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SI Discussion: Metabolite-Enzyme Interaction Density in
Aromatics, Arginine, and Lysine Pathways
The model illustrates that flux control (i.e., invariance to per-
turbation) increases as metabolite—enzyme interaction density
increases. In other words, greater interaction density lessens
transcriptional control and gives metabolites an increasing role
in regulating the flux phenotype. This model supports the body
of literature on feedback inhibition in that increased metabolite
regulation of enzyme activity results in greater metabolic con-
trol. Specific biosynthesis pathways in the expanded network
model provide illustrative foils for this principle (Fig. 3). Aro-
matics biosynthesis comprises 10 feedback inhibition and 3
feedforward activation interactions among 14 aromatic enzymes
involving various pathway metabolites (Figs. 3A and 4A). Even
though most mRNA and end product metabolite levels increase,
high metabolite interaction density (dinteraction � 13/14) results in
unchanged fluxes. This is visualized by up-regulated (green)
enzyme and end product metabolite nodes and unchanging
(white) flux nodes (Fig. 3A). The isoleucine-leucine-valine su-
perpathway, dinteraction � 7/11 (Fig. 3B) corroborates this hy-
pothesis. Despite 7 biosynthetic mRNAs increasing significantly
(genewise False Discovery Rate (FDR) � 2%), pathway fluxes
remain unchanged (within the 3% deviation noise region). For
the high metabolite interaction densities in Fig. 3 A and B, we
hypothesize that because end products are not being increasingly
used in protein synthesis, the metabolite levels build up and
cause feedback inhibition at the enzyme level, resulting in tightly
regulated flux.

In contrast, the metabolic control structures for arginine and
lysine are not governed by high metabolite interaction densities
(Fig. 3 C and D and 4A). Having only 1 of 10 enzymes regulated
by enzyme-metabolite feedback inhibition (Arg-5,6p) (dinteraction
� 1/10), the arginine biosynthetic pathway conforms to the null
hypothesis model motivated by the central dogma. That is,
activations propagate from mRNA to flux (30% deviation) to
end-product metabolites, as shown by the green nodes in Fig. 3C.
Like arginine, the lysine pathway flux, dinteraction � 2/7, increases
markedly (here, 7% deviation) as a result of increasing mRNA
levels, indicating less tightness in flux control (Fig. 3D, although
the log scale does not color the flux node perceptibly green).
Instead of high metabolite interaction density, arginine and
lysine biosynthetic controls use alternative strategies. To com-
pensate for unnecessary metabolite build-up, these pathways rely
on preferential vacuolar localization of products and activation
of transcription factor regulators separate from Gcn4p. These
include the ArgR-Mcm1 repressor complex in the case of
arginine and coinducers Lys14p and �-aminoadipate semialde-
hyde (AASA) in the case of lysine.

SI Materials and Methods
Strains. Strains were derived from the haploid S288C MAT A
obtained from Dr. Gerald Fink (Whitehead Institute, Cam-
bridge, MA). The gcn4�-knockout strain was constructed
through transformation of the Saccharomyces Gene Deletion
Project BY4741 gcn4�-knockout strain deletion cassette. This
BY4741 knockout strain was obtained from the laboratory of T.
Ideker (University of California San Diego, La Jolla, CA), in

turn obtained through Research Genetics. Knockout strains
for follow-up shake flask experimentation were constructed
analogously.

Shake flask growth conditions. Strains were cultivated aerobically
in 100 mL of YNB media (described above) in 500-mL shake
flasks. For the met28�- and cbf1�-knockout strains, the YNB
media was supplemented with 20 mg/L methionine to correct for
the methionine auxotrophy. Overnight preinnoculation cultures
were used to inoculate to 0.01 OD600 and grown at 30 °C until
harvest at a 1.0 OD600.

Whole genome expression analysis. Our MIAME-compliant Na-
tional Center for Biotechnology Information GEO submission
GSE 4709 describes all experimental and data analysis consid-
erations used for the determination of mRNA levels for the
Gcn4p experiment. P-values were calculated with a Student’s t
test evaluating the wild-type and mutant mRNA levels measured
in triplicate. To simultaneously test multiple hypotheses while
controlling for false positives, False Discovery Rate (FDR)
analysis and q-values were determined according to Storey et al.
(4). For the shake flask follow-up experiments, the MIAME-
compliant National Center for Biotechnology Information GEO
submission GSE 7369 describes all experimental and data anal-
ysis considerations.

Biomass amino acid composition analysis. The cellular amino acid
composition was determined by using ion exchange chromatog-
raphy after treatment of the cell samples with 6M HCl (5). This
was performed at the Center for Advanced Food Research,
BioCentrum-DTU, for which they are gratefully acknowledged.

