Table S1

Vaccinia gene (WR strain)	Protein topology ¹	Evidence for translation ^{2,46}	Full length (amino acids)	Signal peptide (Sig)/transmembrane domain ³	Primers ⁴	Restriction endonuclease sites	Final protein insert (amino acids) ⁵
F12L	IEV (E) ⁶ ; Cytosol- oriented (E)	Mut ⁶	635		tagtt <i>aagctt</i> gccaccatggACAGGGTACAAATCTTGATGA tggag <i>gcggccgc</i> gTTACCATCTGACTCATGGATT	HindIII/Notl	4-633
F15L ⁷	Cytosolic/viral membrane assembly (I)		147		tagttaagcttgccaccatgGAAATTTTTAATGTAGAAGAATTGA tggag <i>gcggccgc</i> gCTATTTCGAATTTAGGCTTCC	HindIII/NotI	2-146
G4L	Cytosol/IMV surface (I) ⁸	MS ⁹	124		tagtt <i>aagctt</i> gccaccatggcgAAGAACGTACTGATTATTTTCG ttggag <i>gcggccgc</i> gctGTAACAGGTGGCCAAACTC	HindIII/NotI	2-123
L1R	IMV surface (E) ¹⁰	Ab ¹⁰ ; MS ⁹	250	tm: 182-204	tagtt <i>aagctt</i> gccaccatgGCGGCAAGCATACAGACGA tggag <i>gcggccgcg</i> TACCAGCAACTTGTTTAGGTG	HindIII/Notl	4-182
L4R	nucleoprotein core (E) ¹²	Seq ¹¹ ; F ¹² ; MS ⁹	251		tagtt <i>aagctt</i> gccaccatggTACTGCTAGAAAACCTCATCG tggag <i>gcggccgc</i> gcATCCTTTGTCGGAATATCTGT	HindIII/Notl	4-251
J5L	IMV surface (I)	Mut ¹³ , MS ⁹	133	tm: 110-132	tagtt <i>aagctt</i> gccaccatggACGAACAAATTTATGCATTCT tggag <i>gcggccgc</i> gcTCTAATTTCCTGATTCAGATAGC	HindIII/NotI	3-109
H3L	IMV surface (E) ¹⁵	Ab ¹⁴ ; Mut ¹⁵ ; Seq ¹¹ ; MS ⁹	324	tm: 283-305	tagtt <i>aagctt</i> gccaccatggcGGCGAAAACTCCTGTTATT tggag <i>gcggccgc</i> gctGAAATCAGTGGAGTAGTAAACG	HindIII/NotI	4-281
D6R	nucleoprotein core (E) ¹⁶	Ab ¹⁷ ; Mut ¹⁶ ; MS ⁹	637	tm: 41-63	<pre>tagttaagcttgccaccatggcgAGATTTAAAAAGGTTTACATTCTA tggaggcggccgcgcTGGAGAAGATACCACGTTA</pre>	HindIII/NotI	64-637
D8L	IMV surface (E) ¹⁸	Seq ¹¹ ; MS ⁹	304	tm: 275-294	tagtt <i>aagctt</i> gccaccatggcgCCGCAACAACTATCTCCTATT tggag <i>gcggccgc</i> gctTTCTCTTCGATATATTTTTGAT	HindIII/Notl	2-274
D13L	IMV inner surface (E) ¹⁹	F ¹⁹ ; Ab ¹⁹ ; MS ⁹	551		tagtt <i>ggtacc</i> gccaccatggcGATCGGTGGGGATGACTC tggag <i>gcggccgc</i> gctTTATCTCCCATAATCTTGGTAA	Kpnl/Notl	10-549
A4L	nucleoprotein core (E) ²⁰	Ab ²⁰ ; MS ⁹	281		tagtt <i>aagctt</i> gccaccatggcgTTCTTTAACAAGTTCTCACAGG tggag <i>gcggccgc</i> gctAATCGTTCAAAACCTTTGACT	HindIII/Notl	2-281
A11R	Non- structural assembly (E) ²¹	Ab ²¹ ; Mut ²¹ ; MS ⁹	318	tm: 241-259; 293-312	tagtt <i>aagctt</i> gccaccatggcgCCAGTGACGGATATACAAA tggag <i>gcggccgc</i> gTTCTACTTTCGTGATATTGTTT	HindIII/NotI	2-240
A12L	nucleoprotein core (E) ²²	Seq ¹¹ ; MS ⁹	192		tagtt <i>aagctt</i> gccaccatggcgAAAAATTTAGCCGTTAGAAGC tggag <i>gcggccgc</i> gcgTACATTCCCATATCCAGACAA	HindIII/NotI	2-192
A27L	IMV surface (E) ²³	Ab ²⁴ ; Mut ²³ ; Seq ¹¹ ; MS ⁹	110		tagtt <i>aagctt</i> gccaccatggcgCTTTTCCCCGGAGATGA tggag <i>gcggccgc</i> gCATATGGGCGCCGTCCAGTC	HindIII/Notl	5-110
A33R	EEV surface	Ab ²⁶ ; Mut ²⁷ ;	185	tm: 34-56	tagtt <i>aagctt</i> gccaccatggGCCTAAATCAATGCATGTCT	HindIII/NotI	58-183

