Synthesis and HDAC Inhibitory Activity of Largazole Analogs: Alteration of the Zinc-Binding Domain and Macrocyclic Scaffold

Albert A. Bowers,¹ Nathan West,^{3,4} Tenaya L. Newkirk,¹ Annie E. Troutman-Youngman,¹ Stuart L. Schreiber,^{4,5} Olaf Wiest,⁶ James E. Bradner,^{3,4}* and Robert M. Williams^{1,2}*
¹Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523 University of Colorado Cancer Center, Aurora, Colorado 80045
³Division of Hematologic Neoplasia, Dana-Farber Cancer Institute, Boston, MA 02115
⁴Chemical Biology Program, Broad Institute of Harvard & MIT, Cambridge, MA 02142
⁵Howard Hughes Medical Institute, Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138
⁶Walther Cancer Research Center and Department of Chemistry and Biochemistry University of Notre Dame, Notre Dame, IN 46556

Corresponding author: rmw@lamar.colostate.edu

Supporting Information

(3*S*,4*E*)-2-(Trimethylsilyl)ethyl-3-[(*R*)-2-((*R*)-2-{2-[(*tert*-butoxycarbonyl)methyl]thiazol-4-yl}-4-methyl-4,5dihydrothiazole-4-carboxamido)-3-methylbutanoyloxy]-7-(tritylthio)hept-4-enoate (43). 0.104g (0.2 mmol) of β -hydroxy ester 40¹ and 0.340g (1.0 mmol, 5 equiv.) *N*-Fmoc-D-valine were dissolved in 5 mL dry CH₂Cl₂. The reaction was cooled to 0° C and 0.192g (1.0 mmol, 5 equiv.) EDCI and 0.003g (0.02 mmol, cat.) DMAP were added in ~5 mL CH₂Cl₂, followed by 0.2 mL *i*Pr₂NEt. The reaction was allowed to warm to room temperature and stirred over night, when TLC showed complete disappearance of 40. The reaction was concentrated and passed through a short plug of silica, washing with 100% EtOAc. The product diester eluted with a by-product from the excess amino acid used, which was not separated at this time. Instead, the crude diester was taken up in 15 mL CH₃CN (to ~0.01M) and treated with 1 mL diethylamine (to ~0.2M). The resulting solution was stirred for two hours and then concentrated, taken up in EtOAc, and concentrated again.

0.061g (0.22 mmol, 1.1 equiv.) acid **42** was dissolved in 5 mL dry CH_2Cl_2 and treated with 0.151g (0.44 mmol, 2.0 equiv) PyBOP and 0.076 mL (0.66 mmol, 3.0 equiv.) *i*Pr₂NEt. After stirring for ~5 min., the crude amine in 5 mL CH_2Cl_2 was added to the mixture dropwise. After 2hr., the reaction was concentrated and submitted immediately to column chromatography, 0.056g (0.058 mmol, 30% from **40**) of peptide **43** eluting

¹Bowers, A. A.; West, N.; Taunton, J.; Schreiber, S. L.; Bradner, J. E.; Williams, R. M. *J Am Chem Soc* **2008**, *130*, 11219-22.

