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Supplemental Material S1. 5S rRNA sequence alignments. Sequence alignments were downloaded from 

the Rfam database and parsed to identify the most complete sequence for each species.  SeqQR was used 

to reduce sequence redundancy as described in Methods. (See Stombaugh_et_al_Sup_Mat_S1.fasta) 

 

Supplemental Material S2. 16S rRNA sequence alignments.  Sequence alignments were downloaded 

from the European Ribosomal database and parsed to identify the most complete sequence for each 

species.  SeqQR was used to reduce sequence redundancy as described in Methods.  (See 

Stombaugh_et_al_Sup_Mat_S2.fasta) 

 

Supplemental Material S3. 23S rRNA sequences alignments. Sequence alignments were downloaded 

from the European Ribosomal database and parsed to identify the most complete sequence for each 

species.  SeqQR was used to reduce sequence redundancy as described in Methods. (See 

Stombaugh_et_al_Sup_Mat_S3.fasta) 

 

Supplementary Material S4. Reduced redundancy list of NDB/PDB files. This list comprises 

representative RNA containing PDB files selected as described in Methods. (See 

Stombaugh_et_al_Sup_Mat_S4.pdf) 

 

Supplemental Table S5. Comparison of basepairs predicted by Leontis et al. (2002) with instances found 

using FR3D in 3D structures published since 2002.  Only four predicted basepairs have still not been 

observed (lower part of table). 

 
Supplementary Material S6.  Isosteric Matrices (IM) for each geometric family showing IDI values for 

all base combinations that occur in that geometric basepair family. In some otherwise symmetric families, 

namely cWW, cHH, and tHH, the AA, CC, GG, and UU basepairs are not symmetric and so appear in the 

IDI table twice.  Because in tWW, the AA, CC, GG, UU basepairs are perfectly symmetric, there is no 

need to list them twice. Finally, with cSS and tSS, the basepairs are not symmetric at all, and so all 

basepairs appear twice. The columns and rows of this Excel file may need to be re-sized for readability. 

(See “Sup_Mat_S6” worksheet in Stombaugh_et_al_Sup_Mat_S6_S7_S8.xls) 

 

Supplementary Material S7.  IDI values calculated for all base combinations within each geometric 

basepair family. The columns and rows of this Excel file may need to be re-sized for readability. (See 

“Sup_Mat_S7” worksheet in Stombaugh_et_al_Sup_Mat_S6_S7_S8.xls) 

NT1 NT2 NT1 NT2 NT1 NT2

Predicted - G - A - - 8.5 O6 H2 H11 N3 H21 O2'

Observed 2avy G 394 A 366 1 8.6 O6 H2 H11 N3 H21 O2'

Predicted - U - C - - 6.5 H3 O2 O2 HO2'

Observed 1lng U 185 C 233 1 7.1 --- --- --- ---

Predicted - U - U - - 6.5 H3 O2 O2 HO2'

Observed 1s72 U 454 U 1362 1 6.1 H3 O2 --- ---

Predicted - A - C - - 10.0 H62 HO2' H61 O2

Observed 1s72 A 843 C 838 2 9.5 H62 HO2' H61 O2

Predicted - A - U - - 10.0 H62 O2' H61 O2

Observed 1s72 A 57 U 28 1 9.4 H62 O2' H61 O2

Predicted - U - U - - 8.5 O4 OH2' H3 O2

Observed 1grz U 106 U 258 1 8.2 --- --- H3 O2

Predicted - G - A - - 7.6 O6 H2

Observed 2j01 G 2052 A 2051 1 7.1 O6 H2

Predicted - U - C - - 7.0 O2 H5

Observed 1et4 U 223 C 222 1 6.2 O2 H5

Predicted - C - C - - 5.6 O2' HO2' HO2' O2

Observed 1q86 C 75 C 2542 1 5.8 O2' HO2' HO2' O2

Predicted - G - C - - 5.6 O2' HO2' HO2' O3

Observed 359d G 50 C 152 13 6.2 O2' HO2' HO2' O3

Predicted - G - U - - 5.6 O2' HO2' HO2' O4

Observed 1s72 G 871 U 866 7 5.9 O2' HO2' HO2' O4

Predicted - G - A - - 8.4 N3 H2 H22 N3 H2 O2'

Observed 2aw4 G 1750 A 2860 2 7.8 --- --- H22 N3 --- ---

Predicted cWH - A - U - - 10.5 H61 O4 N1 H5 - - 0.2%

Predicted cWH - C - U - - 10.5 H41 O4 N4 H5 - - 0.0%

Predicted tWS - C - U - - 9.4 H42 O2' H41 O2 - - 0.3%

Predicted cSs - U - U - - 5.3 O2' HO2' HO2' O5 - - 0.2%
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Supplementary Material S8. Basepair frequencies from 5S, 16S and 23S Bacterial sequence alignments, 

E.c. and T.th. 3D structures, and reduced redundancy set of 3D structures. Frequencies from the Bacterial 

sequence alignments were calculated using the Bacterial “conserved core” for each molecule (5S, 16S and 

23S), determined from the 3D structural alignments (see Supplemental Table S9). The columns and 

rows of this Excel file may need to be re-sized for readability. (See “Sup_Mat_S8” worksheet in 

Stombaugh_et_al_Sup_Mat_S6_S7_S8.xls) 

 

Supplementary Material S9. 3D structural alignments for 5S, 16S and 23S rRNAs of E.c. and T.th. For 

the 5S and 23S rRNA alignments the H.m. structures are included.  The 3D alignment for each rRNA 

appears as a separate worksheet. The IDI values are color-coded as in previous IDI tables. IDIs were 

calculated between aligned basepairs of E.c. and T.th. using basepair exemplars for the basepair detected 

by FR3D (column “M”) or using the coordinates from the 3D structures (column “N”).  When the IDI 

values were greater than 3.3, the basepair positions were analyzed manually and the reason for the high 

IDI was identified (column “O”) as one of four possibilities: (1) Same base combination and same 

basepair family, but difference in 3D modeling leading to higher IDI than calculated from exemplars; (2) 

Isosteric or near isosteric base combination and same basepair family, but difference in 3D modeling 

leading to higher IDI than calculated from exemplars; (3) Non-isosteric base combination and same 

basepair family; (4) Basepair is adjacent to a variable Motif. The columns and rows of this Excel file may 

need to be re-sized for readability. (See Stombaugh_et_al_Sup_Mat_S9.xls) 
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