	(E) ²⁵				tggag <i>gcggccgc</i> gcTGTTTTAACACAAAAATACTTTCTA		
A36R	IEV (not EEV) surface (E) ²⁸	F ²⁹ ; Mut ²⁹	221	tm: 5-24	tagtt <i>aagctt</i> gccaccatggcgAGGAAAAAGATACGTACTGTCTATAA tggag <i>gcggccgc</i> gATGATACGACCGATGATTCTA	HindIII/NotI	26-219
A38L	EEV surface (I) ³⁰	Ab ³¹ ; F ³¹ ; Mut ³¹	277	Sig: 1-21 tm: 125-147; 154-176; 186-208; 215-237; 247-269	tagtt <i>aagctt</i> gccaccatggCTACAAAGACTATAGAGTATACAGCA tggag <i>gcggccgc</i> gTTTGGTAATCATTAAACCAATTA	Hind111/Not1	20-124
A39R ³²	secreted (I) ³³	Ab ³³ ; Mut ³³	295	tm: 4-21; 28-50	tagtt <i>aagctt</i> gccaccatggGTATCGAATGGCATAAGTTTG tggag <i>gcggccgc</i> gGAATAGGTACATAATGCGGACT	HindIII/Notl	53-294
A40R	Cell surface (E) ^{34, 35}	Ab ³⁵ ; Mut ³⁵	159	tm: 7-29	tagtt <i>aagctt</i> gccaccatggcgTTAAAAGTTGTAGAACGTAAATTAG tggag <i>gcggccgc</i> gcAGTGTAACACGAATGCAGTTT	HindIII/NotI	30-158
A56R	EEV surface (E) ³⁶	Ab ³⁷ ; Mut ³⁷	314	Sig: 1-17 tm: 279-301	tagtt <i>aagctt</i> gccaccatggcgCCTTTTCCTCAGACATCTAAA tggag <i>gcggccgc</i> gcTTCTACAAAGTCCTTGGTTTT	HindIII/Notl	18-278
B5R	EEV surface (E) ^{38, 39}	Ab ^{38,39}	317	Sig: 1-20 tm: 280-302	tagtt <i>aagctt</i> gccaccatggcgCCCACTATGAATAACGCTAAA tggag <i>gcggccgc</i> gctTGATAAGTTGCTTCTAACGATT	HindIII/Notl	24-278
B19R	Secreted (I)	Mut ⁴⁰	351	Sig: 1-24	tagtt <i>aagctt</i> gccaccatggCGATCGAAAATGAAATCACAGAA tggag <i>gcggccgc</i> GCTACTGTAGTTGTAAGGGTTTTT	HindIII/NotI	26-348

