Finding Optimum Solutions for Multiple Target Control in Disease Related Molecular Network

Kun Yang^{1,2}, Hongjun Bai^{1,2}, Qi Ouyang², Luhua Lai^{1,2*}, Chao Tang^{2,3}

¹Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

²Center for Theoretical Biology, Peking University, Beijing 100871, China

³Department of Biopharmaceutical Sciences, University of California, San Francisco, CA

94158-2330, USA

*Corresponding author:

Luhua Lai

College of Chemistry and Molecular Engineering and Center for Theoretical Biology

Peking University

Beijing 100871, China

E-mail: lhlai@pku.edu.cn

Tel: 86-10-62757486; Fax: 86-10-62751725

Table of Content

- Supplementary protocol
- Supplementary figures
- Supplementary tables

Supplementary Protocol

The construction of arachidonic acid metabolic network

The arachidonic acid metabolic network (AAnetwork) with a multi-cellular ensemble of human polymorphonuclear leukocyte (PMN), endothelial cells (EC) and platelet (PLT) was constructed based on our previous work and published experiments (Claesson &Haeggstrom, 1988; Denzlinger, 1996; Husain &Abdel-Latif, 2001; Inoue *et al*, 2000; Kojima *et al*, 2005; Ohd *et al*, 2000; Tsubouchi *et al*, 2001; Weaver *et al*, 2001; Yang *et al*, 2007). A group of ordinary differential equations (ODE) were written for PMN, EC and PLT, respectively, to simulate the time-course metabolism of arachidonic acid (AA). The productions of metabolites in the network were calculated as the sum of the corresponding output in three types of cells. For example:

$$Output_{PGE2} = C_{PGE2,PMN} \cdot V_{PMN} \cdot n_{PMN} + C_{PGE2,EC} \cdot V_{EC} \cdot n_{EC} + C_{PGE2,PLT} \cdot V_{PLT} \cdot n_{PLT} \quad \dots \quad (1)$$

where $C_{PGE2,PMN}$ is the concentration of PGE2 in PMN, V_{PMN} is the volume of PMN and n_{PMN} is the number of PMN in the model. Parameters and initial concentrations in the model are list in Table SI. Results of MTOI for different parameter sets are summarized in Table SII. The ODEs for PMN are:

$$\frac{d[AA]}{dt} = \frac{K_{cat,PLA2}(1 + \frac{[12 - HPETE]}{K_{12 - HPETE}} + \frac{[15 - HPETE]}{K_{15 - HPETE}} + \frac{[LTB4]}{K_{LTB4 \to PLA2}} + \frac{[5 - HETE]}{K_{5 - HETE}})[PLA2][PL]}{K_{m,PLA2}(1 + \frac{[AA]}{Ki}}) + [PL]} - \frac{K_{cat,15 - LOX}[15 - LOX][AA]}{K_{m,15 - LOX}(1 + \frac{[15 - HPETE]}{Ki}) + [AA]} - \frac{K_{cat,12 - LOX}[12 - LOX][AA]}{K_{m,12 - LOX}(1 + \frac{[12 - HPETE]}{Ki}) + [AA]} + \frac{[15 - HETE]}{Ki_{12 - HPETE \to 12 - LOX}}) + [AA]} - \frac{K_{cat,5 - LOX}[5 - LOX][AA]}{K_{m,5 - LOX}(1 + \frac{[5 - HPETE]}{Ki} + \frac{[12 - HETE]}{Ki} + \frac{[12 - HETE]}{Ki_{12 - HETE \to 5 - LOX}} + \frac{[15 - HETE]}{Ki_{15 - HETE}}) + [AA]}$$

$$-\frac{K_{cat,COX2}[COX-2][AA]}{K_{m,COX2}(1+\frac{[PGH2]}{Ki}+\frac{[PGE2]}{Ki_{PGE2\rightarrow COX2}})+[AA]}+Kd_{exoAA}[exoAA]-Kd_{AA}[AA]$$

$$\frac{d[15 - HPETE]}{dt} = \frac{K_{cat,15-LOX}[15 - LOX][AA]}{K_{m,15-LOX}(1 + \frac{[15 - HPETE]}{Ki}) + [AA]} - \frac{K_{cat,PHGPx}[PHGPx][15 - HPETE]}{K_{m,PHGPx}(1 + \frac{[15 - HETE]}{Ki}) + [15 - HPETE]} - Kd_{15-HPETE}[15 - HPETE]$$

$$\frac{d[15 - HETE]}{dt} = \frac{K_{cat, PHGPx}[PHGPx][15 - HPETE]}{K_{m, PHGPx}(1 + \frac{[15 - HETE]}{Ki}) + [15 - HPETE]} - Kd_{15 - HETE}[15 - HETE]$$

$$\frac{d[12 - HPETE]}{dt} = \frac{K_{cat,12-LOX} [12 - LOX] [AA]}{K_{m,12-LOX} (1 + \frac{[12 - HPETE]}{Ki_{12-HPETE \rightarrow 12-LOX}} + \frac{[15 - HETE]}{Ki_{15-HETE \rightarrow 12-LOX}}) + [AA]}$$
$$-\frac{K_{cat,PHGPx} [PHGPx] [12 - HPETE]}{K_{m,PHGPx} (1 + \frac{[12 - HETE]}{Ki}) + [12 - HPETE]}$$

$$\frac{d[12 - HETE]}{dt} = \frac{K_{cat,PHGPx}[PHGPx][12 - HPETE]}{K_{m,PHGPx}(1 + \frac{[12 - HETE]}{Ki}) + [12 - HPETE]}$$

$$\frac{d[PGH2]}{dt} = \frac{K_{cat,COX2}[COX - 2][AA]}{K_{m,COX2}(1 + \frac{[PGH2]}{Ki} + \frac{[PGE2]}{Ki_{PGE2 \to COX2}}) + [AA]} - \frac{K_{cat,TXAS}[TXAS][PGH2]}{K_{m,TXAS}(1 + \frac{[TXA2]}{Ki}) + [PGH2]} - \frac{K_{cat,PGES}[PGES][PGH2]}{K_{m,PGES}(1 + \frac{[PGE2]}{Ki} + \frac{[AA]}{Ki_{AA \to PGES}} + \frac{[15 - HETE]}{Ki_{15 - HETE \to PGES}}) + [PGH2]}$$

$$\frac{d[PGE2]}{dt} = \frac{K_{cat,PGES}[PGES][PGH2]}{K_{m,PGES}(1 + \frac{[PGE2]}{Ki} + \frac{[AA]}{Ki_{AA \rightarrow PGES}} + \frac{[15 - HETE]}{Ki_{15 - HETE \rightarrow PGES}}) + [PGH2]}$$

$$\frac{d[TXA2]}{dt} = \frac{K_{cat,TXAS}[TXAS][PGH2]}{K_{m,TXAS}(1 + \frac{[TXA2]}{K_i}) + [PGH2]} - Kd_{TXA2}[TXA2]$$

$$\frac{d[TXB2]}{dt} = Kd_{TXA2}[TXA2] - Kd_{TXB2}[TXB2]$$

$$\frac{d[5-HPETE]}{dt} = \frac{K_{cat,5-LOX}[5-LOX][AA]}{K_{m,5-LOX}\left(1+\frac{[5-HPETE]}{Ki}+\frac{[12-HETE]}{Ki_{12-HETE\rightarrow 5-LOX}}+\frac{[15-HETE]}{Ki_{15-HETE\rightarrow 5-LOX}}+\frac{[PGE2]}{Ki_{PGE2\rightarrow 5-LOX}}+\frac{[5-HETE]}{Ki_{5-HETE\rightarrow 5-LOX}}\right) + [AA]}$$

$$-\frac{K_{cat,5-LOX}[5-LOX][5-HPETE]}{K_{m,5-LOX}(1+\frac{[LTA4]}{Ki}+\frac{[12-HETE]}{Ki_{12-HETE\rightarrow5-LOX}}+\frac{[15-HETE]}{Ki_{15-HETE\rightarrow5-LOX}}+\frac{[PGE2]}{Ki_{PGE2\rightarrow5-LOX}}+\frac{[5-HETE]}{Ki_{5-HETE\rightarrow5-LOX}})+[5-HPETE]}$$
$$-\frac{K_{cat,PHGPx}[PHGPx][5-HPETE]}{K_{m,PHGPx}(1+\frac{[5-HETE]}{Ki})+[5-HPETE]}$$

$$\frac{d[5-HETE]}{dt} = \frac{K_{cat,PHGPx}[PHGPx][5-HPETE]}{K_{m,PHGPx}(1+\frac{[5-HETE]}{Ki})+[5-HPETE]} - Kd_{5-HETE}[5-HETE]$$

$$\frac{d[LTA4]}{dt} = \frac{K_{cat,5-LOX} [5-LOX] [5-HPETE]}{K_{m,5-LOX} (1 + \frac{[LTA4]}{Ki} + \frac{[12-HETE]}{Ki_{12-HETE} - 5-LOX} + \frac{[15-HETE]}{Ki_{15-HETE} - 5-LOX} + \frac{[PGE2]}{Ki_{PGE2 - 5-LOX}} + \frac{[5-HETE]}{Ki_{5-HETE - 5-LOX}}) + [5-HPETE]} - \frac{K_{cat,LTA4H} [LTA4H] [LTA4]}{K_{m,LTA4H} (1 + \frac{[LTB4]}{Ki}) + [LTA4]} - Kd_{LTA4} [LTA4]$$

