Supporting Information

Edin et al. 10.1073/pnas.0901894106

DNA C

Fig. S1. Graphical representation of $H(I_X)$ in the equation for p_{cap} (Eq. 2) with $f(I) = (1 + e^{-I})^{-1}$

Fig. 52. Effect of changes in G^+ , G^- , or I_X on memory capacity and persistent activity. Changes in parameters that lead to improved capacity generally increase network activity. (*Top*) Firing rate of memories at different loads. (*Middle*) Graphical solutions of the capacity equation for two different loads, p = 1 and 3. As p increases, the line representing the effective network synaptic strength shifts leftward. (*Bottom*) Potential energy landscape of the network at loads 1 and 3. Energy minima represent stable states. (A) Reference parameter set used in Fig. 2: A = 0.1, $G^+ = 22$, $G^- = 2$, $I_X = -6.25$. When load equals capacity (thin line; here, $p_{cap} = 3.57$) the synaptic line is tangential to the neuronal-input output curve in the *Middle*. (*Bottom*) The energy minimum corresponding to the memory state disappears at capacity (thin line). (*B*) Increasing capacity from 3 to 4 by increasing G^+ leads to increased persistent activity at the same load (arrows indicate memory activity at load p = 3). For comparison, the reference network is shown in gray. (C) Same for I_X . Generally, networks that have higher capacity caused by a change in a G^+ , G^- , or I_X also have higher activity at the same load.

Fig. S3. Working memory capacity in a balanced network. (*A*) The network is stable when the line and the curve intersect in three places. For the value of I_X in the figure, the golden area represents the region of stable memory activity. The size of this area is determined by the ratio between G^+ and $H(I_X)$, which determines the right and left border of the area. (*B*) $G^+/H(I_X)$ is in turn determined by the spontaneous activity. For spontaneous rates above ≈ 1.5 , $G^+/H(I_X) < 1.5$. (*C*) Having determined $G^+/H(I_X)$, Eqs. 3 and 56 (see *SI Appendix*) can now be used to calculate p_{cap}^{UL} for a given level of spontaneous activity. Note that although p_{cap}^{UL} in Eqs. 3 and 56 (see *SI Appendix*) is a continuous variable, only a discrete number of stimuli can be presented, making capacity an integer number. The following parameters were used. Standard deviation of input current, determining the linearity of the *f-I* curve: $\sigma = 0.001$. *w*: 0.1.

<

able S1. Maxima in the conjunction analysis of fMRI activation in either M3–C3 or M5–C5 contrasts; grou	p
inalysis	

Location		Area*	BA [†]	MNI coordinates	t statistic	Cluster size
Superior parietal lobule	R		7	16, -74, 52	6.69	12,494 ¹
	L		7	-14, -70, 52	4.93	12,494 ¹
Middle occipital gyrus	L		17/18	-34, -88, 14	5.08	12,494 ¹
	R	е	17/18	36, -90, 14	5.12	12,494 ¹
Superior frontal gyrus (SFG)/	R	b	6	30, -4, 56	4.02	1,852 ^{II}
Middle frontal gyrus	L		6	-24, -2, 58	3.24	372
Medial frontal gyrus (mSFG)	R	d	8/32	8, 18, 50	2.16	1,852 ^{II}
Inferior frontal gyrus (IFG)	R	с	47	34, 20, 6	3.41	443
	L		47	-30, 22, -4	2.92	199
Middle frontal gyrus (dIPFC)	R	а	9/46	52, 34, 32	2.94	791 ^{III}
	R	а	46	42, 44, 22	3.56	791 ^{III}
	R	а	10/46	38, 54, 26	2.12	791 ^{III}
	L		46	-46, 48, 14	3.01	144 ^{IV}
	L		10/46	-32, 62, 8	1.94	144 ^{IV}

Clusters identified testing the global null hypothesis of no activation in either M5–C5 or M3–C3 contrasts, with a threshold at P = 0.05 after correcting for multiple comparisons using the false-discovery rate procedure. Only clusters larger than 100 voxels are shown. *Identification of areas tagged with lower-case letters in the brain illustration of Fig. 4*B*.

[†]Brodmann area (BA) estimation from Talairach Daemon Client v2.0 (http://ric.uthscsa.edu/resources) and xjView (http://people.hnl.bcm.tmc.edu/cuixu/xjView/). I, II, III, and IV indicate same activation cluster.

Table S2. Cell parameters

Parameter	E cells	I cells	
N	1,024	256	
C _m	0.5 nF	0.2 nF	
g∟	25 nS	20 nS	
EL	−70 mV	-70 mV	
V _{res}	-60 mV	-60 mV	
V _{th}	-50 mV	-50 mV	
Tref	2 ms	1 ms	
rx	1,800 Hz	1,800 Hz	

N, number of cells; *C*_m, membrane capacitance; *g*_L, leak conductance; *E*_L, leak reversal potential; *V*_{res}, reset potential; *V*_{th}, spike threshold potential; *r*_{ref}, refractory period time constant; *r*_X, rate of external afferents. For an explanation of these parameters and the equations they govern, see Compte A, Brunel N, Goldman-Rakic PS, Wang XJ (2000) Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. *Cereb Cortex* 10:910–923.

Table S3. Synaptic parameters

Parameter	AMPA	NMDA	GABA
τ_{s}	2 ms	100 ms	10 ms
αs		0.5 ms ⁻¹	
τ_{X}		2 ms	
V _{rev}	0 mV	0 mV	−70 mV

 $\tau_{\rm sr}$ decay time constant for s, the fraction of open channels; $\alpha_{\rm sr}$ saturation constant; $\tau_{\rm xr}$ rise time constant; $V_{\rm rev}$, reversal potential. For an explanation of these parameters and the equations they govern, see Compte A, Brunel N, Goldman-Rakic PS, Wang XJ (2000) Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. *Cereb Cortex* 10:910–923.

Table S4. Connectivity

Parameter	IPS	dIPFC
	Connection strength G, nS	
E→E, AMPA	0.0	0.0
E→E, NMDA	0.684	0.968
E→I, AMPA	0.0	0.0
E→I, NMDA	0.479	0.723
I→E*	3.643	3.660
l→l	2.896	2.832
X→E [†]	→Table S5	3.000
X→I	5.800	2.3803
	Connection curve width σ , degrees	
E→E	9.4	
E→I	32.4	
I→E	32.4	
	Connection curve height J^+ , unitless	
E→E	5.7	
E→I	1.4	
I→E	1.4	

For an explanation of the parameters and the equations they govern, see Compte A, Brunel N, Goldman-Rakic PS, Wang XJ (2000) Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. *Cereb Cortex* 10:910–923.

*Connections from I cells are always GABA_AR-mediated.

[†]X, external afferents.

Table S5. Parameters varied in simulations

Figure	$G_{X \to E}$, nS	dIPFC→IPS, nS	dlPFC rate, Hz
1 <i>B</i>	6.6		
1 C and D	6.4, 6.45, 6.5		
1 <i>E</i>	6.55-6.725		
3 B and C	6.525	9	
3D	6.525	0–15	
3 <i>E</i>	6.525	6.525	0–95
3F	6.625–6.775		

For an explanation of these parameters and the equations they govern, see Compte A, Brunel N, Goldman-Rakic PS, Wang XJ (2000) Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. *Cereb Cortex* 10:910–923.

Other Supporting Information Files

SI Appendix