Initially tested but later excluded from the array

F13L	IEV surface (E) ⁴¹ ; EEV inner membrane (E) ^{41,42}	Ab ⁴¹ ; Mut ⁴¹	372		tagtt <i>aagctt</i> gccaccatggCTGCGGGAGCAAAATGTA tggag <i>gcggccgc</i> gcGTGGCTAGATACCCAATCTCT	Hind111/Not1	9-366
A32L	Non- structural assembly (E) ²¹	Ab ²¹ ; Mut ⁴³	270	tm: 21-43	tagtt <i>aagctt</i> gccaccatggtaTTCTTGTTTACACCCGTTT tggag <i>gcggccgc</i> gtTTTTGACGACGATGATT	HindIII/NotI	44-270
A34R	EEV ^{43,44}	Ab ⁴⁴ , Mut ^{44,45}	168	tm: 15-37	tagtt <i>aagctt</i> gccaccatggACAAAGAAGAACTGATGCCTA tggag <i>gcggccgc</i> gctTTTTTAACACATAGTACAGATTGA	HindIII/NotI	39-165

Topology considered experimentally-demonstrated (E) based on indicated reference or indirect (I) based on bibliographic, domain and bioinformatic analysis.

² Evidence from vaccinia mutant analysis (Mut) or functional activity (F), from detection of virus-induced protein-specific antibodies (Ab), or from

detection in purified IMV preparations by direct protein sequencing (Seq) or by mass spectroscopy analysis of tryptic digests (MS).

Signal peptides and transmembrane domains predicted by the Simple Modular Architecture Research Tool (SMART) sequence analysis tool (Letunic I,

Copley RR, Pils B, Pinkert S, Schultz J, Bork P. (2006) SMART 5: domains in the context of genomes and networks. Nucleic Acids Res. 34:D257-60).