$$\frac{d[LTB4]}{dt} = \frac{K_{cat,LTA4H}[LTA4H][LTA4]}{K_{m,LTA4H}(1 + \frac{[LTB4]}{Ki}) + [LTA4]} - Kd_{LTB2}[LTB2]$$

$$-\frac{K_{cat,CYP4F3}[CYP4F3][LTB4]}{K_{m,CYP4F3}(1 + \frac{[20 - OH - LTB4]}{Ki} + \frac{[12 - HETE]}{Ki_{12 - HETE}} + \frac{[5 - HETE]}{Ki_{5 - HETE} \rightarrow CYP4F3}) + [LTB4]$$

$$-Kd_{LTB4}[LTB4]$$

$$\frac{d[20 - OH - LTB4]}{dt} = \frac{K_{cat,CYP4F3}[CYP4F3][LTB4]}{K_{m,CYP4F3}(1 + \frac{[20 - OH - LTB4]}{Ki} + \frac{[12 - HETE]}{Ki_{12 - HETE \to CYP4F3}} + \frac{[5 - HETE]}{Ki_{5 - HETE \to CYP4F3}}) + [LTB4]$$

$$\frac{d[PLA2]}{dt} = 0$$

$$\frac{d[15 - LOX]}{dt} = \frac{k_{PGE2 \to 15 - LOX} [PGE2]^2}{[PGE2]^2 + K_{PGE2 \to 15 - LOX}^2} - Kd_{15 - LOX} [15 - LOX]$$

$$\frac{d[12 - LOX]}{dt} = -Ki_{15-HPETE \rightarrow 12-LOX} [15 - HPETE] [12 - LOX]$$

 $\frac{d[COX - 2]}{dt} = 0$

 $\frac{d[PGES]}{dt} = 0$

$$\frac{d[TXAS]}{dt} = -(Ki_{15-HPETE} \rightarrow TXAS}[15 - HPETE] + Ki_{PGH2} \rightarrow TXAS}[PGH2])[TXAS]$$

$$\frac{d[5-LOX]}{dt} = (K_{LTB4\rightarrow 5-LOX} [LTB4] - Ki_{LTA4\rightarrow 5-LOX} [LTA4] - Ki_{5-HPETE\rightarrow 5-LOX} [5-HPETE] - Ki_{15-HPETE\rightarrow 5-LOX} [15-HPETE])[5-LOX]$$

$$\frac{d[LTA4H]}{dt} = -\frac{K_{cat,LTA4H}[LTA4H][LTA4]}{129(K_{m,LTA4H} + [LTA4])}$$

 $\frac{d[CYP4F3]}{dt} = 0$

$$\frac{d[PHGPx]}{dt} = 0$$

The ODEs for EC are:

$$\frac{d[AA]}{dt} = \frac{K_{cat,PLA2}(1 + \frac{[12 - HPETE]}{K_{12 - HPETE \to PLA2}} + \frac{[15 - HPETE]}{K_{15 - HPETE \to PLA2}} + \frac{[PGF2\alpha]}{K_{PGF2\alpha \to PLA2}})[PLA2][PL]}{K_{m,PLA2}(1 + \frac{[AA]}{Ki}) + [PL]} - \frac{K_{cat,15 - LOX}[15 - LOX][AA]}{K_{m,15 - LOX}(1 + \frac{[15 - HPETE]}{Ki}) + [AA]} - \frac{K_{cat,12 - LOX}[12 - LOX][AA]}{K_{m,12 - LOX}(1 + \frac{[12 - HPETE]}{Ki_{12 - HPETE}}) + [AA]} - \frac{K_{cat,COX2}[COX - 2][AA]}{K_{m,COX2}(1 + \frac{[PGH2]}{Ki} + \frac{[PGE2]}{Ki_{PGE2 \to COX2}}) + [AA]}$$

$$\frac{d[15 - HFETE]}{dt} = \frac{K_{cat,15-LOX}[15 - LOX][1AA]}{K_{m,15-LOX}(1 + \frac{[15 - HPETE]}{Ki}) + [AA]} - \frac{K_{cat,PHGPx}[1HOTX][15 - HETE]}{K_{m,PHGPx}(1 + \frac{[15 - HETE]}{Ki}) + [15 - HPETE]} - Kd_{15-HPETE}[15 - HPETE]$$

$$\frac{d[15 - HETE]}{dt} = \frac{K_{cat,PHGPx}[PHGPx][15 - HPETE]}{K_{m,PHGPx}(1 + \frac{[15 - HETE]}{Ki}) + [15 - HPETE]} - Kd_{15 - HETE}[15 - HETE]$$

$$\frac{d[12 - HPETE]}{dt} = \frac{K_{cat,12-LOX}[12 - LOX][AA]}{K_{m,12-LOX}(1 + \frac{[12 - HPETE]}{Ki}) + [AA]} - \frac{K_{cat,PHGPx}[PHGPx][12 - HPETE]}{K_{m,PHGPx}(1 + \frac{[12 - HETE]}{Ki}) + [12 - HPETE]}$$

$$\frac{d[12 - HETE]}{dt} = \frac{K_{cat,PHGPx}[PHGPx][12 - HPETE]}{K_{m,PHGPx}(1 + \frac{[12 - HETE]}{Ki}) + [12 - HPETE]} - Kd_{12 - HETE}[12 - HETE]$$

$$\frac{d[PGH2]}{dt} = \frac{K_{cat,COX2}[COX-2][AA]}{K_{m,COX2}(1 + \frac{[PGH2]}{Ki} + \frac{[PGE2]}{Ki_{PGE2 \to COX2}}) + [AA]} - \frac{K_{cat,TXAS}[TXAS][PGH2]}{K_{m,TXAS}(1 + \frac{[TXA2]}{Ki}) + [PGH2]}$$
$$- \frac{K_{cat,PGIS}[PGIS][PGH2]}{K_{m,PGIS}(1 + \frac{[PGI2]}{Ki} + \frac{[15 - HPETE]}{Ki_{15 - HPETE \to PGIS}}) + [PGH2]} - \frac{K_{cat,PGDS}[PGDS][PGH2]}{K_{m,PGDS}(1 + \frac{[PGD2]}{Ki}) + [PGH2]}$$
$$- \frac{K_{cat,PGES}[PGES][PGH2]}{K_{m,PGES}(1 + \frac{[PGE2]}{Ki} + \frac{[AA]}{Ki_{AA \to PGES}} + \frac{[15 - HETE]}{Ki_{15 - HETE}}) + [PGH2]} - Kd_{PGH2}[PGH2]$$

$$\frac{d[TXA2]}{dt} = \frac{K_{cat,TXAS}[TXAS][PGH2]}{K_{m,TXAS}(1 + \frac{[TXA2]}{Ki}) + [PGH2]} - Kd_{TXA2}[TXA2]$$

$$\frac{d[TXB2]}{dt} = Kd_{TXA2}[TXA2] - Kd_{TXB2}[TXB2]$$

$$\frac{d[PGI2]}{dt} = \frac{K_{cat,PGIS}[PGIS][PGH2]}{K_{m,PGIS}(1 + \frac{[PGI2]}{Ki} + \frac{[15 - HPETE]}{Ki_{15 - HPETE \to PGIS}}) + [PGH2]} - Kd_{PGI2}[PGI2]$$

$$\frac{d[6-keto-PGF1\alpha]}{dt} = Kd_{PGI2}[PGI2] - Kd_{6-keto-PGF1\alpha}[6-keto-PGF1\alpha]$$

$$\frac{d[PGD2]}{dt} = \frac{K_{cat,PGDS}[PGDS][PGH2]}{K_{m,PGDS}(1 + \frac{[PGD2]}{Ki}) + [PGH2]} - Kd_{PGD2}[PGD2]$$
$$-\frac{K_{cat,PGFS}[PGFS][PGD2]}{K_{m,PGFS}(1 + \frac{[11 - epi - PGF2\alpha]}{Ki}) + [PGD2]}$$

$$\frac{d[PGJ2]}{dt} = Kd_{PGD2}[PGD2] - Kd_{PGJ2}[PGJ2]$$

$$\frac{d[15d - PGJ2]}{dt} = Kd_{PGJ2}[PGJ2]$$

$$\frac{d[PGE2]}{dt} = \frac{K_{cat,PGES}[PGES][PGH2]}{K_{m,PGES}(1 + \frac{[PGE2]}{Ki} + \frac{[AA]}{Ki_{AA \rightarrow PGES}} + \frac{[15 - HETE]}{Ki_{15 - HETE \rightarrow PGES}}) + [PGH2]}$$

$$-\frac{K_{cat,CR}[CR][PGE2]}{K_{m,CR}(1+\frac{[PGF2\alpha]}{Ki})+[PGE2]}-\frac{K_{cat,9-KPR}[9-KPR][PGE2]}{K_{m,9-KPR}(1+\frac{[PGF2\alpha]}{Ki})+[PGE2]}$$

$$\begin{aligned} \frac{d[PGF2\alpha]}{dt} &= \frac{K_{cat,CR}[CR][PGE2]}{K_{m,CR}(1 + \frac{[PGF2\alpha]}{Ki}) + [PGE2]} + \frac{K_{cat,9-KPR}[9 - KPR][PGE2]}{K_{m,9-KPR}(1 + \frac{[PGF2\alpha]}{Ki}) + [PGE2]} + Kd_{PGH2}[PGH2] \\ &- \frac{K_{cat,15-PGDH}[15 - PGDH][PGF2\alpha]}{K_{m,15-PGDH}(1 + \frac{[15 - keto - PGF2\alpha]}{Ki}) + [PGF2\alpha]} \end{aligned}$$