cleanly in (2:1 hexanes:EtOAc). Clear oil. $[\alpha]^{24}_{D}$: -6.0 (c = 1, CHCl₃). ¹H NMR (300 MHz, CDCl₃) & 0.02 (s, 9H), 0.88 (d *J* = 6.9 Hz, 3H), 0.95 (d *J* = 6.9 Hz, 3H), 1.32-1.38 (m, 2H), 1.47 (s, 9H), 1.59 (s, 3H), 1.96-2.05 (m, 2H), 2.12-2.21 (m, 3H), 2.45 (dd *J* = 5.1, 15.9 Hz, 1H), 2.59 (dd *J* = 8.4, 15.9 Hz, 1H), 3.29 (d *J* = 11.4 Hz, 1H), 3.73 (d *J* = 11.4 Hz, 1H), 4.05-4.17 (m, 2H), 4.52 (dd *J* = 4.5, 9.0 Hz, 1H), 4.63 (d *J* = 6.3 Hz, 1H), 5.26-5.35 (m, 2H), 5.54-5.61 (m, 2H), 7.18-7.39 (m, 16H), 7.93 s, 1H). ¹³C NMR (75.5 MHz, CDCl₃): δ -1.3, 11.3, 12.0, 17.5, 17.6, 18.8, 19.2, 19.3, 25.4, 28.5, 29.9, 31.2, 31.5, 31.7, 39.8, 41.2, 42.1, 42.5, 53.7, 57.0, 63.3, 66.8, 71.8, 80.6, 85.3, 121.9, 126.8, 127.8, 128.0, 129.7, 133.4, 145.0, 148.8, 155.8, 163.5, 169.9, 170.5, 174.7. HRMS (ESI): *m/z* calcd. for C₅₀H₆₄N₄NaO₇S₃Si (M + Na)⁺979.35986, found 979.35980.

General procedure for macrocyclization. 0.056g (0.058 mmol) Acyclic precursor 43 was dissolved in 5 mL CH₂Cl₂ (to ~ 0.03 M), cooled to 0 °C and treated with 1 mL TFA (to ~ 0.6 M). The reaction was allowed to warm to room temperature and stirred overnight. Solvents were evaporated and the crude amino acid redissolved in toluene and concentrated a second time to remove residual TFA. The crude amino acid was then taken up in \sim 5 mL CH₂Cl₂ and added dropwise to a stirred solution of 0.061 mL (6.0 equiv.) *i*Pr₂Net in 60 mL dry CH₃CN (to ~ 0.001 M). The resulting moderately opaque solution was allowed to stir ~ 10 min., before 0.044g (0.12 mmol, 2 equiv.) HATU and 0.016g (0.12 mmol, 2 equiv.) HOBt were added dropwise in ~5 mL CH₃CN. The reaction was allowed to stir for 16 hr., then concentrated and submitted immediately to column chromatography. Macrocycle 44 (0.020g, 57% yield) eluted quickly in EtOAc, after a general wash with 10:1 hexanes: EtOAc. Clear oil. $[\alpha]_{D}^{24}$: +16.1 (c = 1, CH₃OH). ¹H NMR (300 MHz, 5:1 CDCl₃:CD₃OD) δ 0.70 (d J = 6.6 Hz, 3H), 0.80 (d J = 6.6 Hz), 0.80 (d J = 6.6 H Hz, 3H), 1.71 (s, 3H), 1.90-2.03 (m, 3H), 2.05-2.12 (m, 2H), 2.41 (d J = 16.8 Hz, 1H), 2.80 (dd J = 10.5, 16.8 Hz, 1H), 3.14 (d J = 11.4 Hz, 1H), 4.08-4.19 (m, 3H), 4.90 (d J = 17.1 Hz, 1H), 5.21 (dd J = 8.4, 15.3 Hz, 1H), 5.57-5.71 (m, 2H), 7.09-7.22 (m, 10H), 7.28-7.32 (m, 6H), 7.67 (s, 1H). ¹³C NMR (100.6 MHz, 5:1 CDCl₃:CD₃OD): δ 18.0, 18.8, 26.4, 31.0, 31.4, 32.2, 38.7, 39.9, 40.7, 41.5, 59.8, 59.9, 66.8, 73.0, 77.5, 84.6, 125.0, 126.8, 127.9, 128.0, 129.7, 135.3, 144.9, 147.1, 163.8, 167.9, 168.5, 170.4, 174.0. HRMS (ESI): m/z calcd. for $C_{40}H_{42}N_4NaO_4S_3 (M + Na)^+$ 761.22604, found 761.22478.