1		
2		
3		
4		
5		
6		
7	4	Forward and reverse primers for amplification from vaccinia WR genomic DNA. Canitalized sequence represents vaccinia-encoded region: lower case
8		sequence is filler including restriction endonuclease site (italicized) and for the forward primer, an optimal Kozak sequence incorporating a start codon
9		(accaccATCa)
10	5	(gecaccarding).
10	6	ven Eijl H. Hellinghead M. Bedger G. Zhang W.H. Smith CL (2002) The venering virus E121, protein is associated with intracellular enveloped virus particles
		van Eiji H, Hollinshead M, Rodger G, Zhang WH, Smith GL (2002) The vaccinia virus F12L protein is associated with intracentular enveloped virus particles
12	7	and is required for their egress to the cell surface. J. Gen. Virol 83: 195–207.
13	,	Although the possible function and topological orientation of F15L has not yet been determined, it is included since its sequence is completely conserved
14	8	amongst all orthopox viruses with no remotely similar mammalian or other eukaryotic homolog. It thus offers itself as a potential interesting antibody target.
15	8	Senkevich TG, White CL, Weisberg A, Granek JA, Wolffe EJ, Koonin EV, Moss B (2002) Complete pathway for protein disulfide bond formation encoded
16	0	by poxviruses. Proc Natl Acad Sci USA 99: 6667-72.
17	9	Resch W, Hixson KK, Moore RJ, Lipton MS, Moss B (2007) Protein composition of the vaccinia virus mature virion. <i>Virology</i> 358 : 233-47.
18	10	Wolffe EJ, Vijaya S, Moss B (1995) A myristylated membrane protein encoded by the vaccinia virus L1R open reading frame is the target of potent
19		neutralizing monoclonal antibodies. Virology 211: 53-63.
20	11	Takahashi T, Oie M, Ichihashi Y. (1994) N-terminal amino acid sequences of vaccinia virus structural proteins. Virology 202 : 844-52.
21	12	Bayliss CD, Wilcock D, Smith GL (1996) Stimulation of vaccinia virion DNA helicase I8R, but not A18R, by a vaccinia core protein L4R, an ssDNA
22		binding protein. J. Gen. Virol. 77: 2827-31.
23	13	Zajac P. Spehner D. Drillien R (1995) The vaccinia J5L open reading frame encodes a polypeptide expressed late during infection and required for viral
2.5		multiplication. Virus Res. 37 : 163-73.
25	14	Houses <i>et al.</i> (1998) The reactivity of monoclonal antibodies against orf virus with other parapoxyiruses and the identification of a 39kDa immunodominant
20		nrotein Arch Virol 143: 2289-303
20	15	Lin CL Chung CS Heine HG Chang W (2000) Vaccinia virus envelope H3L protein hinds to cell surface hengrin sulfate and is important for intracellular
27		motics, virial morphononosis and virus infortion in vitus and in viva. I Viral 74: 2252-65
28	16	Christen L. Higman MA. Niles EC (1002) Depositive abgrasterization of three temperature consistive mutations in the veccinic virus early gone transprintion.
29		initian forta L, Highlan MA, Nics EG (1992) Phenotypic characterization of three temperature-sensitive mutations in the vaccinia virus early gene transcription
30	17	
31	18	Gersnon PD, Moss B (1990) Early transcription factor subunits are encoded by vaccinia virus late genes. <i>Proc Natl Acad Sci USA</i> 87: 4401-5.
32	10	Hsato JC, Chung CS, Chang W (1999) Vaccinia virus envelope D8L protein binds to cell surface chondroitin sulfate and mediates the adsorption of
33	10	intracellular mature virions to cells. J. Virol. 73: 8/50-61.
34	19	Szajner P, Weisberg AS, Lebowitz J, Heuser J, Moss B (2005) External scaffold of spherical immature poxvirus particles is made of protein trimers, forming
35	20	a honeycomb lattice. J. Cell Biol. 170: 971-81.
36	20	Cudmore S et al. (1996) A vaccinia core protein, p39, is membrane-associated. J. Virol. 70 : 6909-21.
37	21	Resch W, Weisberg AS, Moss B (2005) Vaccinia virus nonstructural protein encoded by the A11R gene is required for formation of the virion membrane. J.
38		<i>Virol.</i> 79 : 6598-609.
30	22	Whitehead SS, Hruby DE (1994) Differential utilization of a conserved motif for the proteolytic maturation of vaccinia virus core proteins. <i>Virology</i> 200 :
40		154-61.
40	23	Sodeik B, Cudmore S, Ericsson M, Esteban M, Niles EG, Griffiths G (1995) Assembly of vaccinia virus; incorporation of p14 and p32 into the membrane of
41		the intracellular mature virus. J. Virol. 69: 3560-74.
42		
43		
44		
45		
46		
47		71
48		51
49		

