
Supporting Derivations 
Mean-field Equations 

Below are the mean-field equations for an object WM network as in ref. (29), slightly 

modified. The equations describe how the rate of the cells storing memories in the 

network depends on the connectivity, external input and vsWM load. The 

modifications from ref. (29) were 

• Each pyramidal cell in the network coded for a stimulus. There was no 

population of non-coding pyramidal cells 

• Expressions for the number of encoded items were included. 

• All cells were connected to all other cells. 

• The proportion of cells in a single active population, w, was not negligible. 
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EIJ → NIτErI 

μI = JE→INEτI [pwr+ + (1 – pw)r0] + JX→IτIrxi – JI→INIτIrI 
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Iσ  = 2

IEJ → NEτI [pwr+ + (1 – pw)r0] + 2
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IIJ → NIτIrI 

 

μ+,0,I: Mean input potential to 

 +: excitatory pyramidal cells (E cells) holding memories 

 0: E cells not holding memories 

 I: inhibitory interneurons (I cells) 
2

I,0,+σ : Standard deviation of input potential to the above populations. 

Ja→b: Mean connection strength from population a to b (a,b=E,I,X), 

     relating presynaptic firing to postsynaptic potential. 

NE,I: Number of cells.  

τE,I: Membrane time constant. 

w: Size of stimulus-encoding populations relative to total network size. 

p: Number of memories encoded (memory load). 

g+,-: Relative connection strength (relative to mean connection strength, JE→E) 
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 +: between E cells coding for similar stimuli. 

 -: between E cells coding for dissimilar stimuli. g- is scaled so that 

     g-=(1-g+w) / (1 – w). 

r+,0,I,xe,xi: Firing rates of the above populations as well as 

 xe: external input into E cell population 

 xi: external input into I cell population 

 

The firing rates of integrate-and-fire neurons embedded in a noisy environment are 

given by the frequency-postsynaptic potential (f-V) equation (43): 
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φ : Firing rate 

refτ IE, : Refractory period 

τ E,I
'

: Synaptic time constant  

θ: Firing threshold 

Vres: Reset potential 

 

Simplification of Equations 
To obtain an analytical solution to the WM network equations, a number of 

simplifications were needed. First, we observed that the mean and standard deviation 

of the external input can be varied independently by varying rxa and JX→a, a=I,E. 

Thus, we let μxa =rxa JX→a τa and 2
xaσ = rxa

2
aXJ → τa. 

Next, we made the assumption that the input-output function of the inhibitory 

population is threshold linear, i.e. rI=k[μI – Vθ]+, where Vθ is the firing threshold 

potential, and [·]+ is the thresholding operator, such that [x]+=x if x>0 and [x]+=0 

otherwise. This assumption basically says that the firing rate of the inhibitory cells is 

in the linear range. Since I cell rates were at least 10 Hz in simulations, and since 

inhibitory rates were always between 10 and 30 Hz in the ensuing theoretical analysis, 
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this is a reasonable approximation. We also noted that since I cells were always above 

the threshold, the thresholding operator could be removed. Solving for rI, we obtained 

 

μI = JE→INEτI [pwr+ + (1 – pw)r0] + μxi – JI→INIτIrI  

rI / k + Vθ = JE→INEτI [pwr+ + (1 – pw)r0] + μxi – JI→INIτIrI 

(1 / k + JI→INIτI) rI = JE→INEτI [pwr+ + (1 – pw)r0] + μxi – Vθ 

JE→INEτI [pwr+ + (1 – pw)r0] + μxi – VθrI = 
1 / k + JI→INIτI

[S1]

 

Next, we assumed that the standard deviation of the input current into the excitatory 

population was independent of its firing rate (29), i.e. σ ≡ σ+=σ0. Although this is 

questionable, the approximation is a good one when recurrence is dominated by 

NMDA and it simplified the analysis considerably.  

After these simplifications, the equations for the standard deviations of the currents 

could be removed and the inhibitory firing rate could be replaced by equation [S1]. In 

order to express inputs as currents instead of potentials and to drop the standard 

deviation, we introduced f(I) = φ(I /gL, σ), where gL = 25 nS was the pyramidal cell 

leak conductance and I was the mean input current. The network description could 

then be reduced to the following equations.  
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With w=0.1 and r+ ≈ 50 s-1, the non-coding population made up at most 10% of all 

pyramidal cell activity, which is negligible. Therefore, we set r0=0 and dropped the 

equation for r0. This simplification is useful, as it allows the graphical analysis of the 

WM network that is reported in the paper. 