General procedure for trityl deprotection. 0.010g (0.04 mmol) *S*-Trityl macrocycle **44** was dissolved in 5 mL dry CH₂Cl₂ and cooled to 0 °C. The mixture was successively treated with 0.017 mL (0.08 mmol, 2 equiv.) *i*Pr₃SiH and 0.200 mL TFA (to ~0.2M in **44**). The reaction mixture was allowed to warm to room temperature and stirred for 2hr., before being concentrated and chromatographed (EtOAc) to provide 0.019g (0.038 mmol, 95%) thiol **9**. Clear oil. $[\alpha]^{24}_{D}$: +11.0 (c = 1, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 0.89 (d *J* = 6.9 Hz, 3H), 0.97 (d *J* =6.9 Hz, 3H), 1.42 (t *J* = 7.8 Hz, 1H), 2.10-2.18 (m, 1H), 2.29-2.40 (m, 2H), 2.53-2.63 (m, 3H), 2.82-2.94 (m, 1H), 3.22 (d *J* = 11.4 Hz, 1H), 4.23-4.35 (m, 3H), 5.10 (dd *J* = 7.8, 16.5 Hz, 1H), 5.45 (dd *J* = 8.7, 15.9 Hz, 1H), 5.82 (t *J* = 9.9 Hz, 1H), 5.90 (dt *J* = 7.8, 15.3 Hz, 1H), 6.43 (s, 1H), 7.25 (s, 1H), 7.72 (s, 1H). ¹³C NMR (100.6 MHz, CDCl₃): δ 18.3, 19.1, 23.9, 26.7, 32.5, 36.6, 38.8, 40.6, 41.0, 41.9, 59.9, 72.9, 85.0, 124.8, 124.9,

129.1, 134.8, 167.9, 168.1, 169.8, 173.4. HRMS (ESI): m/z calcd. for $C_{21}H_{28}N_4NaO_4S_3$ (M + Na)⁺ 519.11649, found 519.11777.

(*S*)-2-(2-((*tert*-Butoxycarbonylamino)methyl)thiazol-4-yl)-4-methyl-4,5-dihydrothiazole-4-carboxylic acid (*ent*-42). To a solution of sodium bicarbonate (0.65 g, 7.68 mmol) in CH₃OH (22 ml) and pH 7 phosphate buffer (14.4 ml) was added **17** and **45**. The mixture was stirred overnight at 70 °C and then cooled to room temperature. The solvent was evaporated, and the residue dissolved in ether and water. Following extraction into ether, the organic layers were discarded and the aqueous layer was acidified to pH 2 with 3 N HCl. This was then extracted into EtOAC (3 x 20 ml), washed with brine, and dried over sodium sulfate to give *ent-42* as a light brown foam (0.96 g, 70%yield). $[\alpha]^{24}_{\text{ D}}$: +22.0 (c = 1, CH₃OH). Both ¹H and ¹³C NMR spectra of *ent-42* matched our previously published spectra of **42** itself.

(*R*,*E*)-2-(Trimethylsilyl)ethyl 3-hydroxy-7-(tritylthio)hept-4-enoate (*ent*-40). To a stirred solution of *ent*-35 (0.88 g, 1.44 mmol) in CH₂Cl₂ (14 ml) was added 2-(trimethylsilyl)ethanol (2 ml, 14.4 mmol) and imidazole (0.15 g, 2.16 mmol). The mixture was stirred overnight, after which the solvent was evaporated and the residue purified by column chromatography (10:1 to 4:1 hexanes/ethyl acetate) to give *ent*-40 as a clear oil (0.49 g, 66%). $[\alpha]^{24}_{D}$: +5.0 (c = 2, CHCl₃). Both ¹H and ¹³C NMR spectra of *ent*-40 matched our previously published spectra of 40 itself.

