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Figure S1: Direct validation of MIST MI approximation. To evaluate the MIST frame-
work, we simulated 100 randomly generated networks with analytically computable joint
entropies and applied the metrics using a range of sample sizes. Half of each network was
randomly chosen and the MI between one half and the other was computed analytically or
using the MIST approximation of various orders. When the analytical entropies are known
exactly (A), the higher-order approximations performing increasingly well. When the en-
tropies are estimated from a finite sample, however (C–E), the approximations provide the
best estimates, with the higher-order approximations performing better as more data be-
come available. This behavior is quantified by computing the sum-of-squared error of each
metric as a function of the sampling regime (B). The best approximation to use depends
upon the amount of data available, but for all cases examined with finite sample size, the
approximations outperform direct estimation and the second-order approximation provides
a good estimate.
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Figure S2: Gene subset selection for cancer classification. Subsets of gene expression
levels were chosen incrementally to maximize the information content with the cancer class
variable according to MIST2, direct estimation of MI, mRMR, or at random and the chosen
sets were scored by the cross-validation error of an SVM classifier trained to discriminate the
cancer type. For all data sets, 75% of the data was separated and used to select features and
train the model; the classifier was then used to classify the remaining 25% of the samples.
The mean classification error and standard error of the mean for 200 such training/testing
partitioning are reported. Genes were selected for data sets relating to (A) breast, (B)
leukemia, (C) colon, and (D) prostate cancer.
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Figure S3: Gene subset selection for cancer classification. Subsets of gene expression levels
were chosen incrementally to maximize the information content with the cancer class vari-
able according to MIST2 or mRMR and the chosen sets were scored by the cross-validation
error of an LDA (A,D,G,J), 3NN (B,E,H,K), or 5NN (C,F,I,L) classifier trained to discrim-
inate the cancer type. For all data sets, 75% of the data was separated and used to select
features and train the model; the classifier was then used to classify the remaining 25% of
the samples. The mean classification error and standard error of the mean for 200 such
training/testing partitioning are reported. Genes were selected for four data sets relating
to (A,B,C) breast, (D,E,F) leukemia, (G,H,I) colon, and (J,K,L) prostate cancer. Results
using an SVM classifier and including direct estimation-based feature selection are shown in
Figure 4.
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Figure S4: Correlation of classification error and MI metrics. The classification error
of randomly chosen subsets of 1–15 genes was computed through cross-validation with an
SVM based classifier. The same sets were then scored by MIST2 (A,D,G,J), MI computed
with direct estimation (B,E,H,K), and mRMR (C,F,I,L) and these metrics are shown plotted
against the CV classification error. The color of the points relates to the size of the feature
set, cycling through blue, green, red, cyan, magenta, yellow, black for increasing set size.
The correlation coefficients between metrics as a function of set size is shown in Figure 3.
Notably, MIST2 has strong negative correlation across all feature set sizes.
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Table S1: Microarray data sets for cancer classification

Tissue # Samples # Genes Class Type Ref

breast 295 70 good/bad prog [24]
leukemia 72 7070 AML/ALL [11]

colon 62 2000 normal/tumor [2]
prostate 102 12600 normal/tumor [20]
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Table S2: Genes selected by MIST2

Tissue # Gene ID Reproduce % Cancer Relevance Other Studies

breast 1 NM 003981 91.0∗ [17] [14, 5, 21]
2 AI918032 91.0∗ [5]
3 NM 003239 85.5∗ [9] [5]
4 AW024884 52.0∗

5 AA404325 68.5∗

6 AF055033 77.0∗ [5, 21]
7 AW014921 77.0∗

8 AL080059 49.5∗ [26]
9 AI738508 1.5
10 AK000745 17.0

leukemia 1 M27891 33.0∗ [10, 3, 6, 26, 4, 8]
2 U29175 3.5∗ [3, 8]
3 U72621 19.0∗ [1] [3]
4 U88047 7.5∗ [8]
5 M92287 24.0∗ [19] [3, 4, 8]
6 M19507 2.0 [3, 6, 4, 8]
7 D84294 0.5
8 HG3549-HT3751 6.5∗

9 M32304 6.5∗ [3]
10 AF005043 1.0

colon 1 M63391 22.0∗ [7] [3, 4, 8]
2 U30825 3.5 [3, 8]
3 T57468 4.5∗ [8]
4 T47377 21.5∗ [3, 4, 8]
5 M26383 19.0∗ [3, 4, 8]
6 R39209 24.5∗ [8]
7 M76378 5.5∗ [3, 4, 8]
8 M80815 3.0 [3, 8]
9 Y00097 4.5∗ [18]
10 X90858 1.0 [12] [3]

prostate 1 X07732 90.0∗ [13] [6, 25, 22]
2 U24577 33.0∗

3 M62895 6.0∗ [16]
4 U12472 14.0∗

5 D80010 17.5∗

6 AB014545 15.0∗

7 AB023204 27.0∗

8 U67615 23.5∗

9 M21536 12.5∗ [15]
10 AF038451 4.0∗ [23]

∗Bonferroni adjusted pval≤0.01 for gene occuring this often in 200 random 10-feature selection runs.
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