$$\frac{d[15 - keto - PGF2\alpha]}{dt} = \frac{K_{cat,15-PGDH}[15 - PGDH][PGF2\alpha]}{K_{m,15-PGDH}(1 + \frac{[15 - keto - PGF2\alpha]}{Ki}) + [PGF2\alpha]}$$

$$\frac{d[PLA2]}{dt} = -Ki_{15d-PGJ2 \rightarrow PLA2}[15d - PGJ2][PLA2]$$

$$\frac{d[15 - LOX]}{dt} = \frac{k_{PGE2 \to 15 - LOX} [PGE2]^2}{[PGE2]^2 + K_{PGE2 \to 15 - LOX}^2} - Kd_{15 - LOX} [15 - LOX]$$

$$\frac{d[12 - LOX]}{dt} = 0$$

$$\frac{d[PHGPx]}{dt} = 0$$

$$\frac{d[COX-2]}{dt} = 0$$

$$\frac{d[TXAS]}{dt} = -(Ki_{15-HPETE \to TXAS}[15-HPETE] + Ki_{PGH2 \to TXAS}[PGH2])[TXAS]$$

$$\frac{d[PGIS]}{dt} = 0$$

 $\frac{d[PGDS]}{dt} = 0$

 $\frac{d[PGFS]}{dt} = 0$

$$\frac{d[PGES]}{dt} = -Ki_{15d-PGJ \ 2 \to PGES} [15d - PGJ \ 2] [PGES]$$

$$\frac{d[CR]}{dt} = 0$$
$$\frac{d[9 - KPR]}{dt} = 0$$
$$\frac{d[15 - PGDH]}{dt} = 0$$

The ODEs for PLT are:

$$\frac{d[AA]}{dt} = \frac{K_{cat,PLA2}(1 + \frac{[12 - HPETE]}{K_{12 - HPETE \to PLA2}})[PLA2][PL]}{K_{m,PLA2}(1 + \frac{[AA]}{Ki}) + [PL]} - \frac{K_{cat,12 - LOX}[12 - LOX][AA]}{K_{m,12 - LOX}(1 + \frac{[12 - HPETE]}{Ki}) + [AA]} - \frac{K_{cat,COX1}[COX - 1][AA]}{K_{m,COX1}(1 + \frac{[PGH2]}{Ki}) + [AA]}$$

$$\frac{d[12 - HPETE]}{dt} = \frac{K_{cat, 12 - LOX}[12 - LOX][AA]}{K_{m, 12 - LOX}(1 + \frac{[12 - HPETE]}{Ki}) + [AA]} - \frac{K_{cat, PHGPx}[PHGPx][12 - HPETE]}{K_{m, PHGPx}(1 + \frac{[12 - HETE]}{Ki}) + [12 - HPETE]}$$

$$\frac{d[12 - HETE]}{dt} = \frac{K_{cat,PHGPx}[PHGPx][12 - HPETE]}{K_{m,PHGPx}(1 + \frac{[12 - HETE]}{Ki}) + [12 - HPETE]}$$

$$\frac{d[PGH2]}{dt} = \frac{K_{cat,COX1}[COX-1][AA]}{K_{m,COX1}(1 + \frac{[PGH2]}{Ki}) + [AA]} - \frac{K_{cat,TXAS}[TXAS][PGH2]}{K_{m,TXAS}(1 + \frac{[TXA2]}{Ki}) + [PGH2]}$$

$$\frac{d[TXA2]}{dt} = \frac{K_{cat,TXAS}[TXAS][PGH2]}{K_{m,TXAS}(1 + \frac{[TXA2]}{Ki}) + [PGH2]} - Kd_{TXA2}[TXA2]$$

$$\frac{d[TXB2]}{dt} = Kd_{TXA2}[TXA2] - Kd_{TXB2}[TXB2]$$

$$\frac{d[PLA2]}{dt} = 0$$

 $\frac{d[12 - LOX]}{dt} = 0$

$$\frac{d[COX - 1]}{dt} = 0$$

$$\frac{d[TXAS]}{dt} = -Ki_{PGH2 \to TXAS} [PGH2][TXAS]$$

$$\frac{d[PHGPx]}{dt} = 0$$

The construction of simplified AAnetwork model

The simplified AAnetwork model was set up to verify the practicability of MTOI in incomplete network. Only disease-related metabolites and enzymes were included. Like the full model, a group of ODEs were written for PMN, EC and PLT, respectively, to simulate the time-course metabolism of AA. The productions of metabolites in the network were calculated as equation 1. Unknown parameters and initial concentrations were evaluated by parameter fitting (Fig. S1, Table SIII). Results of MTOI are summarized in Table SIV. The ODEs for PMN are:

$$\frac{d[AA]}{dt} = \frac{K_{cat,PLA2}(1 + \frac{[AA]}{K_{AA \to PLA2}} +)[PLA2][PL]}{K_{m,PLA2}(1 + \frac{[AA]}{K_{i}}) + [PL]} - \frac{K_{cat,E1}[E1][AA]}{K_{m,E1}(1 + \frac{[HETES]}{K_{i}}) + [AA]} - \frac{K_{cat,COX2}[COX - 2][AA]}{K_{m,COX2}(1 + \frac{[LTA4]}{K_{i}} + \frac{[HETES]}{K_{i} + K_{i} + K_$$

$$\begin{aligned} \frac{d[PGE2]}{dt} &= \frac{K_{cat,PGES}[PGES][PGH2]}{K_{m,PGES}(1 + \frac{[PGE2]}{K_i}) + [PGH2]} \\ \frac{d[TXs]}{dt} &= \frac{K_{cat,TXAS}[TXAS][PGH2]}{K_{m,TXAS}(1 + \frac{[TXs]}{K_i}) + [PGH2]} \\ \frac{d[LTA4]}{dt} &= \frac{K_{cat,S-LOX}(5 - LOX][AA]}{K_{m,S-LOX}(1 + \frac{[LTA4]}{K_i} + \frac{[HETES]}{K_{iHETES} - 5 - LOX}) + [AA]} - \frac{K_{cat,LTA4H}[LTA4H][LTA4]}{K_{m,LTA4H}(1 + \frac{[LTB4]}{K_i}) + [LTA4]} \\ \frac{d[LTB4]}{dt} &= \frac{K_{cat,LTA4H}(1 + \frac{[LTB4]}{K_i}) + [LTA4]}{K_{m,LTA4H}(1 + \frac{[LTB4]}{K_i}) + [LTA4]} - Kd_{LTB4}[LTB4] \\ \frac{d[PLA2]}{dt} &= 0 \\ \frac{d[COX - 2]}{dt} &= -Ki_{pGH2 - 5 - LOX}[PGH2][TXAS] \\ \frac{d[S - LOX]}{dt} &= -Ki_{LTA4 - 5 - LOX}[LTA4][5 - LOX] \\ \frac{d[LTA4H]}{dt} &= -Ki_{LTA4 - 5 - LOX}[LTA4][LTA4H] \end{aligned}$$

The ODEs for EC are:

$$\frac{d[AA]}{dt} = \frac{K_{cat,PLA2}(1 + \frac{[AA]}{K_{AA \to PLA2}} +)[PLA2][PL]}{K_{m,PLA2}(1 + \frac{[AA]}{Ki}) + [PL]} - \frac{K_{cat,E1}[E1][AA]}{K_{m,E1}(1 + \frac{[HETES]}{Ki}) + [AA]}$$
$$- \frac{K_{cat,COX2}[COX - 2][AA]}{K_{m,COX2}(1 + \frac{[PGH2]}{Ki}) + [AA]}$$
$$\frac{d[HETES]}{dt} = \frac{K_{cat,E1}[E1][AA]}{K_{m,E1}(1 + \frac{[HETES]}{Ki}) + [AA]} - Kd_{HETES}[HETES]$$
$$\frac{d[PGH2]}{dt} = \frac{K_{cat,COX2}[COX - 2][AA]}{K_{m,COX2}(1 + \frac{[PGH2]}{Ki}) + [AA]} - \frac{K_{cat,TXAS}[TXAS][PGH2]}{K_{m,TXAS}(1 + \frac{[TXS]}{Ki}) + [PGH2]}$$
$$- \frac{K_{cat,PGIS}[PGIS][PGIS][PGH2]}{K_{m,PGIS}(1 + \frac{[PGI2]}{Ki} + \frac{[HETES]}{Ki_{HETES \to PGIS}}) + [PGH2]}$$

$$-\frac{K_{cat,PGES}[PGES][PGH2]}{K_{m,PGES}(1+\frac{[PGE2]}{Ki}+\frac{[HETEs]}{Ki_{HETEs\rightarrow PGES}})+[PGH2]} - Kd_{PGH2}[PGH2]$$

$$\frac{[PGE2]}{dt} = \frac{K_{cat,PGES}[PGES][PGH2]}{K_{m,PGES}(1+\frac{[PGE2]}{Ki}+\frac{[HETEs]}{Ki_{HETEs\rightarrow PGES}})+[PGH2]} - Kd_{PGE2}[PGE2]$$

$$\frac{[PGI2]}{dt} = \frac{K_{cat,PGIS}[PGIS][PGH2]}{K_{m,PGIS}(1+\frac{[PGI2]}{Ki}+\frac{[HETEs]}{Ki_{HETEs\rightarrow PGES}})+[PGH2]}$$

$$\frac{d[TXs]}{dt} = \frac{K_{cat,TXAS}[TXAS][PGH2]}{K_{m,TXAS}(1+\frac{[TXs]}{Ki})+[PGH2]}$$

