ 2.22 1.01 ≤ 1.61

Charikar-0.25 ≤ 2.21 1.02 ≤ 1.61

Charikar-0.5 ≤ 2.22 1.06 ≤ 1.63

Steiner-tree ≤ 2.00 2.75 ≤ 2.37

Optimal value for FG is bounded from below by half the score of the Steiner tree approximation

algorithm (denoted OPTG). The optimal value of FL is the score of the shortest paths construction

(denoted OPTL). The optimal value for FL + c · FG is bounded from below by 2 · OPTL. The

normalization factor c is bounded from above by OPTL
0.5·OPTG

. Considering the global optimization

function FG, the Charikar-α variants perform quite similarly to each other, and outperform the

shortest paths construction. On the other hand, lower values of α yield a better approximation of

the local measure FL. In the combined objective the Steiner tree solution performs significantly

worse than the rest of the algorithms.
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Table 2: Empirical approximation ratios of the different approaches on the apoptosis data.

Method FG FL c · FG + FL

Shortest paths ≤ 2.42 1 ≤ 1.71

Charikar-0 ≤ 2.54 1.01 ≤ 1.77

Charikar-0.25 ≤ 2.26 1.03 ≤ 1.65

Charikar-0.5 ≤ 2.57 1.09 ≤ 1.83

Steiner-tree ≤ 2.00 1.43 ≤ 1.71

As in the TLM case, the best approximation for the combined objective is achieved by the Charikar-

0.25 algorithm.
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