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Supporting Information

We have proposed a theoretical framework that explains how temporal representations can be
learned as a function of reward by local networks of recurrently connected excitatory neurons.
In the following supplemental methods, we present mathematical details of our network model
and the RDE learning rule, develop and demonstrate additional forms of the activity dependent H
and e functions, provide implementation details of the integrate and fire neuron model described
in the main article, discuss the theoretical prediction of increased noise correlations between
neurons participating in a temporal representation, and present extensions to our model that
demonstrate how network complexity can change quantitative aspects of our temporal
representations without impacting the underlying qualitative features.  The supporting
information also includes 9 supplemental figures that illustrate additional aspect of our model
from the main text and from the supplemental methods section.

Supplemental Methods:

Encoding time in a recurrent network.  We start from the assumption that recurrent excitatory
reverberations within a local network could underlie the temporal responses seen in V1 (Fig. S1).
The following analysis, based on a leaky-integrator neuron model, quantifies the network
structure required for this form of temporal representation.

The activity level of each neuron i in the recurrent layer of this network is represented in
terms of an abstract variable, Vi, which approximates firing rate or average post-synaptic
depolarization (1) and is roughly analogous to the flux reported by a voltage sensitive dye.
Neural activity is driven both by the external feed-forward inputs and lateral excitation from
within the recurrent layer.

The dynamics of a single neuron in our network of N excitatory cells are described by a
first order differential equation:

τ m
dVi

dt
= −Vi + Iext,i + LijV j

N
∑ (S1)

where Iext,i is the external feed-forward input to neuron i and Li,j is the weight connecting pre-
synaptic cell j to post-synaptic cell i.  Following the experimental paradigm used by Shuler and
Bear (2), we are primarily interested in the behavior of this system following a brief period of
stimulation during which Iext,i > 0.  Post-stimulus dynamics (input vector I = 0) can be described
using matrix notation:

τ m
dV
dt

= (L − 1) ⋅ V (S2)

where V = [V1, V2, … VN]T is the vector of neural activities, L is an NxN matrix of recurrent
weights, and 1 is the unit matrix.

Activity in an isolated neuron ( Li, j = 0 ∀ i, j ) decays exponentially to rest with an intrinsic
time constant, τm (10 ms Fig. 2B, black line), which is abstractly related to the membrane
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capacitance or synaptic time constant of a real neuron.  Our goal is to represent time by
decreasing the effective activity decay rate so that it corresponds to a desired interval, and to do
so by setting the recurrent synaptic weights (Fig. 2B, gray line).

The network starts in a resting state (V = 0) and there are two 1xN input vectors, Iμ (where
μ = 1 for left or 2 for right eye stimulation).  These vectors are chosen to be orthogonal to each
other so that neurons in the recurrent layer respond monocularly and are normalized to length 1.
If the recurrent weight matrix is constructed such that the synaptic strength between each neuron
i and j in the recurrent layer has the form:

 ∑
=

=
2

1μ

μμμλ jiij IIL (S3)

where

μ
μ

τ
τλ

d

m−= 1 (S4)

then Iμ are the eigenvectors of L with eigenvalues λμ.  During the transient stimulation period the
network activity grows in the direction of the stimulating vector.  After the stimulation period
ends, the state of the network is set by, and in the direction of, the input vector and decays with a
desired time constant, τd, rather than at the intrinsic decay rate:

dV
dt

=
1

τ m

(L − 1) ⋅ V =
1

τ m

(1−
τ m

τ d
μ −1) ⋅ V = −

1
τ d

μ ⋅ V
.

(S5)

This result demonstrates how to encode time, defined as the effective activity decay rate
engendered by network structure, by constructing an appropriate weight matrix.  This analysis
assumes two feed forward input vectors, each corresponding to LGN activation patterns resulting
from the stimulation of a single eye, but it can be extended to encode times associated with
multiple, arbitrary input patterns.  The form of equation S4 dictates practical limits to this
approach; for large encoded times, small changes in synaptic weights cause a large changes in
the network decay rate (Fig. S8) (3, 4).  Following the experimental paradigm, the network must
learn a weight matrix that encodes the intervals between paired stimuli and rewards; we next
address how this can be done.

