Letter to the Editor

Gen-Probe Test Should Not Be Considered Final in Mycobacterium tuberculosis Identification

The package insert for the Gen-Probe Mycobacterium TB complex (Gen-Probe, Inc., San Diego, Calif.) states very clearly:

"The Gen-Probe rapid diagnostic system for Mycobacterium TB complex is a test to confirm the identity of members of the *Mycobacterium tuberculosis* complex isolated in culture. The test uses a specific ¹²⁵I-DNA probe complementary to the ribosomal RNAs of members of the *M. tuberculosis* complex: *M. tuberculosis*, *M. bovis*, *M. bovis* BCG, *M. africanum*, and *M. microti*."

The advantage of this rapid technique (as well as the BACTEC NAP [p-nitro- α -acetyl-amino- β -hydroxy-propiophenonel] test) is obvious: to alert the physician in the short term that the patient's isolate belongs to the M. tuberculosis complex and very likely is M. tuberculosis. This message can be used as a basis for immediate public health measures, as well as for starting appropriate chemotherapy. But the Gen-Probe technique cannot provide final identification of M. tuberculosis, whose identification can be confirmed only by a battery of tests that differentiates M. tuberculosis from other members of the complex: niacin, nitrate reduction, pyrazinamidase, and 2-thiophene carboxylic acid susceptibility.

This fact was overlooked in the recent paper by Paul D. Ellner, Timothy E. Kiehn, Robert Cammarata, and Marion Hosmer (J. Clin. Microbiol. 26:1349–1352, 1988). The authors said nothing about the limitations of the Gen-Probe TB complex techniques. They said, "Biochemical tests for identification can add 2 to 4 weeks to the completion time of the final report. The probe procedure can be performed in approximately 2 h, and the specificity of the probes permits the elimination of biochemical testing on those isolates giving positive probe reactions."

The Gen-Probe technique is an excellent development, but the above-quoted statement is misleading in regard to the advantages of the Gen-Probe technology. In fact, the Gen-Probe method must not eliminate the biochemical testing of those isolates identified as *M. tuberculosis* complex, especially of those isolates from extrapulmonary specimens.

Leonid Heifets

Mycobacteriology Laboratory
National Jewish Center for Immunology
and Respiratory Medicine
1400 Jackson Street
Denver, Colorado 80206

Author's Reply

Dr. Heifets is correct in stating that the *Mycobacterium tuberculosis* complex probe identifies the *M. tuberculosis* complex and that further biochemical testing is necessary to specifically identify *M. tuberculosis*.

The probability that an isolate is *M. bovis* is quite low in the United States, and this organism is readily identified in probe-positive isolates by negative niacin and nitrate tests. In actuality, both of our laboratories provide a preliminary report of "*M. tuberculosis* complex" on probe-positive specimens, permitting physicians to initiate appropriate therapy. A final report of "*M. tuberculosis* confirmed," accompanied by susceptibilities to antituberculous drugs, is made when the results of niacin and nitrate tests become available.

The other members of the *M. tuberculosis* complex would be extremely rare: *M. africanum*, found in tropical Africa, is probably not a distinct species (3); and *M. microti*, occurring in voles and other animals, may be regarded as a biovar of *M. tuberculosis* (1, 2).

Some laboratories may well elect to limit the identification of respiratory isolates to the probe procedure, based upon the probability that in their patient populations all such isolates are *M. tuberculosis*. In these situations, reports should indicate presumptive *M. tuberculosis* or *M. tuberculosis* complex.

LITERATURE CITED

- 1. Stanford, J. L., and J. M. Grange. 1974. The meaning and structure of species as applied to mycobacteria. Tubercle 55:143-152.
- Wayne, L. G. 1982. Actions of the Judicial Commission of the International Committee on Systematic Bacteriology on requests for opinions published between July 1979 and April 1981. Int. J. Syst. Bacteriol. 32:464-465.
- 3. Wayne, L. G., and G. P. Kubica. 1986. Genus Mycobacterium Lehmann and Neumann 1896, 363^{AL}, p. 1436–1457. In P. H. A. Sneath, N. S. Mair, M. E. Sharpe, and J. G. Holt (ed.), Bergey's manual of systematic bacteriology, vol. 2. The Williams & Wilkins Co., Baltimore.

Paul D. Ellner

Clinical Microbiology Service The Presbyterian Hospital New York, New York 10032

Timothy E. Kiehn

Diagnostic Microbiology Service Memorial Sloan-Kettering Cancer Center New York, New York 10021