$$\frac{d[PLA2]}{dt} = 0$$

$$\frac{d[COX-2]}{dt} = 0$$

$$\frac{d[PGIS]}{dt} = 0$$

$$\frac{d[PGIS]}{dt} = -Ki_{PGH2\rightarrow TXAS}[PGH2][TXAS]$$

The ODEs for PLT are:

$$\frac{d[AA]}{dt} = \frac{K_{cat,PLA2}(1 + \frac{[AA]}{K_{AA \to PLA2}} +)[PLA2][PL]}{K_{m,PLA2}(1 + \frac{[AA]}{Ki}) + [PL]} - \frac{K_{cat,E1}[E1][AA]}{K_{m,E1}(1 + \frac{[HETES]}{Ki}) + [AA]} - \frac{K_{cat,COX1}[COX - 1][AA]}{K_{m,COX1}(1 + \frac{[PGH2]}{Ki} + \frac{[HETES]}{Ki_{HETEs \to COX1}}) + [AA]}$$
$$\frac{d[HETES]}{dt} = \frac{K_{cat,E1}[E1][AA]}{K_{m,E1}(1 + \frac{[HETES]}{Ki}) + [AA]} - Kd_{HETES}[HETES]$$
$$\frac{d[TXS]}{dt} = \frac{K_{cat,COX1}[COX - 1][AA]}{K_{m,COX1}(1 + \frac{[PGH2]}{Ki} + \frac{[HETES]}{Ki}) + [AA]} + [AA]$$
$$\frac{d[PLA2]}{dt} = 0$$

$$\frac{d[COX-1]}{dt} = -Ki_{TXs \to COX1}[TXs][COX-1]$$

Single parameter sensitivity analysis

Single parameter sensitivity analysis was performed using the reported method (Pant &Ghosh, 2005). The sensitivity coefficient is calculated as:

$$C = \frac{\Delta F_{obj} / F_{obj}}{\Delta K / K}$$

The result of AAnetwork is summarized in Table SV

Supplementary Figures

Figure S1. The AAnetwork in human PMN (**A**), EC (**B**) and PLT (**C**). Two pathways are responsible to the production of inflammatory mediators: COX-2 pathway (green) and 5-LOX pathway (red). LTB4 and PGE2 are major inflammatory mediators produced in the AAnetwork. The HETEs pathway is in blue, while the pathways of PGI2 and TXA2 production are in purple.

(B)

(**C**)

Figure S2. The simplified AAnetwork in human PMN (A), EC (B) and PLT (C). The COX-2 pathway is in green, the 5-LOX pathway is in red, the HETEs pathway is in blue, and the pathways of PGI2 and TXA2 production are in purple.

(A)

(B)

Figure S3. Experimental data and Parameter fitting results. Lines with star are experimental curves while the ones without star are model calculations with fitted parameters. (**A**) The production curve of LTB4 (red) and ω -LTB4 (blue) in PMN. In the experiment (Shak &Goldstein, 1984), PMN were incubated at 37°C with 10 microM A23187 (a calcium ionophore) added at time zero. (**B**) The same as in (**A**), but with 10 microM A23187 + 30microM arachidonic acid added at time zero. (**C**) The production curve of PGF2 α (red), PGE2 (green) and 6-keto-PGF1 α (blue) in EC where 10U/mL 1L-1 β was added at time zero (Camacho *et al*, 1998). (**D**) The production curve of TXA2 (red) and TXB2 (blue) in PLT, where 160 μ M exogenous AA was added at time zero (Anderson *et al*, 1978).

Figure S4. Parameter fitting results of the simplified AAnetwork model. Lines with star are experimental curves while the ones without star are model calculations with fitted parameters. (**A**) The production curve of LTB4 in PMN. In the experiment (Shak *et al*, 1984), PMN were incubated at 37° C with 10 microM A23187 (red) or with 10 microM A23187 + 30microM arachidonic acid (blue) added at time zero. (**B**) The production curve PGE2 (red) and PGI2 (blue) in EC where 10U/mL 1L-1 β was added at time zero (Camacho *et al*, 1998). (**C**) The total production curve of TXA2 and TXB2 in PLT, where 160 μ M exogenous AA was added at time zero (Anderson *et al*, 1978).

Figure S5. The distribution of [I]/Ki of MTOI solutions: the inhibitor against COX1/2 and 5-LOX (A), the inhibitor against COX1/2, 5-LOX and LTA4H (B), the inhibitor against COX1/2, PGES and LTA4H (C), the inhibitor against COX1/2, PGES and 5-LOX (D), the inhibitor against COX1/2, PGES, 5-LOX and LTA4H (E), the inhibitor against PLA2 and COX1/2 (F), the inhibitor against PLA2, COX1/2 and 5-LOX (G), the inhibitor against PLA2, COX1/2, 5-LOX and LTA4H (H), the inhibitor against PLA2, COX1/2 and PGES (I), the inhibitor against PLA2, COX1/2, PGES and LTA4H (K), the inhibitor against PLA2, COX1/2, PGES and 5-LOX (L), the inhibitor against PLA2, COX-1/2, PGES, 5-LOX and LTA4H (M).

(A)

(B)

(**C**)

(E)

(**G**)

(H)

(**J**)

(I)

(**L**)

(M)

Reference

Anderson MW, Crutchley DJ, Tainer BE, Eling TE (1978) Kinetic studies on the conversion of prostaglandin endoperoxide PGH2 by thromboxane synthase. *Prostaglandins* **16**: 563-570.

Camacho M, Lopez-Belmonte J, Vila L (1998) Rate of vasoconstrictor prostanoids released by endothelial cells depends on cyclooxygenase-2 expression and prostaglandin I synthase activity. *Circ Res* **83**: 353-365.

Claesson HE, Haeggstrom J (1988) Human endothelial cells stimulate leukotriene synthesis and convert granulocyte released leukotriene A4 into leukotrienes B4, C4, D4 and E4. *Eur J Biochem* **173**: 93-100.

Denzlinger C (1996) Biology and pathophysiology of leukotrienes. Crit Rev Oncol Hematol 23: 167-223.

Husain S, Abdel-Latif AA (2001) Effects of prostaglandin F(2alpha)and carbachol on MAP kinases, cytosolic phospholipase A(2)and arachidonic acid release in cat iris sphincter smooth muscle cells. *Exp Eye Res* **72**: 581-590.

Inoue H, Tanabe T, Umesono K (2000) Feedback control of cyclooxygenase-2 expression through PPARgamma. *J Biol Chem* **275:** 28028-28032.

Kojima F, Kato S, Kawai S (2005) Prostaglandin E synthase in the pathophysiology of arthritis. *Fundam Clin Pharmacol* **19:** 255-261.

Ohd JF, Wikstrom K, Sjolander A (2000) Leukotrienes induce cell-survival signaling in intestinal epithelial cells. *Gastroenterology* **119**: 1007-1018.

Pant D, Ghosh A (2005) Automated oncogene detection in complex protein networks with applications to the MAPK signal transduction pathway. *Biophys Chem* **113**: 275-288.

Shak S, Goldstein IM (1984) Omega-oxidation is the major pathway for the catabolism of leukotriene B4 in human polymorphonuclear leukocytes. *J Biol Chem* **259:** 10181-10187.

Tsubouchi Y, Kawahito Y, Kohno M, Inoue K, Hla T, Sano H (2001) Feedback control of the arachidonate cascade in rheumatoid synoviocytes by 15-deoxy-Delta(12,14)-prostaglandin J2. *Biochem Biophys Res Commun* **283**: 750-755.

Weaver JA, Maddox JF, Cao YZ, Mullarky IK, Sordillo LM (2001) Increased 15-HPETE production decreases prostacyclin synthase activity during oxidant stress in aortic endothelial cells. *Free Radic Biol Med* **30**: 299-308.

Yang K, Ma W, Liang H, Ouyang Q, Tang C, Lai L (2007) Dynamic Simulations on the Arachidonic Acid Metabolic Network. *PLoS Comput Biol* **3**: e55.

Table SI-I.	The feedback parameters used in the ODEs.	Italics means the corresponding parameter has no direct value from experiments and is derived from parameter fitting. T	The parameter set used in the main
as set 1.			

as	set	1.