Learning with Reward Dependent Expression of synaptic plasticity (RDE). We have formulated
a learning rule based on the hypothesis that reward can modulate expression of the slow
molecular processes which lead to long term plasticity and are initiated by coactivation between
neurons.  We call these non-specific plasticity precursors ‘proto-weights’.  A simple equation
describing the activity driven dynamics of the proto-weight, Lp, associated with a single synapse
between two neurons i and j has the form:
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τ p

dLij
p

dt
= −Lij

p + H(Vi,V j ) (S6)

where H(Vi,Vj) describes a Hebbian dependence on the pre- and post-synaptic activity levels (see
below).  We assume that τp, the proto-weight decay time constant, is sufficiently long so that the
proto-weights do not decay to resting levels before the time of reward (i.e. τp > Tμ).

Proto-weights do not directly impact the efficacy of synaptic signaling; rather, they
determine the magnitude of long-term synaptic plasticity as a function of reward.  Changes in
synaptic weight are proportional to the magnitude of the proto-weights within individual
synapses at the time of reward:

( )0( ) ( , ) ( )ij p
ij V

dL
L t r e i t t T

dt
μη δ= ⋅ − − (S7)

where η <<1 is the learning rate, r0 is a measure of reward magnitude which is inhibited by
cortical activation according to the function eV(i,t), and δ(x) is the Dirac delta function.  A
classical Hebbian learning rule is insufficient for our purposes since it is not known during
stimulation when or whether reward will follow.  Inhibition of reward is required so that learning
will stop at the appropriate level even with continued training (see below, Fig. S2).

Activity dependent plasticity function H.  Our goal is to create a weight matrix, as in equation S3,
that encodes the reward timing.  Using the simplest form of Hebbian plasticity, suggested by our
analysis, proto-weights increase proportionally to the product of pre- and post-synaptic activity
levels:

H(Vi,V j ) = Vi(t) ⋅V j (t) . (S8)

We demonstrate in the main report that this form of learning works well for monocular
input patterns (Fig. 4).  A large family of functions, when embedded in the plasticity rule (Eq.
S7), could potentially yield the desired network behavior.  The exact choice of a Hebbian
plasticity function H is non-trivial and is not the focus of this work. Currently, experimental
observations are insufficient to constrain a specific functional form beyond the simplest forms
suggested by our analysis.

Formulating H(Vi,Vj) for binocular inputs.  If the network contains binocularly responsive
neurons (simulated by non-orthogonal input patterns), the simple Hebbian form of H presented in
the main body is insufficient to produce well-segregated temporal responses to both input
patterns.  Since binocular neurons in the network will form synaptic connections to monocularly
responsive neurons for both input patterns, as training progresses they will start to ‘pull-up’
activity levels in the nominally unresponsive populations resulting in non-selective activation
and a failure to converge to the correct time constants.  Learning can be made to converge,
however, by choosing a more general form of H that allows for depression of synaptic weights
between neurons that are not coactive.  One form that meets this criterion is:

H(Vi,V j ) = (Vi −θ1)(V j −θ1) −θ2. (S9)
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This form of H is similar to the covariance rule (5, 6) and can lead to negative (inhibitory)
weights in the linear model.

We implemented H as in equation S9 with our deterministic neuron model and 10%
binocular overlap for each input pattern.  The values of θk were set heuristically with parameters
θ1=2.5, and θ2=0 to allow for convergence with the given amount of overlap.  This form of the
learning rule allows training of two selective responses with correct time constants in a network
with non-orthogonal overlap (Figs. S3 and S4), and similar results (not shown) can be achieved
with non-zero values of θ2 that prevent plasticity in the absence of input.  A straightforward
implementation creates negative weights in the final connectivity matrix, and some neurons
would have both negative and positive efferent synaptic connections.  Although the assumption
that single neurons can have both excitatory and inhibitory influence on other neurons is not
biologically realistic, a more physiologically accurate implementation of the model, including
both excitatory and inhibitory inter-neurons, could likely accomplish similar results.

The difficulty of choosing H is similar to the difficulty of choosing an appropriate learning
rule for associative memory that is both computationally desirable and is consistent with
experimental observations (6-8) and a quantitative description of complex experimental results
may require a more biophysically realistic plasticity model (9).  Our demonstration, using a
variant of the well know covariance plasticity rule, that RDE can produce distinct temporal
representations in the presence of binocular indicates that the basic model framework is robust
enough to accommodate different components while still producing the desired temporal
representations.