(3R,4E)-2-(Trimethylsilyl)ethyl-3-[(S)-2-((S)-2-{2-[(*tert*-butoxycarbonyl)methyl]thiazol-4-yl}-4-methyl-4,5dihydrothiazole-4-carboxamido)-3-methylbutanoyloxy]-7-(tritylthio)hept-4-enoate (46). 46 was prepared from *ent-40* (0.14g, 0.28 mmol) in the same fashion as 43, to give 46 in 50% yield (0.12 g, 0.14 mmol). $[\alpha]^{24}_{D}$: +20.0, (c = 0.2, CHCl₃. Both ¹H and ¹³C NMR spectra of 43 matched our previously published spectra of *ent-43*. (-)-Largazole thiol (2). The general procedure for both cyclization and deprotection described above was followed to give trityl protected macrocycle 47 in 87% yield (0.07 g, 0.14 mmol), $[\alpha]_D = -6$, c=0.0.1 in methanol. *Ent*-Largazole (2) was completed in 90% yield (0.03 g, 0.05 mmol), $[\alpha]_D = -21.0$ (c = 0.1, CHCl₃). ¹H and ¹³C NMR of both 47 and 2 match those of (+)-Largazole.

Acyclic precursor 49. 0.185g (0.36 mmol, 1.0 equiv.) of β -hydroxy ester 40 and 0.601g (1.8 mmol, 5 equiv.) *N*-Fmoc-L-proline were dissolved in 10 mL dry CH₂Cl₂. The reaction was cooled to 0° C and 0.341g (1.8 mmol, 5 equiv.) EDCI and 0.004g (0.036 mmol, 0.1 equiv.) DMAP were added in ~5 mL CH₂Cl₂, followed by 0.370 mL (2.1 mmol, 6 equiv.) *i*Pr₂NEt. The reaction was allowed to warm to room temperature and stirred over night, when TLC showed complete disappearance of β -hydroxy ester 40. The reaction was concentrated and submitted immediately to column chromatography. 0.234g (0.28 mmol, 78% yield) Fmoc-protected diester 48 eluted in 4:1 hexanes:EtOAc.

0.100g (0.12 mmol, 1.0 equiv.) Fmoc-protected diester **48** was taken up in 12 mL CH₃CN (to ~0.01M) and treated with 0.600 mL diethylamine (to ~0.2M). The resulting solution was stirred for 2 hr. and then concentrated, taken up in EtOAc, reconcentrated, and dried on a mechanical pump to remove residual diethylamine. Meanwhile, 0.046g (0.13 mmol, 1.1 equiv.) acid **42** was dissolved in 5 mL dry CH₂Cl₂ and treated with 0.124g (0.24 mmol, 2.0 equiv) PyBOP and 0.0.62 mL (0.36 mmol, 3.0 equiv.) *i*Pr₂NEt. After stirring for ~5 min., the crude amine in 10 mL CH₃CN was added to the mixture dropwise. After 2hr., the reaction was assumed complete, concentrated, and submitted immediately to column chromatography. 0.078g (0.081 mmol, 68% yield) of acyclic precursor **49** eluted cleanly in 2:1 hexanes:EtOAc. **(49):** Clear oil. Compound NMRs display highly complex mixtures of conformational isomers; the room temperature ¹H NMR spectrum (300 MHz, CDCl₃) and ¹³C NMR spectrum (100.6 MHz, CDCl₃), as well as elevated temperature ¹H NMR spectra (300 MHz, DMSO-*d*₆) are illustrated below. HRMS (ESI): *m/z* calcd. for C₅₀H₆₂N₄NaO₇S₃Si (M + Na)⁺ 977.34476, found 977.34522.