Gong SC, Lai CF, Esteban M (1990) Vaccinia virus induces cells fusion at acid pH and this activity is mediated by the N-terminus of the 14-kDa virus envelope protein. Virology 178: 81-91. Roper RL, Payne LG, Moss B (1996) Extracellular vaccinia virus envelope glycoprotein encoded by the A33R gene. J. Virol. 70: 3753-62. Galmiche MC, Goenaga J, Wittek R, Rindisbacher L (1999) Neutralizing and protective antibodies directed against vaccinia virus envelope antigens. Virology 254: 71-80. Gurt I, Abdalrhman I, Katz E (2006) Pathogenicity and immunogenicity in mice of vaccinia viruses mutated in the viral envelope proteins A33R and B5R. Antiviral Res. 69: 158-64. van Eijl H, Hollinshead M, Smith GL (2000) The vaccinia virus A36R protein is a type Ib membrane protein present on intracellular but not extracellular enveloped virus particles. Virology 271: 26-36. Ward BM, Weisberg AS, Moss B (2003) Mapping and functional analysis of interaction sites within the cytoplasmic domains of the vaccinia virus A33R and A36R envelope proteins. J. Virol. 77: 4113-26. Ref. 31 below addresses the topology of A38L, finding that the N-terminal hydrophilic region (amino acids 20-124 used here) is probably intraluminal with respect to the endoplasmic reticulum placing it appropriately both for expression on the EEV and on the plasma membrane with a structure and topology similar to that of CD47. Using an antibody developed against an N-terminal region linear peptide, no expression is found on EEV or IMV, although the authors caution that the antibody reagent may be weak. Parkinson JE, Sanderson CM, Smith GL (1995) The vaccinia virus A38L gene product is a 33-kDa integral membrane glycoprotein. Virology 214: 177-88. A39R is a secreted semaphorin-like molecule in vaccinia strain Copenhagen but an integral membrane semaphorin-like protein (VACWR163) is genomically encoded in vaccinia strain WR. Gardner JD, Tscharke DC, Reading PC, Smith GL (2001) Vaccinia virus semaphorin A39R is a 50-55 kDa secreted glycoprotein that affects the outcome of infection in a murine intradermal model. J. Gen. Virol. 82: 2083-2093. As for A38L(see note 29 above), immunoblotting with anti-A40R shows strong infected cell expression but no detected signal in purified IMV or EEV. Given the ER origin of the EEV membrane, however, some incorporation cannot be definitively excluded. Further, the strong expression at the infected cell surface may still lead to induction of a humoral immune response. Wilcock D, Duncan SA, Traktman P, Zhang W-H, Smith GL (1999) The vaccinia virus A40R gene product is a non-structural, type II membrane glycoprotein that is expressed at the cell surface. J. Gen. Virol. 80: 2137-48. Payne LG, Norrby E (1976) J. Gen. Virol. 32: 63-72. Law M, Smith GL (2001) Antibody neutralization of the extracellular enveloped form of vaccinia virus. Virology 280: 132-142. Engelstad M, Howard ST, Smith GL (1992) A constitutively expressed vaccinia gene encodes a 42-kDa glycoprotein related to complement control factors that forms part of the extracellular virus envelope. Virology 188: 801-10. Isaacs SN, Wolffe EJ, Payne LG, Moss B (1992) Characterization of a vaccinia virus-encoded 42-kilodalton class I membrane glycoprotein component of the extracellular virus envelope. J. Virol. 66: 7217-24. Jackson SS et al. (2005) Role of genes that modulate host immune responses in the immunogenicity and pathogenicity of vaccinia virus. J. Virol. 79: 6554-9. Husain M, Weisberg A, Moss B (2003) Topology of epitope-tagged F13L protein, a major membrane component of extracellular vaccinia virions. Virology 308: 233-42. Payne L (1978) Polypeptide composition of extracellular enveloped vaccinia virus. J. Virol. 27: 28-37. Cassetti MC, Merchlinsky M, Wolffe EJ, Weisberg AS, Moss B (1998) DNA packaging mutant: repression of the vaccinia virus A32 gene results in noninfectious, DNA-deficient, spherical, enveloped particles. J. Virol. 72: 5769-80.

- ⁴⁴ Duncan SA, Smith GL (1992) Identification and characterization of an extracellular envelope glycoprotein affecting vaccinia virus egress. J. Virol. 66: 1610-21.
 ⁴⁵ Farlow AK, Chen WM, Word BM (2008) The vaccinia virus B5 protein requires A24 for officient intracellular trafficking from the endeployment restriction of the endeployment of the endeployme
- Earley AK, Chan WM, Ward BM (2008) The vaccinia virus B5 protein requires A34 for efficient intracellular trafficking from the endoplasmic reticulum to the site of wrapping and incorporation into progeny virions. *J. Virol.* **82**: 2161-9.
- ⁴⁶ A recent article using high-resolution reversed-phase nano-LC-MS/MS of purified IMV and EEV confidently identifies tryptic peptides derived from every protein used in our array except for A38L. Manes NP, Estep RD, Mottaz HM, Moore RJ, Clauss TRW, Monroe ME, Du X, Adkins JN, Wong SW, Smith RD (2008) Comparitive proteomics of human monkeypox and vaccinia intracellular mature and extracellular enveloped virions. *J. Proteome Res.* **7**: 960-8

Figure S1

Figure S2

Figure S3