If RDE is applied with binocular inputs, individual binocularly responsive neurons can
participate in multiple temporal representations corresponding to the reward intervals associated
with each eye’s stimulation.  These binocularly responsive neurons display different apparent
decay time constants depending on which input pattern is presented (Figs. S4, S5).  Generally,
the ability of a single neuron to participate in the computation of several different temporal
representations is evidence that the dynamics are being driven by a network property and not due
to changes in the intrinsic response characteristics of a single cell. Experimental evidence of
similar characteristics in biological networks would constitute additional support for a key
assumption of this model.

Reward inhibition function eV.  Synaptic weights, with a direct implementation of the learning
rule described above, will continue to potentiate with ongoing training even after the correct
temporal representation is achieved.  Since the desired behavior is for the network to stop
learning when evoked activity persists until the time of reward, RDE assumes that ongoing
activity in the network can quash the expressive action of the reward signal (similar to
mechanisms used in reinforcement learning, see (10, 11)).  A simple form for the inhibition
function is:

eV (t) = βV (t) (S10)

Where the spatial average of network activity is defined as:
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N
tV

1

)(1)( (S11)

and β is a scaling factor that sets the activity level where reward is fully inhibited.  This
formulation assumes that the cumulative network activity works to inhibit reward globally (as
suggested for the dopaminergic system, 12) and we show that it is sufficient to train our network.

Formulating a local form of eV.  Alternatively, a local inhibition rule for neuron i can be written
as:

eV (i,t) = βVi (t). (S12)

The global option could represent an actual inhibition of the reward signal by mean cortical
activity, whereas the local option could represent inactivation of a single neuron’s response to
the reward signal, possibly through receptor sensitivity to membrane voltage (13).  We have
found that both local and global forms of reward inhibition can produce very similar results
(compare Figs. 4 and S6) with both spiking and non-spiking neuron models.

Conductance based integrate and fire neuron model.  The equation governing the dynamics of
the membrane potential of a single neuron i, vi, is:

C dvi

dt
= gL (EL − vi) + gE ,i(EE − vi) + gI ,i(EI − vi) (S13)

where C is the membrane capacitance, and Ex are the reversal potentials for ionic currents
associated with leakage, excitation, and inhibition and gL is the leak conductance.  gE,i and gI,i are
excitatory and inhibitory conductances, respectively.  These conductances are equal to the
product of synaptic activation, s, and synaptic weights.

Synaptic activation jumps by a percentage ρ, saturates at 1, and decays with time constant
τs.

ds
dt

= −
1
τ s

s + ρ 1− s( )⋅ δ t − t pre( )
pre−
spikes

∑ (S14)

The resting membrane voltage was set to -60 mV, and reversal potentials for excitatory,
inhibitory, and leak ionic species were -5, -75, and -60 mV respectively.  Spiking occurred when
membrane voltage reached a threshold value of -55 mV after which v was reset to -61 mV and
held for a 2 ms absolute refractory period.  The leak conductance was 0.01 nS and membrane
capacitance was set to give a membrane time constant of 20 ms.  As in previous models (14, 15),
synaptic activation decays with a slow time constant to account for NMDA activation dynamics
(80 ms used here) and ρ = 1/7.  At each time point, a windowed estimate of firing rate was
updated according to:
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dRi

dt
=

1
τ w

δ t − ti( )− Ri
ti

∑
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ (S15)

where ti are the times of spikes, τw is the estimate time window (100 ms), and Ri is the rate
estimate.  Ri was used as a proxy for the activity variable (V from the continuous model) when
calculating changes in the proto-weights, according to equation S6.  While the spiking neuron
model could have incorporated a plasticity rule that more explicitly related weight changes to
spike timing without the R variable, we chose this form to minimize training differences between
the linear and non-linear models.

The recurrent layer was stimulated with feed-forward inputs consisting of Poisson spike
trains with time-varying intensity (to mimic LGN activity, see (16, 17)) for 400 ms.  Left and
right eye stimulation patterns were orthogonal, each stimulating 50 neurons in the network.  The
β parameter was set so that reward would be completely inhibited when the average firing rate
was around 20 Hz, and the offsets between the end of stimulation and reward delivery were 500
ms for the left eye, 1000 ms for the right.  Proto-weights, for both neuron models, decayed with a
time constant of 5 sec.