S-Trityl macrocycle 50 and thiol 4. 0.091g (0.095 mmol, 1.0 equiv.) acyclic precursor 49 was dissolved in 5 mL (to ~0.03M in substrate) dry CH_2Cl_2 at 0 °C and treated with 1 mL (to ~0.3M in substrate) TFA. The mixture was then warmed to room temperature and stirred overnight. The solvents were removed *in vaccuo*. The crude salt was dissolved in toluene, concentrated, and dried on mechanical pump to remove residual TFA. It was then dissolved in 5 mL dry CH_2Cl_2 and added dropwise to a solution of 0.100 mL (0.57 mmol, 6.0 equiv.) *i*Pr₂NEt in 10 mL CH_3CN at 0 °C. The solution was stirred ~0.5 hr., then taken up in syringe and added via syringe pump over 10 hr. to a solution of 0.072g (0.19 mmol, 2.0 equiv.) HATU, 0.026g (0.19 mmol, 2.0 equiv.), and 0.100 mL

(0.57 mmol, 6.0 equiv.) *i*Pr₂NEt in 100 mL (to ~0.001M) CH₃CN. Upon completion of the addition, the solution was stirred a further 6 hr., then concentrated and redissolved in ~2 mL CH₂Cl₂. Solids were removed by filtration through a cotton plug and the product macrocycle was purified via chromatotron. 0.030g (0.041 mmol, 43% yield) macrocycle **50** eluted in 30:1 CH₂Cl₂:CH₃OH. **(50):** $[\alpha]^{24}_{D}$: +29.1 (c = 1, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 1.43 (s, 3H), 1.56-1.60 (m, 2H), 1.70-1.79 m, 2H), 1.89-1.95 (m, 1H), 2.03-2.19 (m, 4H), 2.26 (d *J* = 17.6 Hz, 1H), 2.56 (dd *J* = 2.8, 14.0 Hz, 1H), 2.81 (dd *J* = 5.2, 14.0 Hz, 1H), 3.51 (dd *J* = 11.6, 16.4 HZ, 1H), 3.52 (d *J* = 11.6 Hz, 1H), 3.76-3.80 (m, 1H), 3.86 (d *J* = 11.6 Hz, 1H), 3.88 (dd *J* = 4.8, 17.7 Hz, 1H), 4.72 (dd *J* = 6.4, 17.6 Hz, 1H), 5.12 (dd *J* = 2.8, 8.4 Hz, 1H), 5.21-5.25 (m, 1H), 5.70 (dt *J* = 6.4, 16.0 Hz, 1H), 5.91 (dd *J* = 5.6, 16.0 Hz, 1H), 7.15-7.23 (m, 10H), 7.59 (s, 1H). ¹³C NMR (100.6 MHz, CDCl₃): δ 25.7, 31.5, 31.8, 32.5, 41.1, 42.8, 44.9, 49.6, 60.8, 67.0, 73.0, 77.4, 86.9, 124.0, 127.0, 128.1, 128.5, 129.8, 130.6, 130.8, 144.7, 147.9, 158.4, 167.2, 170.1, 172.3, 173.8. HRMS (ESI): *m/z* calcd. for C₄₀H₄₀N₄NaO₄S₃ (M + Na)⁺ 759.21039, found 759.21059. 0.009g **50** was deprotected according to the general procedure to provide **4**, which was purified by preparative thin layer chromatography.