Endometabolome analysis. Cells were rapidly quenched according
to de Koning and van Dam (6) in 60% (vol/vol) buffered (12.5
mM Tricine, pH 7.4) cold methanol at �40 to �45 °C. After
quenching, the cells were immediately centrifuged at 10,000 � g
for 4 min in a rotor precooled to �20 °C to separate the cells
from the quenching solution. Chloroform: methanol: buffer
(CMB) extraction was carried out (7). After extraction, samples
were freeze-dried at low temperature (�56 °C) using a Christ-
Alpha 1–4 freeze dryer (6). Amino and non-amino organic acid
levels were determined by high pressure liquid chromatography
on an Aminex HPX-87H column (Bio-Rad) according to West-
ergaard et al. (8) and by GC-MS analysis according to Villas-
Boas et al. (9) except that a Finnegan FOCUS gas chromato-
graph coupled to single quadrupole mass selective detector (EI)
(Thermo Electron) was used. Peak enumeration was conducted
with AMDIS (NIST) with default parameters, and identification
of conserved metabolites was conducted with SpectConnect (10)
using default parameters and a support threshold of 3.

Exometabolome analysis. Culture samples for determination of
exometabolites were immediately filtered through a 0.22-mm-
pore-size cellulose acetate filter (CAMEO 25GAS 0.22, Osmon-
ics, Minnetonka, MN, USA) according to Westergaard et al. (8).
GCMS and HPLC analysis was performed as indicated above.
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Fig. S1. Gcn4p-mediated induction of histidine biosynthetic mRNAs conferred �100-fold increased resistance to 3AT. Wild-type yeast and a gcn4�-knockout
strain (i.e., response present versus absent) were cultivated in triplicate at varying concentrations of histidine biosynthetic inhibitor 3AT. Growth curves were
measured with a Bioscreen C (Growth Curves) and growth constants determined at early log phase. For chemostat operation at a dilution of 0.10 h�1 (depicted
in the red line), inhibitor levels of 10 mM for the wild type and 0.1 mM for the gcn4� strain create a near starvation state for histidine. We note that the �100-fold
increase in inhibitor resistance at dilutions of 0.10 h�1 are mediated by Gcn4p activation of biosynthetic enzymes.
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Fig. S2. Comparisons of mass isotopomer distributions of biomass amino acids between fitted values and values measured by GC-MS reveal an excellent quality
of fit. For this reason, we have a high degree of confidence in our experimentally-determined fluxes. (Upper) Data from the chemostat without Gcn4p-mediated
induction. (Lower) Data from the chemostat with Gcn4p-mediated induction.
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Fig. S3. mRNA levels for the met28� mutant relative to the wild type visualized on our model of amino acid biosynthesis. See Fig. 3 for further description of
the model and visualization.
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Fig. S4. mRNA levels for the cbf1� mutant relative to the wild type visualized on our model of amino acid biosynthesis. See Fig. 3 for further description of
the model and visualization.
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Fig. S5. mRNA levels for the met31� mutant relative to the wild type visualized on our model of amino acid biosynthesis. See Fig. 3 for further description of
the model and visualization.
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Fig. S6. mRNA levels for the met32� mutant relative to the wild type visualized on our model of amino acid biosynthesis. See Fig. 3 for further description of
the model and visualization.
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Fig. S7. Comparisons of mass isotopomer distributions of biomass amino acids between fitted values and values measured by GC-MS reveal an excellent quality
of fit. For this reason, we have a high degree of confidence in our experimentally-determined fluxes. (Top) Data from 3 wild-type shake flasks. (Middle) Data
from met28� mutant shake flasks. (Bottom) Data from the cbf1� mutant.
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Table S1. New observations and hypothetical biological principles

Observations Biological principles

1 Despite fermenting at macroscopically-equivalent steady states,
expression levels of genes in amino acid biosynthesis are, in general,
activated relative to gcn4� populations (Fig. 3)

To compensate and counteract for broad transcriptional changes,
cells use metabolic control mechanisms

2 Changes in flux do not correlate with changes in mRNA levels along
the pathway (Fig. 2B)

Greater metabolite interaction densities can give pathways greater
flux invariance to perturbation

3 Changes in metabolite levels do not correlate with changes in mRNA
levels along the pathway (Fig. 2C)

Metabolite levels are a complex function of mRNA levels, enzyme
activities, metabolite interaction strengths, kinetics, spatial
distributions, and upstream and downstream supply and demand.