PMN:						
Feedbacks	Parameters	Set 1	Set 2	Set 3	Set 4	Set 5
AA→PGES (Quraishi O., et al., 2002)	Ki _{AA→PGES}	0.3µM	0.3µM	0.3µM	0.3µM	0.3µM
15-HETE→PGES (Quraishi O., et al., 2002)	$Ki_{15\text{-HETE} \rightarrow PGES}$	0.53µM	30µM	1.4µM	0.29µM	$1.4 \mu M$
PGE2→COX2 (Nathan C., 2002)	Ki _{PGE2→COX2}	2.8µM	30µM	0.13µM	$5.2\mu M$	0.13µM
15-HPETE→TXAS (Jones D. A.&Fitzpatrick F. A., 1991)	Ki _{15-HPETE→TXAS}	$0.52(\mu M^*min)^{-1}$	0.6(µM*min)-1	0.73(µM*min)-1	0.031(µM*min)-1	0.73(µN
PGH2→TXAS (Jones D. A.&Fitzpatrick F. A., 1990)	Ki _{PGH2→TXAS}	$0.029(\mu M^*min)^{-1}$	0.1(µM*min)-1	0.018(µM*min)-1	3.4(µM*min)-1	0.018(µ
15-HPETE→5-LOX (Cashman J. R., et al., 1988)	Ki _{15-HPETE→5-LOX}	$0.01(\mu M*min)^{-1}$	0.01(µM*min)-1	0.01(µM*min)-1	0.01(µM*min)-1	0.01(µN
12-HETE→5-LOX (Vanderhoek J. Y., et al., 1985)	Ki _{12-HETE→5-LOX}	30 µM	30 µM	30 µM	30 µM	30 µM
15-HETE→5-LOX (Vanderhoek J. Y., et al., 1985)	Ki _{15-HETE→5-LOX}	4 μΜ	4 μΜ	4 μΜ	4 μΜ	4 μΜ
LTA4→5-LOX (Lepley R. A.&Fitzpatrick F. A., 1994)	Ki _{LTA4→5-LOX}	$0.175(\mu M^*min)^{-1}$	0.175(µM*min)-1	0.175(µM*min)-1	0.175(µM*min)-1	0.175(µ
5-HPETE→5-LOX (Aharony D., et al., 1987)	Ki _{5-HPETE→5-LOX}	$0.26(\mu M^*min)^{-1}$	0.01(µM*min)-1	5.8(µM*min)-1	0.019(µM*min)-1	5.8(µM
PGE2→5-LOX (Levy B. D., et al., 2001)	Ki _{PGE2→5-LOX}	72µM	15μΜ	88µM	25μΜ	88µM
5-HETE→5-LOX (Aharony D., et al., 1987)	Ki _{5-HETE→5-LOX}	6.3µM	6.3µM	6.3µM	6.3µM	6.3µM
LTA4→LTA4H (Orning L., et al., 1992)	Ki _{lta4→lta4H}	129 (turnover/inactivition)	129 (turnover/inactivition)	129 (turnover/inactivition)	129 (turnover/inactivition)	129 (tu
12-HETE→CYP4F3 (Soberman R. J., et al., 1987)	Ki _{12-HETE→CYP4F3}	0.29µМ	$0.2\mu M$	0.46µМ	0.12µM	0.46µM
5-HETE→CYP4F3 (Soberman R. J., et al., 1987)	Ki _{5-HETE→CYP4F3}	$0.8 \mu M$	0.86µМ	2μΜ	$2\mu M$	$2\mu M$
15-HETE→12-LOX (Kishimoto K., et al., 1996)	Ki _{15-HETE→12-LOX}	1.5µM	10µM	0.8µM	58µM	0.8µM
15-HPETE→12-LOX (Kishimoto K., et al., 1996)	Ki _{15-HPETE→12-LOX}	0.23(µM*min)-1	10(µM*min)-1	2.2(µM*min)-1	3.4(µM*min)-1	2.2(µM
12-HPETE→12-LOX (Kishimoto K., et al., 1996)	Ki _{12-HPETE→12-LOX}	1.6µM	10µM	16µМ	1.1µM	16µM
12-HPETE→PLA2 (Balboa M. A., et al., 2003)	K _{12-HPETE→PLA2}	260µM	500µM	150µM	530µM	150µM
15-HPETE→PLA2 (Balboa M. A., et al., 2003)	K _{15-HPETE→PLA2}	430µM	200µM	920µM	210µM	920µM
LTB4→PLA2 (Wijkander J., et al., 1995)	K $_{LTB4\rightarrow PLA2}$	180µM	500µM	320µM	480µM	320µM
5-HETE→PLA2 (Wijkander J., et al., 1995)	K _{5-HETE→PLA2}	240µM	500µM	970µM	990µM	970µM
LTB4→5-LOX (Serio K. J., et al., 1997)	K _{LTB4→5-LOX}	0.022(µM*min)-1	0.053(µM*min)-1	0.0153(µM*min)-1	0.013(µM*min)-1	0.0153(
PGE2→15-LOX (Levy B. D., et al., 2001)	K PGE2→15-LOX	0.15	0.15	0.15	0.15	0.15
	k _{PGE2→15-LOX}	0.000023µM	0.000023µM	0.000023µM	0.000023µM	0.00002
Product inhibition	Ki	500 µM	500 µM	500 µM	500 µM	500 μM
EC:						
PGE2→COX2 (Akarasereenont P., et al., 2001)	Ki PGE2→COX2	30µM	30µM	30µM	30µM	30µM
15-HPETE→TXAS (Jones D. A.&Fitzpatrick F. A., 1991)	Ki _{15-HPETE→TXAS}	0.9(µM*min)-1	0.15(µM*min)-1	0.9(µM*min)-1	1.2(µM*min)-1	0.9(µM
PGH2→TXAS (Jones D. A.&Fitzpatrick F. A., 1990)	Ki PGH2→TXAS	0.18(µM*min)-1	0.35(µM*min)-1	0.18(µM*min)-1	0.033(µM*min)-1	0.18(µN
15-HPETE→PGIS (Weaver J. A., et al., 2001)	Ki _{15-HPETE→PGIS}	0.18µM	0.01µM	0.18µM	0.46µМ	0.18µM
AA→PGES (Quraishi O., et al., 2002)	Ki _{AA→PGES}	0.3µM	0.3µM	0.3µM	0.3µM	0.3µM
15-HETE→PGES (Quraishi O., et al., 2002)	Ki _{15-HETE→PGES}	0.91µM	500µM	0.91µM	5.9µM	0.91μM
15d-PGJ2→PGES (Kojima F., et al., 2005)	Ki _{15d-PGI2→PGES}	0.018(µM*min)-1	0.01(μM*min)-1	0.018(µM*min)-1	0.01(μM*min)-1	0.018(μ
15d-PGJ2→PLA2 (Tsubouchi Y., et al., 2001)	Ki _{15d-PGI2→PLA2}	0.018(µM*min)-1	0.015(µM*min)-1	0.018(µM*min)-1	0.28(µM*min)-1	0.018(µ
12-HPETE→PLA2 (Balboa M. A., et al., 2003)	$K_{12-HPETE \rightarrow PLA2}$	140µM	500µM	140μΜ	730μΜ	140µM
15-HPETE→PLA2 (Balboa M. A., et al., 2003)	$K_{15-HPETE \rightarrow PLA2}$	120μM	200µM	120μM	510µM	120μΜ
PGF2→PLA2 (Husain S.&Abdel-Latif A. A., 2001)	$K_{PGF2 \rightarrow PI A2}$	210µM	- 500μM	210µM	200µM	210μΜ
PGE2→15-LOX (Levy B. D., et al., 2001)	$K_{PGF2 \rightarrow 15-1 \text{ OX}}$	0.15	0.15	0.15	0.15	0.15
	KPGE2 315 LOX	0.000023uM	0.000023uM	0.000023uM	0.000023uM	0.00002
Product inhibition	Ki	500 uM	500 uM	500 uM	500 uM	500 uM
PLT:		- · · · / ····	- · · · / ····	• • • <i>p</i>	- · · · / ····	
PGH2→TXAS (Jones D A & Fitzpatrick F A 1990)	Ki pour Tyre	0.025 (uM*min)-1	0.08 (µM*min)-1	0.025 (uM*min)-1	0.035 (uM*min)-1	0.031 (
12-HPETE→PLA2 (Balboa M A et al. 2003)	K12 HETE DIA2	310uM	500uM	230uM	610uM	150uM
Product inhibition	Ki	500µM	500uM	500uM	500uM	500µM
	1.51		S V V MATA	S V V MATA	S V V MALL	

Table SI-II. The Km and Kcat of enzymes used in the ODEs. Italics means the corresponding parameter has no direct value from experiments and is derived from parameter fitting.

PMN:						
En mune Manue	EC much on		Set 1		Set 2	
Enzyme Name	EC number	K _{cat} (1/min)	$K_m (\mu M)$	K _{cat} (1/min)	$K_m (\mu M)$	K _{cat} (1
15-LOX (Schomburg I., et al., 2004)	1.13.11.33	5000	13	1000	70	4200
5-LOX (Schomburg I., et al., 2004)	1.13.11.34	6000	1.4	5000	5	3500
LTA4H (Schomburg I., et al., 2004)	3.3.2.6	150	20	125	20	7600
CYP4F3A (Christmas P., et al., 1999)	1.14.13.30	150	3.9	150	3.9	150
PHGPx (Schomburg I., et al., 2004)	1.11.1.12	2000	58	500	70	600
COX-2 (Schomburg I., et al., 2004)	1.14.99.1	1000	33	1000	50	1000
PGES (Schomburg I., et al., 2004)	5.3.99.3	3000	160	3000	160	3000
TXAS (Schomburg I., et al., 2004)	5.3.99.5	1599	4	1599	4	1599
PLA2 (Schomburg I., et al., 2004)	3.1.1.4	3600	2600	3600	2600	3600
12-LOX (Schomburg I., et al., 2004)	1.13.11.31	9500	160	1000	50	1800
EC:						
15-LOX (Schomburg I., et al., 2004)	1.13.11.33	360	91	1000	70	360
PHGPx (Schomburg I., et al., 2004)	1.11.1.12	160	250	500	50	160
COX-2 (Schomburg I., et al., 2004)	1.14.99.1	250	5	9000	5	250
PGES (Schomburg I., et al., 2004)	5.3.99.3	3000	160	3000	160	3000
TXAS (Schomburg I., et al., 2004)	5.3.99.5	1599	4	1599	4	1599
PLA2 (Schomburg I., et al., 2004)	3.1.1.4	3600	2600	3600	2600	3600

n manuscript is referred

M*min)-1

µM*min)-1

M*min)-1

μM*min)-1

(*min)-1

turnover/inactivition)