We finally defined a number of auxiliary terms in order to make the resulting 

equations more compact. First, we normalized connection strengths with respect to 

the network, i.e. Ga→b=gLJa→bNaτb. Next, we introduced h=k / gL, which is the gain of 
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the interneuronal input-output curve expressed as spikes per delivered current. 

Finally, we introduced 

 

GI→EIX ≡ gL μxe – 
1 / h + GI→I

gL (μxi – Vθ) 

 

After these simplifications, the equations were reduced to one. So we collected the 

terms around r+, applied the firing rate function, and dropped the now unnecessary 

subscript + 
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IX should be set so that the neuron is just at the firing threshold. 

Equation [S2] forms the basis of our analysis of the mechanisms governing 

working memory capacity. By introducing the terms 

 

G+=w(GE→Eg+ – GI→EGE→I / (1 / h + GI→I )) 

G–= –w(GE→Eg- – GI→EGE→I / (1 / h + GI→I )) 
[S3] 

 

equation [S2] could also be rewritten into equation [1] in the Results section: 

 

r=f((G+ – G– (p – 1)) r + IX) 

 

Explicit Capacity Formula 
The above formula is an implicit equation for capacity. To obtain an explicit capacity 

formula, we used the fact that capacity is the value of p for which the straight line in 

Fig. 2A (the inverse of I(r)) is tangent to the input-output curve f(I). At this point of 

intersection, (Icap, f(Icap)), we have the following equation for the straight line 
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The condition that this line is tangent to f(I) at Icap is written as 
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From this equation one can derive (at least numerically, and maybe only for a range of 

parameter values) Icap as a function of IX. Then, we equated the slope of the straight 

line, 1/[G+–G–(pcap–1)] (compare to ΔI/Δr in Fig. 2A), to the left hand side of [S4] 
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Here, H(IX) represents the network effective connection strength at pcap. We next 

isolated pcap 
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This is equal to [2] in the main text. 

For some common models of the neuronal input-output function, e.g. the sigmoidal 

function f(I) = (1+e-I)-1, H(IX) can be written in closed form. To see this, enter (1+e-I)-1 

into equation [S4]. Further reorganization of the terms lead to the equation Icap – IX – 

1 – exp(Icap) = 0. This equation has the solution 

 

( )XI+
X eWI+=I 1

cap 1 −− , 

 

with W(x) being Lambert's W function. Therefore, for this case 
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This function is graphically plotted in SI Fig. 1, showing its monotonously decreasing 

dependence on IX.  
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Capacity is limited to a few items  

This section derives the formula [3] in the main text for the upper bound of capacity, 

. The formula for capacity pcap ([2] in main text) comes with a series of 

constraints on the parameters that limit the possible values of pcap. These constraints 

are: 

UL
capp

1. effective positive feedback within a local active population has to be strong 

enough so that the network can sustain persistent activity for a single item. 

This is mathematically expressed as G+ > H(IX) > 0. 

2. in order to maintain selectivity during multiple-item persistent activity, 

effective interactions between different active populations have to be 

inhibitory. This is mathematically expressed as G– > 0. 

Using the expressions [S3] for G+ and G– as a function of the physiological 

parameters, we obtain: 
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from which we conclude that there is a real number γ, constrained by 
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cannot be too large without making g– negative, the non-dimensional parameter γ lies 

close to unity. The equation shows that if γ ≈ 1, excitatory and inhibitory feedback are 

approximately balanced during the spontaneous state of network activity, when none 

of the selective populations are active. The case γ > 1 corresponds to the situation 

where inhibitory feedback exceeds excitatory feedback during baseline activity. Such 

a regime has been shown to be a requirement of baseline activity stability in attractor 

networks of working memory (29). Using this new parameter γ reflecting network 

balance, we can now write eq. [S3] as: 
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This shows that effective interactions within and between active populations (G+ and 

G–, respectively) are not independent from each other, but are linked through network 

balance and connectivity tuning. Therefore, the equation for the network capacity 

becomes: 
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Mathematically, pcap is in general not limited. For instance, eq. [S5] shows that when 