Dynamical equations for both neuron models were integrated numerically in custom code
written in MATLAB (linear model) and c++ (spiking model).

Theoretical prediction of increased noise correlations in trained network.  Since time is stored in
excitatory connections between neurons that respond to the same stimulus, we expect that noise
correlations between neurons within responsive populations to be higher in trained networks than
in naïve networks.  To verify this, a naïve network of spiking neurons and one trained with a
reward time of 1400 ms were both allowed to run randomly, without stimulation, for 100
seconds starting from 50 random seeds and calculated correlations as follows.

Our integrate and fire model produces a binary spike train for each neuron i, defined as
xi

k t( ) = 1 if neuron i fires a spike at time t on trial k, and 0 otherwise.  The spike count over a
single run for a single neuron, where 1≤t≤T, is:

Nk
i = xi

k t( )
t=1

T

∑ . (S16)

Recurrent layer neurons were divided into two groups based on their indici where group 1
(g1) included neurons i=1-50 and group 2 (g2) neurons i=51-100.  The spike trains for the two
groups were combined to form two new random processes;

xg1

k (t) = xi
k

i=1

50

∑ ,  xg 2
k (t) = xi

k

i= 51

100

∑ (S17a,b)

and spike counts were calculated for these two new processes such that
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Ng1,g2
k = xg1 ,g2

k t( )
t=1

T

∑ . (S18)

The Pearson correlation coefficient, r, reported in figure S7 was calculated (18) for the two
combined processes according to:

r =
E Ng1Ng2[ ]− E [Ng1]E[Ng2 ]

σ Ng1
σ Ng 2

, (S19)

where E is the expectation over M trials.

Using the same notation as in the experimental literature, the spike train correlation
between two processes, xj and xk, is defined as:

C jk τ( )=
1
M

x j
i t( )xk

i t + τ( )
t=1

T

∑
i=1

M

∑ , (S20)

and the shift predictor between these same processes is:

S jk τ( )= T Pj t( )Pk t + τ( )
t=1

T

∑ , (S21)

where the Pk is the post-stimulus time histogram (PSTH) for process k:

Pk (t) =
1
M

xk
i (t)

i=1

M

∑ . (S22)

Our cross-correlogram (CC) is defined as:

( ) ( ) ( )
kj

jkjk SC
CC

νν
ττ

τ
−

= (S23)

where νj,k are the average spike frequencies of processes j and k.  An exponential fit of CC
demonstrates the approximate duration of correlation effects.  The normalization by frequency
results in a variance that is approximately equal for the naïve and trained networks.

For both the naïve and trained networks, single neuron firing statistics are similar with a
CV (1) of 1.18 for the naïve network and 1.04 for the trained.  Figure S7 demonstrates that the
cross-correlogram (CC) between two groups of 50 neurons changes as a function of training.  For
the untrained network, where recurrent connections are weak, the CC is flat.  In the trained
network, however, the CC shows a prominent peak. Correspondingly, the Pearson correlation
coefficient between these two groups increases from zero in the naïve network to 0.309 in the
trained network. This result is a robust prediction that can be used to test the model
experimentally, although it requires a large amount of spontaneous data recorded simultaneously
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from multiple neurons. Unfortunately, the amount of spontaneous data available from the
original experiment (2) is insufficient to test this prediction.

Temporal representations with complex network structures.  The central objective of this work is
to describe how recurrent excitatory synapses can serve as the neural substrate of learned
temporal representations.  Our model, which was purposely designed with a minimal set of
assumptions to enable both analysis and clear exposition of the underlying principles, is able to
account for the key qualitative features of the experimental data.  Successively closer
approximations to the experimental data can be achieved by including successively detailed
components of the biological network in our model.  Such additions, while outside the main
thrust of this paper, can account for additional experimental details.  Here we demonstrate, using
an ad hoc approach, that populations of inhibitory can decrease evoked firing rates and create an
additional form of observed temporal representation.  The purpose is not to rigorously develop
extensions to our model, but rather to demonstrate how network complexity can change its
quantitative predictions.

A network of 100 integrate and fire neurons was trained to respond to LE and RE stimulus
using RDE (all neuron and training parameters as above).  First, a population of 20 inhibitory
neurons with fast synaptic time constants (τs = 5 ms) was added to the network.  Random
synaptic connections were made between the recurrent layer and inhibitory neurons (15%
probability of connection), and between the inhibitory neurons and recurrent layer (30%
probability of connections).  Synaptic weights were set so that high rates of activity in the
recurrent layer would evoke activity in the inhibitory neurons.  As shown in Fig. S6, the presence
of inhibitory feedback can decrease evoked firing rates in the recurrent layer.

