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Linkage disequilibrium in QLE

The limit of rapid recombination can be understood in perturbation theory in
σ � r pioneered by Kimura1 and further developed by a number of authors2;3.
Kimura showed (for L = 2) that in this limit, alleles at different loci develop
correlations proportional to the epistatic interaction between these loci and the
dynamics of the joint probability distribution function comes to a quasi-steady
state which he termed quasi linkage equilibrium (QLE). In the QLE state linkage
disequilibrium tends to a fixpoint where the rate of build-up of correlations due
to selection equals the rate of their break-up by recombination. In the σ � r
limit the QLE state evolves slowly, following the dynamics of L individual allele
frequencies νi. In QLE, the linkage disequilibrium between two loci i and j is
given by

Dij = 〈sisj〉 − 〈si〉 〈sj〉 ≈
fijνi(1− νi)νj(1− νj)

ρ|j − i|
, (1)

where ρ is the recombination rate per locus and |j − i| is the distance between
the two loci. Since the allele frequencies are changing over time, it is more
convenient to study the quantity

ψij =
Dij

νi(1− νi)νj(1− νj)
≈ fij

ρ|j − i|
. (2)

Since we are not interested in the disequilibrium between a particular pair of
loci but in general properties of the population, we consider the sum of all ψ2

ij .
For fij drawn from a Gaussian distribution with variance 2σ2

L(L−1) , we have

∑
ij

ψ2
ij ≈

2σ2

ρ2L(L− 1)

∑
i<j

1
(j − i)2

=
2σ2

ρ2L(L− 1)

L∑
k=1

L− k

k2
≈ π2σ2

3ρ2L
(3)
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For a circular chromosome, where each recombination event results in two
crossovers, the result is π2σ2

12ρ2L .
In addition to the deterministic contribution to linkage disequilibrium, there

is also a contribution due to sampling fluctuations, i.e. random drift. The
contribution of drift to ψ2

ij is proportional to (Nρ|j − i|)−1 for linked loci and
obligate mating or proportional to (Nr)−1 for unlinked loci with outcrossing
rate r. The N dependence in the latter case is well confirmed by the data
shown in the Fig. S1.

The critical recombination rate

The self-consistency condition for the QLE state presented in the main text
builds on an equation for the evolution of the joint probability distribution
P (A,E; t) of the additive and epistatic fitness contributions A and E.

∂tP (A,E; t) = (F − F̄ − r)P (A,E; t) + rρ(E)ϑ(A; t) (4)

As explained in the manuscript, the last term describing the generation of
genotype by recombination term is the product of the distribution of possible
epistatic fitness values ρ(E) (which depends on the model and is Gaussian in
our case) and the marginal distribution of additive fitness ϑ(A) =

∫
dEP (A,E).

Equation 4 is solved by a factorized ansatz P (A,E; t) = ϑ(A; t)ω(E). The
additive part ϑ(A; t) evolves according to ∂tϑ(A; t) = (A − Ā(t))ϑ(A; t), which
has the solution

ϑ(A; t) =
1√

2πVA

e
− (A−Ā(t))2

2VA (5)

with Ā(t) = A0 + VAt. The distribution ω(E) of the epistatic fitness E is
time-independent and given by

ω(E) =
rρ(E)

r + Ē − E
, (6)

where Ē is determined by the condition that ω(E) has to be normalized. Here,
we discuss when this solution ceases to exist as the recombination rate decreases.
Obviously, no such solution exists if ρ(E) > 0 for arbitrarily large E since
the denominator vanishes at E = Ē + r. However, any finite genotype space
will have some maximal E = Emax. Furthermore, the population size is often
much smaller than the number of available genotypes, in which case the typical
maximal E encountered by the population will play the role of Emax, see below.

For now, assume the population is infinite and completely samples ρ(E). As
r decreases, the distribution ω(E) of E in the population shifts to larger values
and Ē increases. The susceptibility of Ē to changes in r depends on the upper
tail of the distribution ρ(E) and is smaller for more rapidly decaying ρ(E). The
reason for this behavior is that changing r does not affect ω(E) much in the
bulk where the r+ Ē −E is large, but has strong effect in the upper tail where
the r + Ē −E is small. Thus, changes in r affect Ē only as much as the tail of
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ω(E) contributes to the mean. If ρ(E) decreases linearly or faster at Emax, a
critical rc exists below which no self-consistent solution for ω(E) can be found.
Below rc, genotypes with E > Ē + r form clones that grow exponentially and
the distribution of epistatic fitness E is no longer time independent.

A finite population undersamples the genotype space and the range of values
of E the population encounters determines rc. In our case, the available states
are 2L random samples from a Gaussian distribution with variance VI . For this
choice of ρ(E), it turns out that Ē responds very weakly to changes in r and
remains much smaller than

√
VI for r > rc, such that rc ≈ Emax. The initial

population sampled N genotypes and new genotypes are generated through
mating with rate Nr. However, even a sufficiently fit genotype with E > Ē + r
will only establish with probability E − (Ē + r), which is at most the spacing
between the extremal samples of E given by pfix ∼

√
VI/

√
2 lnNrτ1. This

leads to an approximate equation for rc

Ē + rc ≈
√

2VI ln(Nrcτpfix), (7)

where the time to fixation τ is determined by the the additive fitness component.
Using N = 105, σ2 = 0.005, τ = 500 and correcting for the discrete recombina-
tion scheme yields rc ≈ 0.3, in very good agreement with the simulation result
rc ≈ 4σ ≈ 0.28.

The non-monotonicity of the final fitness

In the main text, we presented data showing that the fitness of the fixated geno-
type Ffinal has a non-monotonous dependence on the outcrossing rate, exhibiting
a peak just below rc. Underlying reason for the peak is the different population
dynamics in the two phases. In the CC phase, the population explores genotypes
and fixates the fittest found. The number of genotypes sampled grows in time
as Nrt, which, assuming independent samples from a Gaussian distribution,
typically yields a maximal fitness of ≈

√
2VI lnNrt, i.e. the maximum grows

with N and r. The time t is limited by the fixation time, which grows as lnN
in the CC phase. The prefactor is determined by the strength of selection and
the number of times a new fitter genotype is created and sweeps to frequencies
of order one before fixation. The fitness of the fittest genotype created during
CC evolution increases therefore even faster with N since the genotype space
is explored for longer times for larger N . In the QLE phase, the population
dynamics is determined by the dynamics of the allele frequencies, resulting in
a more or less deterministic path to fixation independent of N (assuming N−1

is smaller than single locus effects, see Fig. S3). In the PE model, the QLE
dynamics leads typically to a Ffinal ∼

√
VIL(4). For sufficiently large N , the

fittest genotype found in CC will be fitter than the QLE fixate, resulting in a
peak of Ffinal just below rc. In practice, limited population sizes and the in-

1Logarithmic factors in pfix influence the results only very weakly.
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crease of Ffinal with L in the QLE dynamics of the PE model implies that a
peak will only be observed for sufficiently small L.
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