(1*min)-1

8(µM*min)-1

23µM

(1*min)-1 M*min)-1

 $\mu M^*min)$ -1 µM*min)-1

23μΜ

(µM*min)-1

Set 3 Set 4 Set 5 $K_m (\mu M)$ l/min) $K_m (\mu M)$ K_{cat} (1/min) K_{cat} (1/min) $K_m (\mu M)$ 0.69 3.3 2.3 3.3 3.9 3.9 3.9 0.14 0.12 0.14 0.52 0.52

PGIS (Schomburg I., et al., 2004)	5.3.99.4	147	9	147	9	147	9	147	9	147	9	
PGDS (Schomburg I., et al., 2004)	5.3.99.2	6900	4	200	4	6900	4	240	4	6900	4	
PGFS (Schomburg I., et al., 2004)	1.1.1.188	6000	3.4	6000	3.4	6000	3.4	1100	3.4	6000	3.4	
CR (Schomburg I., et al., 2004)	1.1.1.184	110	100	100	100	110	100	130	100	110	100	
9-KPR (Schomburg I., et al., 2004)	1.1.1.189	120	90	100	90	120	90	130	90	120	90	
15-PGDH (Schomburg I., et al., 2004)	1.1.1.196	1700	400	1000	400	1700	400	950	400	1700	400	
12-LOX (Schomburg I., et al., 2004)	1.13.11.31	840	8	840	8	840	8	840	8	840	8	
PLT:												
PHGPx (Schomburg I., et al., 2004)	1.11.1.12	550	0.83	1000	5	120	4.4	5200	0.16	6900	1.4	
COX-1 (Schomburg I., et al., 2004)	1.14.99.1	6000	4.5	1000	4.5	9500	4.5	1100	4.5	9500	4.5	
TXAS (Schomburg I., et al., 2004)	5.3.99.5	1599	4	1599	4	1599	4	1599	4	1599	4	
PLA2 (Schomburg I., et al., 2004)	3.1.1.4	3600	2600	3600	2600	3600	2600	3600	2600	3600	2600	
12-LOX (Schomburg I., et al., 2004)	1.13.11.31	840	8	840	8	840	8	840	8	840	8	

Table SI-III. The decay rate of molecules used in ODEs. All the decay rate has no direct value from experiments and is derived from parameter fitting

PMN:					
Decay rate	Set 1 (1/min)	Set 2 (1/min)	Set 3 (1/min)	Set 4 (1/min)	Set 5 (1/min)
Kd _{15-HPETE}	0.36	0.05	0.1	8.7	0.1
Kd _{15-HETE}	0.1	0.1	6.00E-05	0.1	6.00E-05
Kd _{TXA}	1.00E-04	0.8	0.55	2	0.55
Kd _{TXB}	1.30E-03	0.5	2.80E-04	2	2.80E-04
Kd _{5-HETE}	4.20E-04	0.001	3.50E-05	1.80E-04	3.50E-05
Kd _{LTA4}	1.70E-03	0.07	0.02	8.30E-04	0.02
Kd _{LTB4}	6.30E-04	0.01	5.50E-04	6.00E-05	5.50E-04
Kd _{15-LOX}	8.30E-04	0	5.50E-04	1.1	5.50E-04
Kd _{exoAA}	0.017	0.5	1.30E-03	2.5	1.30E-03
Kd _{AA}	0.14	0.1	0.16	2.5	0.16
EC:					
Kd _{15-HPETE}	1.10E-03	0.5	1.10E-03	0.01	1.10E-03
Kd _{15-HETE}	0.55	0.1	0.55	0.03	0.55
Kd _{12-HETE}	2.10E-04	0.1	2.10E-04	2.90E-03	2.10E-04
Kd _{PGH2}	1.2	0.25	1.2	6.40E-03	1.2
Kd _{TXA}	3	3.2	3	5	3
Kd _{TXB}	3	3.2	3	5	3
Kd _{PGI2}	3.8	0.003	3.8	1.90E-03	3.8
Kd _{PGF2}	0.048	0.04	0.048	0.011	0.048
Kd _{PGD2}	9.50E-04	0.025	9.50E-04	7.90E-05	9.50E-04
Kd _{PGJ2}	2.40E-04	0.04	2.40E-04	0.18	2.40E-04
Kd _{15-LOX}	1.7	0.01	1.7	5.80E-03	1.7
PLT:					
Kd _{TXA}	2.5	2.3	2.5	2.5	2.5
Kd _{TXB}	6.90E-05	1.00E-04	0.01	4.40E-03	0.02

Table SI-IV. Initial concentrations used in ODEs. All the initial concentration has no direct value from experiments and is derived from parameter fitting PMN[.]

PMN:					
Initial concentrations	Set 1 (μM)	Set 2 (µM)	Set 3 (µM)	Set 4 (µM)	Set 5 (μM)
[AA] ₀	0.001	0.001	0.001	0.001	0.001
[15-HPETE] ₀	0.001	0.001	0.001	0.001	0.001
[15-HETE] ₀	0.001	0.001	0.001	0.001	0.001
[12-HPETE] ₀	0.001	0.001	0.001	0.001	0.001
[12-HETE]₀	0.001	0.001	0.001	0.001	0.001
[PGH2] ₀	0.001	0.001	0.001	0.001	0.001
[PGE2] ⁰	0.001	0.001	0.001	0.001	0.001
[TXA2] ₀	0.001	0.001	0.001	0.001	0.001
[TXB2] ₀	0.001	0.001	0.001	0.001	0.001
[5-HPETE]	0.001	0.001	0.001	0.001	0.001
[5-HETE] ₀	0.001	0.001	0.001	0.001	0.001
[LTA4] ₀	0.001	0.001	0.001	0.001	0.001
[LTB4] ₀	0.001	0.001	0.001	0.001	0.001
[20-OH-LTB4] ₀	0.001	0.001	0.001	0.001	0.001
[15-LOX] ₀	6.30E-03	1.5	4.00E-03	0.11	4.00E-03
[12-LOX] ₀	2.5	0.5	6.9	0.69	6.9
[TXAS] ₀	0.083	0.1	0.13	2.10E-03	0.13
[5-LOX] ₀	1.1	5	0.69	0.58	0.69
[LTA4H] ₀	0.83	0.76	1.1	0.76	1.1
[lin_PMN]	4.4	12	2.2	17	2.2
[PLA2] ₀	4.8	1.5	9.1	2.5	9.1
[COX-2] ₀	0.63	0.8	0.012	1	0.012
[PGES] ₀	5.20E-03	0.5	1.9	4.00E-03	1.9
[CYP4F3] ₀	0.13	0.07	0.14	0.12	0.14
[PHGPx] ₀	0.069	0.8	5.20E-03	3.30E-03	5.20E-03
[exoAA] ₀	0	0	0	0	0
	30	30	30	30	30

EC:					
[AA] ₀	0.001	0.001	0.001	0.001	0.001
[15-HPETE] ₀	0.001	0.001	0.001	0.001	0.001
[15-HETE] ₀	0.001	0.001	0.001	0.001	0.001
[12-HPETE] ⁰	0.001	0.001	0.001	0.001	0.001
[12-HETE] ⁰	0.001	0.001	0.001	0.001	0.001
[PGH2] ₀	0.001	0.001	0.001	0.001	0.001
[TXA2] ₀	0.001	0.001	0.001	0.001	0.001
[TXB2] ₀	0.001	0.001	0.001	0.001	0.001
[PGI2] ₀	0.001	0.001	0.001	0.001	0.001
[6-Keto-PGF1a] ₀	0.001	0.001	0.001	0.001	0.001
[PGD2] ₀	0.001	0.001	0.001	0.001	0.001
[PGJ2] ₀	0.001	0.001	0.001	0.001	0.001
[15d-PGJ2]0	0.001	0.001	0.001	0.001	0.001
[PGE2] ₀	0.001	0.001	0.001	0.001	0.001
$[PGF2\alpha]_0$	0.001	0.001	0.001	0.001	0.001
[15-Keto-PGF2α] ₀	0.001	0.001	0.001	0.001	0.001
[PLA2] ₀	0.08	0.5	0.08	0.16	0.08
[15-LOX] ₀	5.70E-03	1.5	5.70E-03	8	5.70E-03
[TXAS]0	7.2	0.7	7.2	0.01	7.2
[PGES] ₀	0.025	0.0034	0.025	3.10E-04	0.025
[lin_EC] ₀	5	5	5	16	5
[12-LOX] ₀	3.20E-04	1.5	3.20E-04	2.3	3.20E-04
[COX-2] ₀	0.11	3	0.11	1.4	0.11
[PGIS] ₀	0.35	0.5	0.35	6.00E-04	0.35
[PGDS] ₀	0.064	2.5	0.064	6.40E-03	0.064
[PGFS] ₀	1.80E-03	5	1.80E-03	0.025	1.80E-03
[CR] ₀	3.00E-04	6.00E-04	3.00E-04	2.00E-04	3.00E-04
[9-KPR] ₀	5.00E-04	6.50E-04	5.00E-04	4.00E-04	5.00E-04
[15-PGDH] ₀	3.50E-04	8.00E-04	3.50E-04	2.50E-04	3.50E-04
[PHGPx] ₀	0.57	0.05	0.57	3.20E-03	0.57
PLT:					
$[AA]_0$	0.001	0.001	0.001	0.001	0.001
[12-HPETE] ₀	0.001	0.001	0.001	0.001	0.001
[12-HETE] ₀	0.001	0.001	0.001	0.001	0.001
[PGH2] ₀	0.001	0.001	0.001	0.001	0.001
[TXA2] ₀	0.001	0.001	0.001	0.001	0.001
[TXB2] ₀	0.001	0.001	0.001	0.001	0.001
[TXAS] ₀	0.51	0.635	0.58	0.54	0.62
[lin_PLT] ₀	1	12	20	0.5	16.5
[PLA2] ₀	0.19	0.1	3.10E-03	0.15	7.50E-03
[12-LOX] ₀	0.82	0.5	0.039	0.44	0.084
[PHGPx]0	2.20E-03	0.5	9.20E-03	0.17	6.10E-03
[COX-1] ₀	0.19	0.85	0.15	0.94	0.15