γ = g–, G– = 0 and pcap diverges. Obviously, a lack of lateral inhibition, i.e. a complete 

disconnection between subpopulations, leads to unlimited capacity. However, this is 

not biologically realistic. In particular, it has been shown that the stability of network 

activity in the absence of memorized items (spontaneous activity) can only be 

achieved when inhibitory feedback is at least as strong as excitatory feedback (29): γ 

> 1 > g―. In the balanced case of γ = 1, an upper limit for pcap (denoted ), can be 

determined. In this case, the expression for pcap takes a simple form, considering the 

relation between the parameters g+ and g― (g– = (1 – g+w) / (1 – w)): 

UL
capp

 

 
UL
cap

XX
cap p

G
IH

wp
G

IH
w

w
p =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−<⎟

⎠

⎞
⎜
⎝

⎛
−−=

++
max

max
)(

)1(1
)(

)1(11

, 

[S6]

with 1/H(IX) being bounded above by the maximal slope of the neuronal f-I curve f(I) 

(see lower bound for H(IX) in Fig. S1).  is the maximum value of G+ for which 

the spontaneous activity state is still stable. The equation shows that, assuming that 

the network operates in a balanced regime in the spontaneous state, inhibition-limited 

capacity is determined by two factors: pmax=1/w and /H(IX), the ratio of the 

maximum effective feedback excitation from the local population that still preserves 

+
maxG

+
maxG
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the quiescent memory state and the minimal effective feedback that can sustain 

persistent activity. 

To find an approximate value for , we must determine these two quantities. 

Unfortunately, the magnitude of w is not known, but recent estimates from delayed 

match-to-sample tasks in monkeys lie between 0.05 and 0.25 in the inferior temporal 

and prefrontal cortex (33). /H(IX), on the other hand, must be low enough so that 

the spontaneous activity remains stable. Since the spontaneous activity was assumed 

to be zero in the derivation of the capacity formula,  cannot be obtained from the 

formulas derived above. However, based on the analysis by Brunel (28), 1/  is the 

effective connection strength (inverse of the slope of the line) making the lower and 

middle fixed points in Fig. 2A and SI Fig. 3A fuse (1/H(IX) is the strength making the 

upper and middle fixed points fuse). Thus, the right and left borders of the golden area 

in SI Fig. 3A are the positions of the connectivity line corresponding to  and 

H(IX), respectively. In a network with maximal capacity, when only one item is 

stored, the effective connection strength is . At capacity, it is H(IX). As seen in 

eq. [6], capacity is related to the ratio . Both  and IX depend on 

rsp,E, the spontaneous rate of excitatory neurons. SI Figure 3 shows how  

and  vary with rsp,E when taking the f-I curve of a leaky integrate-and-fire neuron. 

For this neuronal model, with physiologically realistic values of rsp,E > 1 Hz, 

 < 1.5 and  comes close to experimentally observed value. For 

example, taking  = 1.5 in the above example we find . 

Naturally, in addition to rsp,E,  varies with the shape of the f-I curve. The more 

linear the f-I curve is, the smaller is the ratio between  and H(IX). For integrate-

and-fire neurons, the f-I curve is generally very linear for frequencies between a few 

Hz and up to 50 Hz (SI Fig. 3A), and it becomes more linear if neuronal input is 

noisy, as is the case in the brain. Experimentally measured f-I curves for neurons 

subject to noisy inputs also have a mostly linear rise at moderate rates (45,46), 

indicating that 1 < < 1.5 is indeed reasonable in real neurons. In 
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addition, physiological mechanisms present in cortical neurons such as spike-

frequency adaptation linearize non-linear input-output functions (47).  

Notice that our finding that the stability of the spontaneous and the persistent state 

imposes a limit on the capacity of the network through the inequality 1 < 

 < 1.5 , setting it to about 40% of its maximal capacity, was obtained by 

positioning ourselves in the limit cases: perfect input balance (γ=1), and stability of 

fixed points, assuming a fluctuation-free environment. In the general cases of γ>1 and 

fluctuation-rich background, the constraints on  will be more severe and 

will result in a sharper reduction of capacity. Thus, although our analysis does not 

unequivocally limit the theoretical upper limit of WM capacity to what is found 

experimentally, it shows that such a low limit exists and is due to the physiological 

properties of cortical neurons (relatively linear f-I curves) and cortical networks 

(excitation-inhibition balance). 

)(/max XIHG +

)(/max XIHG +
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