Next, two new populations of neurons were added to the trained network.  The first
consisted of 100 neurons that fire spontaneously with an average rate of about 4 Hz.  The second
is a layer of 100 inhibitory inter-neurons connecting each neuron in the recurrent layer with one
of the spontaneous neurons.  As shown in Fig. S5 inhibition driven by the recurrent layer results
in a sustained decrease in firing rate corresponding to reward times encoded in the network by
RDE.

References

1. Dayan P & Abbott LF (2001) Theoretical neuroscience: computational modeling of
neural systems (MIT Press, Cambridge, MA).

2. Shuler MG & Bear MF (2006) Reward timing in the primary visual cortex. Science
311:1606-1609.

3. Seung HS (1996) How the brain keeps the eyes still. Proc Natl Acad Sci U S A 93:13339-
13344.

4. Tegner J, Compte A, & Wang XJ (2002) The dynamical stability of reverberatory neural
circuits. Biol Cybern 87:471-481.

5. Linsker R (1986) From basic network principles to neural architecture: emergence of
spatial-opponent cells. Proc Natl Acad Sci U S A 83:7508-7512.



9

6. Sejnowski TJ (1977) Storing covariance with nonlinearly interacting neurons. J Math
Biol 4:303-321.

7. Chechik G, Meilijson I, & Ruppin E (2001) Effective neuronal learning with ineffective
Hebbian learning rules. Neural Comput 13:817-840.

8. Dayan P & Willshaw DJ (1991) Optimising synaptic learning rules in linear associative
memories. Biol Cybern 65:253-265.

9. Shouval HZ, Bear MF, & Cooper LN (2002) A unified model of NMDA receptor-
dependent bidirectional synaptic plasticity. Proc Natl Acad Sci U S A 99:10831-10836.

10. Rescorla RA & Wagner AR (1972) Classical Conditioning II: current research and
theory, eds Black AH & Prokasy WF (Appleton-Century-Crofts, New York, NY), pp 64-
69.

11. Sutton RS & Barto AG (1998) Reinforcement learning: an introduction. (MIT Press,
Cambridge, MA).

12. Schultz W, Tremblay L, & Hollerman JR (1998) Reward prediction in primate basal
ganglia and frontal cortex. Neuropharmacology 37:421-429.

13. Ben-Chaim Y, et al. (2006) Movement of 'gating charge' is coupled to ligand binding in a
G-protein-coupled receptor. Nature 444:106-109.

14. Compte A, Brunel N, Goldman-Rakic PS, & Wang XJ (2000) Synaptic mechanisms and
network dynamics underlying spatial working memory in a cortical network model.
Cereb Cortex 10:910-923.

15. Lisman JE, Fellous JM, & Wang XJ (1998) A role for NMDA-receptor channels in
working memory. Nat Neurosci 1:273-275.

16. Mastronarde DN (1987) Two classes of single-input X-cells in cat lateral geniculate
nucleus. II. Retinal inputs and the generation of receptive-field properties. J Neurophysiol
57:381-413.

17. Ruksenas O, Bulatov A, & Heggelund P (2007) Dynamics of spatial resolution of single
units in the lateral geniculate nucleus of cat during brief visual stimulation. J
Neurophysiol 97:1445-1456.

18. Bair W, Zohary E, & Newsome WT (2001) Correlated firing in macaque visual area MT:
time scales and relationship to behavior. J Neurosci 21:1676-1697.



10

Supplementary Figure Legends

Figure S1  Example responses of single V1 neurons to visual stimulation.  Plot of the average evoked
response of a neuron recorded in a naïve animal (dotted green) and the after training responses of neurons trained
with short (red) and long (blue) reward times.  In the naïve animal, neurons respond briefly during the period of
stimulation (green bar).  During training, left eye and right eye stimulations are paired with rewards delivered after a
short (ST) or long (LT) delay period, respectively (dashed vertical lines). After training, neuronal responses evoked
by a given stimulus can persist until the reward time paired with that stimulus.  The plots show the difference
between the dominant and non-dominant eye responses per neuron smoothed with a Gaussian kernel (SD 50 ms); for
detailed methods and plots of average population responses see Shuler and Bear (2006).