4 Changes in metabolite levels do not correlate with changes in flux
along the pathway (Fig. 2D)

In some instances, greater densities and strengths of metabolite
interactions allow buildup of metabolites without significant flux
changes

5 Metabolic flux is rewired in metabolic networks in the presence of
altered transcriptional states (Fig. 3)

Transcriptional regulatory networks drive not only mRNA changes
but propogate rewiring of flux through the metabolic network as
a mechanism for physiological stress response
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Table S2. New observations, example hypotheses, and possible tests

Specific systems-level observations† Hypothesis Test

1 Aromatic biosynthesis: 12 of 14 mRNAs
increase significantly (FDR � 2%), fluxes
remain unchanged (less than 3%
deviation), and phenylalanine and
tyrosine levels rise 4-fold and 8-fold,
respectively (Fig. 3A)

Higher density of metabolite-enzyme
interactions affords increased flux control
(invariance during perturbation)

Examine flux and metabolite profiles in a
strain with mutated feedback inhibition
regions in ARO4, ARO3, TRP2, TRP3,
PHA2, and TYR1‡

2 Isoleucine-leucine-valine biosynthesis: 7 of
11 mRNAs increase significantly (FDR �

2%), pathway fluxes remain unchanged
(less than 3% deviation), isoleucine,
valine, and leucine levels increase
approximately 2-fold (Fig. 3B)

Higher density of metabolite-enzyme
interactions affords increased flux control
(invariance during perturbation)

Examine flux and metabolite profiles in a
strain with mutated feedback inhibition
regions in ILV1, ILV2, ILV6, LEU4, and
LEU9‡

3 Arginine biosynthesis: excluding CPA1,
mRNAs increase significantly (P � 0.002),
flux increases (30% � 3%), and arginine
level increases 8-fold (Fig. 3C)

Arginine levels are primarily regulated
downstream of arginine biosynthesis

Examine gene expression, flux, and
metabolite profiles in a strain lacking
arginine catabolic enzymes and/or having
limited vacuolization capabilities‡

4 Lysine biosynthesis: 5 of 7 mRNAs increase
significantly (FDR � 2%), flux significantly
increases (7% � 3% deviation), lysine
level increases 4-fold (Fig. 3D)

Lysine levels are primarily regulated
downstream of lysine biosynthesis

Examine gene expression, flux, and
metabolite profiles in a strain with
mutated binding sites for the
transcriptional activator LYS14 and/or
having limited vacuolization capabilities‡

5 Aspartate, threonine and glycine
biosynthesis: 6 of 8 mRNAs increase
significantly (FDR � 2%), flux shifts from
serine to the threonine precursor,
threonine and aspartate levels do not
change, glycine levels decrease 4-fold (Fig.
3E)

Transcriptional activation rewires glycine
flux through the aspartate and threonine
nodes

Examine growth rate in a mutant lacking
glycine biosynthesis from serine at
increasing levels of threonine
supplementation‡

6 Alanine biosynthesis: mRNA level increases
significantly (FDR � 2%), flux shifts from
the mitochondria to the cytosol, alanine
levels decrease 4-fold (Fig. 3)

Cytosolic pools of pyruvate are increased in
the presence of Gcn4p to increase
cytosolic flux by mass action kinetics

Examine cytosolic and mitochondrial pools
of pyruvate in wild type and gcn4�

strains‡

7 SER3, SER1, and SER2 mRNA levels increase,
but flux through the reaction they
catalyze decreases (Fig. 3)

The transcriptional rewiring of glycine flux
results in less flux through serine into
glycine

Examine growth rate in a mutant lacking
glycine biosynthesis from serine at
increasing levels of threonine
supplementation‡

8 Transcription factors Met4p, Leu3p, and
Lys14p genes are bound yet not activated
(Fig. 2A)

Gcn4p is a necessary but not sufficient for
activation

Compare the transcriptional profile of
MET4, LEU3, and LYS14 in yeast strains
which overexpress other known
transcription factors with wild type cells‡

9 CPA1 genes are bound yet not activated
(Fig. 2A)

10-fold increase in free arginine levels
destabilizes the mRNA in a
uORF-mediated mRNA decay interaction

Observe CPA1 mRNA levels in varying levels
of intracellular arginine

9 4-fold increase of unbound ARO9 (Fig. 2A) Increase in free phenylalanine and tyrosine
levels in an observed ARO80-mediated
transcriptional activation

Observe ARO9 mRNA levels in varying levels
of supplemented phenylalanine and
tyrosine

10 Despite an unchanged mRNA profile,
Leu3p’s binding targets have increased
mRNA levels (Fig. 3)

Leu3p’s role as a transcriptional activator is
secondary to Gcn4p

Compare transcript levels of the
isoleucine-leucine-valine biosynthetic
pathway in wild type and leu3
knockdown strain‡

†Given for wild type relative to gcn4� cell populations. Both cell populations were grown at the same rate and had the same biomass.
‡Performed under conditions where the Gcn4p mediated stress response has been activated
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Other Supporting Information Files

Dataset S1
Dataset S2
Dataset S3
SI Appendix

Table S3. Wild-type yeast and a gcn4�-knockout strain ferment at macroscopically-equivalent steady states with regard to growth
rate, cell density (biomass), and ethanol and CO2 production

Dilution rate, h�1 Biomass yield, C-moles Glyc, g/L Ace, g/L Eth, g/L CO2, % offgas

Fermentative steady state 0.10 � 0.01 0.17 � 0.03 0.05 � 0.01 0.06 � 0.01 1.7 � 0.2 0.32 � 0.02
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