Reference

Aharony D., Redkar-Brown D. G., Hubbs S. J., Stein R. L. (1987) Kinetic studies on the inactivation of 5-lipoxygenase by 5(S)-hydroperoxyeicosatetraenoic acid. Prostaglandins 33: 85-100

Akarasereenont P., Chotewuttakorn S., Techatraisak K., Thaworn A. (2001) The effects of COX-metabolites on cyclooxygenase-2 induction in LPS-treated endothelial cells. J Med Assoc Thai 84 Suppl 3: S696-709

Balboa M. A., Perez R., Balsinde J. (2003) Amplification mechanisms of inflammation: paracrine stimulation of arachidonic acid mobilization by secreted phospholipase A2 is regulated by cytosolic phospholipase A2-derived hydroperoxyeicosatetraenoic acid. J. Immunol. 171: 989-994 Cashman J. R., Lambert C., Sigal E. (1988) Inhibition of human leukocyte 5-lipoxygenase by 15-HPETE and related eicosanoids. Biochem. Biophys. Res. Commun. 155: 38-44

Christmas P., Ursino S. R., Fox J. W., Soberman R. J. (1999) Expression of the CYP4F3 gene. tissue-specific splicing and alternative promoters generate high and low K(m) forms of leukotriene B(4) omega-hydroxylase. J. Biol. Chem. 274: 21191-21199 Husain S., Abdel-Latif A. A. (2001) Effects of prostaglandin F(2alpha) and carbachol on MAP kinases, cytosolic phospholipase A(2) and arachidonic acid release in cat iris sphincter smooth muscle cells. Exp Eye Res 72: 581-590 Jones D. A., Fitzpatrick F. A. (1990) "Suicide" inactivation of thromboxane A2 synthase. Characteristics of mechanism-based inactivation with isolated enzyme and intact platelets. J. Biol. Chem. 265: 20166-20171 Jones D. A., Fitzpatrick F. A. (1991) Thromboxane A2 synthase. Modification during "suicide" inactivation. J. Biol. Chem. 266: 23510-23514

Kishimoto K., Nakamura M., Suzuki H., Yoshimoto T., Yamamoto S., Takao T., Shimonishi Y., Tanabe T. (1996) Suicide inactivation of porcine leukocyte 12-lipoxygenase associated with its incorporation of 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid derivative. Biochim. Biophys. Acta. 1300: 56-62 Kojima F., Kato S., Kawai S. (2005) Prostaglandin E synthase in the pathophysiology of arthritis. Fundam Clin Pharmacol 19: 255-261

Lepley R. A., Fitzpatrick F. A. (1994) Irreversible inactivation of 5-lipoxygenase by leukotriene A4. Characterization of product inactivation with purified enzyme and intact leukocytes. J. Biol. Chem. 269: 2627-2631 Levy B. D., Clish C. B., Schmidt B., Gronert K., Serhan C. N. (2001) Lipid mediator class switching during acute inflammation: signals in resolution. Nat. Immunol. 2: 612-619

Nathan C. (2002) Points of control in inflammation. Nature 420: 846-852

Orning L., Gierse J., Duffin K., Bild G., Krivi G., Fitzpatrick F. A. (1992) Mechanism-based inactivation of leukotriene A4 hydrolase/aminopeptidase by leukotriene A4. Mass spectrometric and kinetic characterization. J. Biol. Chem. 267: 22733-22739 Quraishi O., Mancini J. A., Riendeau D. (2002) Inhibition of inducible prostaglandin E(2) synthase by 15-deoxy-Delta(12,14)-prostaglandin J(2) and polyunsaturated fatty acids. Biochem. Pharmacol. 63: 1183-1189 Schomburg L, Chang A., Ebeling C., Gremse M., Heldt C., Huhn G., Schomburg D. (2004) BRENDA, the enzyme database: updates and major new developments. Nucleic Acids Res. 32: D431-433

Serio K. J., Baker J. R., Ring W. L., Riddick C. A., Bigby T. D. (1997) Leukotriene B4 costimulates 5-lipoxygenase activity in neutrophils via increased 5-lipoxygenase translocation. Am. J. Physiol. 272: C1329-1334

Soberman R. J., Okita R. T., Fitzsimmons B., Rokach J., Spur B., Austen K. F. (1987) Stereochemical requirements for substrate specificity of LTB4 20-hydroxylase. J. Biol. Chem. 262: 12421-12427

Tsubouchi Y., Kawahito Y., Kohno M., Inoue K., Hla T., Sano H. (2001) Feedback control of the arachidonate cascade in rheumatoid synoviocytes by 15-deoxy-Delta(12,14)-prostaglandin J2. Biochem Biophys Res Commun 283: 750-755 Vanderhoek J. Y., Karmin M. T., Ekborg S. L. (1985) Endogenous hydroxyeicosatetraenoic acids stimulate the human polymorphonuclear leukocyte 15-lipoxygenase pathway. J. Biol. Chem. 260: 15482-15487

Weaver J. A., Maddox J. F., Cao Y. Z., Mullarky I. K., Sordillo L. M. (2001) Increased 15-HPETE production decreases prostacyclin synthase activity during oxidant stress in aortic endothelial cells. Free Radic Biol Med 30: 299-308 Wijkander J., O'Flaherty J. T., Nixon A. B., Wykle R. L. (1995) 5-Lipoxygenase products modulate the activity of the 85-kDa phospholipase A2 in human neutrophils. J. Biol. Chem. 270: 26543-26549

Table SII-I. Drug target search result by MTOI. The desired state was defined as a state where the cumulative output of LTB4 and PGE2 should be smaller than 10% of that in the disease state, respectively

et 2:	Rank	Enzyme	abs(MD/SD)	MD Se	t 3: Enzyme	abs(MD/SD)	MD	Set 4:	Enzyme	abs(MD/SD)	MD	Set 5:	Enzyme	abs(MD/SD)	MD
	1	PLA2	1.1092	-1.04	COX-2	1.2919	-1.08		PGES	0.7292	-0.76		COX-2	1.1868	-1.08
	2	LTA4H	0.9709	-0.92	PLA2	0.9308	-1.16		LTA4H	0.7206	-0.76		PLA2	0.7961	-1
	3	COX-2	0.3992	-0.44	5-LOX	0.577	-0.56		PLA2	0.6673	-0.76		PGES	0.6302	-0.68
	4	5-LOX	0.3636	-0.44	PGES	0.541	-0.6		5-LOX	0.5284	-0.56		5-LOX	0.5163	-0.52
	5	15-LOX	0.2394	0.28	LTA4H	0.428	-0.48		COX-2	0.4202	-0.44		PHGPx	0.4223	0.48
	6	TXAS	0.2082	0.24	PHGPx	0.3431	0.4		PHGPx	0.3091	0.36		LTA4H	0.3968	-0.44
	7	CYP4F3	0.1715	0.2	PGDS	0.1404	0.16		TXAS	0.1029	0.12		PGDS	0.1032	0.12
	8	PGES	0.171	-0.2	TXAS	0.1058	0.12		15-LOX	0.1024	0.12		15-LOX	0.1024	0.12
	9	PGDS	0.1052	0.12	15-LOX	0.1025	-0.12		CYP4F3	0.0692	0.08		CYP4F3	0.1014	0.12
	10	PHGPx	0.0678	0.08	9-KPR	0.0696	0.08		PGIS	0.0349	0.04		TXAS	0.0696	0.08
	11	9-KPR	0.0345	0.04	PGIS	0.0348	0.04		PGDS	0.0347	0.04		PGFS	0.0346	-0.04
	12	PGIS	0.0343	-0.04	CR	0.0346	-0.04		9-KPR	0.0347	-0.04		CR	0.0346	0.04
	13	12-LOX	0.0342	0.04	12-LOX	0.0345	0.04		CR	0.0346	0.04		12-LOX	0.0343	0.04
	14	PGFS	0	0	COX-1	0	0		12-LOX	0.0346	-0.04		COX-1	0	0
	15	COX-1	0	0	CYP4F3	0	0		COX-1	0	0		15-PGDH	0	0
	16	12-PGDH	0	0	15-PGDH	0	0		15-PGDH	0	0		9-KPR	0	0
	17	CR	0	0	PGFS	0	0		PGFS	0	0		PGIS	0	0

Table SII-II. Drug target search result by MTOI. The desired state was defined as a state where the cumulative output of LTB4 and PGE2 should be smaller than 20% of that in the disease state, respectively