Figure S2  Dependence of τd on λ.  The value of λ (Eq. S4) required in order to set the correct weight matrix
to encode a particular time (Eq. S3) limits the effective interval range that our approach can learn robustly.  This plot
shows the dependence of the network time constant (in ms) on the eigenvalue of the weight matrix for two different
values of the intrinsic neuron decay time constant.  The steep rise of the curve in the temporal region of interest for
our training task (1-2 seconds) means that recurrent synaptic weights must be learned to a high degree of precision.
This makes robust learning inherently difficult.  Note that the relatively faster dynamics associated with the shorter
τm (red line) result in a steeper curve than with the longer value of τm (blue line).  An analogous plot can also be
generated numerically for the spiking neuron model.

Figure S3  Training in the rate based model.  This plot shows the response of the neurons responsive to left
(blue lines) or right eye (red lines) stimulation during each epoch of a training session.  The stimulus is active during
the period indicated by the green patch and cyan lines show reward times.  The response of the naïve network,
indicated by thick black line, decays quickly back to zero following stimulation.  As training progresses, the
responses to both inputs increase until the appropriate activity level is reached at the time of reward at which time
learning stops.

Figure S4  Network trained with overlapping inputs.  Naïve network structure is the same as in figure 3, but
the input patterns are set so that several neurons respond binocularly (binocular neurons marked with arrows).
Neurons in the trained network respond as with monocular training, except that binocular neurons have learned
appropriate responses for both reward times.  See supplemental figure S5 for plot of a binocular neuron’s activity
elicited by both inputs.

Figure S5  Response of a binocular neuron to left and right eye stimulation.  This plot demonstrates the
normalized activity of a single binocularly responsive neuron to both left (blue line) and right (red line) eye
stimulation.  The stimulus is active during the period indicated by the green patch.  The reward times used during
training for both stimuli are shown by ticks at 1000 and 1600 ms.  The binocular neuron participates in computation
of both temporal representations and responds with different time constants depending on which input is presented
to the network.  The neuron shown is one of the binocularly responsive neurons from Fig. S4.

Figure S6  Training with local inhibition.  This plot shows the results of training the rate-based model with
local reward inhibition.  The results are virtually identical to training using inhibition based on average activity in
the entire recurrent layer (see Fig. 3).

Figure S7  Noise Correlations.  Spontaneously active neurons in a network trained with a reward time of
1400 ms have higher correlation coefficients (r = 0.309) than in a naïve network (r = -0.001).  Plots of the cross-
correlograms show a flat temporal profile in the naïve case (black) and a region of increased correlation between
neurons in the trained network (gray).  An exponential fit (dashed line) shows the region of increased correlation.
Note correlation values are calculated across grouped neural populations (see Supplemental Methods).

Figure S8  Inhibition can decreases evoked firing rates.  This plot demonstrates one way homeostatic
mechanisms could be used by the brain to limit maximum firing rates of neurons in trained networks.  Neurons in
the recurrent layer (labelled E in inset) were trained to respond to left and right eye stimulation with two different
reward times (shown by dashed lines).  In the left column, neurons in E receive only excitatory feed-forward and
lateral inputs.  In the right column, these same neurons excite a smaller population of inhibitory neurons (labelled I)
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that project back into the recurrent layer.  The inhibition decreases the magnitude of evoked response with little
impact on temporal representations.  Connections between layers E and I were established randomly and weights
were set heuristically to demonstrate this result.  Stimulation is active during the periods indicated by green bars.

Figure S9  Sustained decrease.  This plot demonstrates how a population of neurons trained to show
sustained increase in firing rates can engender a sustained decrease when embedded in a network including
inhibitory neurons.  As shown in the inset, recurrent layer neurons (E) drive inter-neurons (I) that inhibit the activity
of a population of spontaneously spiking neurons (S).  The rasters and histograms in the left column show spiking
activity of the neurons in S without inhibition; this activity is not affected by the feed-forward stimulation of E
(indicated by green bars).  Including inhibitory connection between I and S (right column) results in a decreased
firing rate of S that persists until the time of reward (dashed line) for both left and right-eye stimulation (top and
bottom rows).  Here, reward is still encoded by recurrent excitatory weights and the sustained decrease is a
derivative form of representation.