Set 1: Rar	k Enzyme	abs(MD/SD)	MD	Set 2: Enzyme	abs(MD/SD)	MD	Set 3: Enzyme	abs(MD/SD)	MD	Set 4: Enzy	me abs(MI	D/SD) MD	Set 5: Enzyme	abs(MD/SD)	MD
1	PLA2	0.7123	-0.8	PLA2	0.8923	-0.96	COX-2	0.9421	-0.88	PGES	0.6489	-0.68	COX-2	1.0209	-0.92
2	PGES	0.6948	-0.72	LTA4H	0.7178	-0.68	PLA2	0.8185	-1	LTA4	I 0.5744	-0.6	PLA2	0.6993	-0.88
3	LTA4H	0.6244	-0.64	COX-2	0.3739	-0.4	PGES	0.5058	-0.56	PLA2	0.5576	-0.64	PGES	0.4687	-0.52
4	COX-2	0.5711	-0.6	PGES	0.2408	-0.28	PHGPx	0.3432	0.4	5-L0	K 0.41	-0.44	LTA4H	0.3164	-0.36
5	5-LOX	0.4513	-0.52	5-LOX	0.2376	-0.28	5-LOX	0.3323	-0.32	COX-	0.3226	-0.36	5-LOX	0.2864	-0.28
6	CYP4F3	0.3482	0.4	12-LOX	0.2035	0.24	LTA4H	0.212	-0.24	PHGP	x 0.2059	0.24	PHGPx	0.2748	0.32
7	PHGPx	0.3191	0.36	CYP4F3	0.1723	0.2	TXAS	0.1762	0.2	15-L	OX 0.1379	0.16	TXAS	0.1398	0.16
8	TXAS	0.1431	0.16	PGDS	0.1048	0.12	PGDS	0.105	0.12	CYP4	F3 0.0694	0.08	CYP4F3	0.1033	0.12
9	PGDS	0.1035	0.12	PHGPx	0.0683	0.08	15-LOX	0.07	-0.08	TXAS	0.0348	0.04	9-KPR	0.0699	0.08
10	9-KPR	0.0348	-0.04	COX-1	0	0	CYP4F3	0.0697	0.08	PGDS	0.0347	0.04	15-LOX	0.0353	-0.04
11	PGIS	0.034	0.04	15-PGDI	H 0	0	12-LOX	0.068	0.08	12-L	OX 0.0341	0.04	PGDS	0.0348	0.04
12	15-LOX	0	0	9-KPR	0	0	9-KPR	0.0348	0.04	COX-	1 0	0	12-LOX	0.0341	-0.04
13	COX-1	0	0	CR	0	0	PGIS	0	0	15-P	GDH O	0	PGFS	0	0
14	15-PGDH	0	0	PGFS	0	0	COX-1	0	0	9-KP	R 0	0	COX-1	0	0
15	CR	0	0	PGIS	0	0	15-PGDH	0	0	CR	0	0	15-PGDH	0	0
16	PGFS	0	0	TXAS	0	0	CR	0	0	PGFS	0	0	CR	0	0
17	12-LOX	0	0	12-LOX	0	0	PGFS	0	0	PGIS	0	0	PGIS	0	0

Table SIII-I.	The feedback parameters used in the ODEs.	Italics means
the correspon	nding parameter has no direct value from expe	riments and is
derived from	parameter fitting.	

PMN:		
Feedbacks	Parameters	value
HETEs→COX2	Ki _{HETEs→COX2}	$0.61 \mu M$
HETEs→5-LOX	Ki _{HETEs→5-LOX}	$0.78 \mu M$
LTA4→5-LOX	Ki _{LTA4→5-LOX}	$0.012(\mu M^*min)^{-1}$
LTA4→LTA4H	Ki _{lta4→lta4H}	$0.016(\mu M^*min)^{-1}$
PGH2→TXAS	Ki _{PGH2→TXAS}	$8.8(\mu M^*min)^{-1}$
AA→PLA2	Ki _{AA→PLA2}	480µM
Product inhibition	Ki	500 µM
EC:		
HETEs→PGES	Ki _{HETEs→PGES}	500µM
HETEs→PGIS	Ki _{HETEs→PGIS}	$0.12\mu M$
PGH2→TXAS	Ki _{PGH2→TXAS}	1.2(µM*min)-1
AA→PLA2	Ki _{AA→PLA2}	900µM
Product inhibition	Ki	500 µM
PLT:		
PGH2→COX1	Ki _{PGH2→COX1}	0.013 (µM*min)-1
AA→PLA2	K _{AA→PLA2}	220µM
Product inhibition	Ki	500µM

Table SIII-II. The Km and Kcat of enzymes used in the ODEs. Italics means the corresponding parameter has no direct value from experiments and is derived from parameter fitting.

PMN:				
Enzyme Name	EC Number	K _{cat} (1/min)	$K_m (\mu M)$	
E1		290	28	
5-LOX	1.13.11.34	2900	0.11	
LTA4H	3.3.2.6	4200	20	

COX-2	1.14.99.1	1000	76
PGES	5.3.99.3	3000	160
TXAS	5.3.99.5	1599	4
PLA2	3.1.1.4	3600	2600
EC:			
E1		600	58
COX-2	1.14.99.1	220	5
PGES	5.3.99.3	3000	160
TXAS	5.3.99.5	1599	4
PLA2	3.1.1.4	3600	2600
PGIS	5.3.99.4	147	9
PLT:			
COX-1	1.14.99.1	1300	4.5
PLA2	3.1.1.4	3600	2600
E1		910	69

Table SIII-III. The decay rate of molecules used in ODEs. All the decay rate has no direct value from experiments and is derived from parameter fitting

PMN:		
Decay rate	value (1/min)	
Kd _{HETEs}	0.01	
Kd _{LTB4}	0.12	
EC:		
Kd _{HETEs}	1.00E-04	
Kd _{PGH2}	1.00E-04	
Kd _{PGE2}	0.0066	
PLT:		
Kd _{HETEs}	2.00E-05	

Table SIII-IV. Initial concentrations used in			
ODEs. All the initial concentration has no			
direct value from experiments and is derived			
from parameter fitting			

DMNI	
PMIN:	
Initial concentrations	value (μM)
[HETEs]0	0.001
[PGH2] ₀	0.001
[PGE2] ₀	0.001
[TXs]0	0.001
[LTA4] ₀	0.001
[LTB4] ₀	0.001
[5-LOX]0	0.083
[LTA4H]0	0.014
[TXAS]0	2.1
[lin_PMN]	5.5
[PLA2]0	10
[COX-2] ₀	0.0044
[PGES] ₀	0.025
[E1]o	5.2
[AA] ₀	0.001
	30
EC:	
[AA] ₀	0.001
[HETEs]₀	0.001
[PGH2] ₀	0.001
[TXs]0	0.001
[PGI2] ₀	0.001
[PGE2]0	0.001
[PLA2] ₀	0.022
[E1]o	1.30E-04

[TXAS]0	0.0023
[PGES]0	0.067
[lin_EC]0	2.2
[COX-2] ₀	3.20E-06
[PGIS] ₀	0.195
PLT:	
[AA] ₀	0.001
[HETEs]₀	0.001
[TXs]0	0.001
[lin_PLT]₀	340
[PLA2]0	0.0011
[E1]o	0.72
[COX-1]0	0.88

	PLA2	COX-2	PGES	5-LOX	LTA4H	COX-1
No. 1	\checkmark				\checkmark	
No. 2	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
No. 3		\checkmark	\checkmark		\checkmark	\checkmark
No. 4	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
No. 5		\checkmark		\checkmark	\checkmark	\checkmark
No. 6	\checkmark			\checkmark	\checkmark	
No. 7	\checkmark	\checkmark			\checkmark	\checkmark
No. 8		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
No. 9	\checkmark		\checkmark	\checkmark	\checkmark	
No. 10	\checkmark		\checkmark		\checkmark	
No. 11	\checkmark	\checkmark		\checkmark		\checkmark
No. 12		\checkmark			\checkmark	\checkmark
No. 13	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
No. 14	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark

Table SIV Multi-target intervention solutions found by MTOI for the simplified AAnetwork model. "---" denotes no regulation and " \checkmark " denotes that the corresponding enzyme is inhibited.

Table SV. The result of single parameter			
sensitivity analysis. Top 30 parameters are			
listed in the table. Kcat is turnover number,			
Km is Mic	haelis-Menten constant	, con is	
concentra	tion. "K(PGE2 \rightarrow 15-LC	DX)" denotes	
the feedb	ack constant of PGE2 t	to 15-LOX.	
Rank	Parameter	Sensitivity	
1	Km(PLA2)	0.7393	
2	Kcat(PLA2)	0.7369	
3	con(PLA2)	0.7014	
4	Km(PGES)	0.5656	
5	Kcat(PGES)	0.552	
6	con(PGES)	0.4593	
7	Kcat(15-LOX)	0.3875	
8	$K(PGE2 \rightarrow 15-LOX)$	0.3869	
9	Km(15-LOX)	0.3831	
10	K(LTA4→LTA4H)	0.359	
11	con(LTA4H)	0.2838	
12	con(COX-2) 0.268		
13	$K(15\text{-}HETE \rightarrow PGES)$	0.2672	
14	Kcat(COX)	0.261	
15	Km(COX)	0.2337	
16	con(PHGPx)	0.232	
17	Km(PHGPx)	0.2264	
18	Kcat(PHGPx)	0.2257	
19	$K(LTB4 \rightarrow PLA2)$	0.1674	
20	K(15HPETE→TXAS)	0.112	
21	con(TXAS)	0.0843	
22	$K(15HPETE \rightarrow PLA2)$	0.0819	
23	Kcat(TXAS)	0.0723	
24	Km(TXAS)	0.0715	
25	Kcat(PGDS)	0.0699	
26	con(PGDS)	0.0693	
27	Km(PGDS)	0.0693	
28	Kcat(5-LOX)	0.069	
29	con(5-LOX)	0.069	
30	Kcat(LTA4H)	0.0657	