(*R*,*Z*)-2,2,2-trichloroethyl 9-((*R*)-4-benzyl-2-thioxothiazolidin-3-yl)-7-hydroxy-9-oxonon-4-enoate 7. A solution of the chiral auxiliary (887mg, 3.53 mmol) in CH₂Cl₂ (28.5 mL) was cooled to 0°C, followed by addition of TiCl₄ (0.47 mL, 4.39 mmol). The reaction was allowed to stir for 5 minutes then cooled to -78°C, before *i*Pr₂NEt (0.76 mL, 4.37 mmol) were slowly added and stirred for 2 hours. The aldehyde was dissolved in CH₂Cl₂ (2.2 mL) and added drop wise to the auxiliary solution, then stirred for 1.5 hours. The reaction was quenched with saturated *aq* NH₄Cl, and diluted with CH₂Cl₂, and warmed to room temperature. The reaction was extracted with CH₂Cl₂, then washed with brine and dried over Na₂SO₄, filtered and condensed. Purification was accomplished with silica gel chromatography (30% EtOAc/Hex) to afford yellow oil. ¹H NMR (400 MHz, CDCl₃) \tilde{d} 83m, 1H), 1.23 (s, 1H), 2.35 (m, 2 H), 2.45 (m, 2H), 2.53 (m, 2H), 2.88 (dd, 3.2, 11.6 Hz, 1 H), 3.02 (dd, 10.4, 13.2 Hz, 1 H), 3.17 (m, 2 H), 3.42 (m, 2 H), 3.62 (dd, 2.8, 17.6 Hz, 1 H) 4.15 (m, 2 H), 4.73 (s, 2H), 5.37 (m, 1 H), 5.52 (m, 2 H), 7.30 (m, 5 H). ¹³C NMR (75 MHz, CDCl₃) d 22.8, 29.8, 32.2, 33.8, 34.3, 34.5, 36.9, 45.1, 45.5, 67.7, 68.2, 68.4, 68.5, 95.1, 126.8, 127.4, 129.1, 129.6, 130.5, 136.5, 169.1, 171.6, 173.1, 173.7. HRMS (ESI): *m/z* calcd. for C₂₁H₂₅Cl₃NO₄S₂ (M + H)⁺ 524.02742, found 524.02851 [a]_D = -74.2 (c 2, CHCl₃)

(*R*,*Z*)-1-(2,2,2-trichloroethyl) 9-(2-(trimethylsilyl)ethyl) 7-hydroxynon-4-enedioate 51. The alcohol (764 mg, 1.45 mmol) dissolved in CH₂Cl₂ (2.9 mL) was treated with imidazole (148mg, 2.175 mmol) followed by the addition of 2-(trimethylsilyl)ethanol (2.08 mL, 14.5 mmol). The reaction was stirred overnight, then condensed and purified by silica gel chromatography (30% EtOAc/ Hex) to give the protected β-hydroxy acid as yellow oil. ¹H NMR (300 MHz, CDCl₃) d0.04 (s, 9 H), 0.99 (m, 2H), 2.30 (m, 2 H), 2.45 (m, 4 H), 2.54 (m, 2 H), 4.06 (m, 1H), 4.20 (m, 2 H), 4.73 (s, 2H), 5.52 (m, 2 H). ¹³C NMR (75 MHz, CDCl₃) d -.127, 17.5, 22.8, 33.8, 34.5, 41.0,63.3, 67.9, 74.1, 95.1, 126.8, 130.3 171.7, 173.2. [a]_D = -1.7 (c 2, CHCl₃)

(*R*,*Z*)-1-(2,2,2-trichloroethyl) 9-(2-(trimethylsilyl)ethyl) 7-((*S*)-2-(((9*H*-fluoren-9-

yl)methoxy)carbonylamino)-3-methylbutanoyloxy)non-4-enedioate 52. The protected acid (97mg, 0.224 mmol) and N-Fmoc-L-Val (380mg, 1.123 mmol) were dissolved in CH₂Cl₂ (4.08 mL) and cooled to 0°C. EDCI (258 mg, 1.347 mmol) and DMAP (2.7mg, 0.0225 mmol) were dissolved in CH₂Cl₂ (1.02 mL) and added to the cooled reaction followed by the slow addition of *i*Pr₂NEt (0.23 mL, 1.347 mmol). The reaction was allowed to warm to room temperature and stirred over night, then condensed and purified with column chromatography (30% EtOAc/ Hex) ¹H NMR (300 MHz CDCl₃) \tilde{d} 3s, 9 H), 0.88 (d, 3 H), 0.97 (m, 5 H) 2.15 (m, 1 H), 2.43 (m, 3 H), 2.50 (d, 2 H), 2.59 (m, 3 H), 4.25 (m, 3 H), 4.38 (m, 2 H), 4.73 (s, 2H), 5.32 (m, 2 H) 5.43, (m, 1 H), 5.53 (m, 1 H), 7.35 (m, 4 H), 7.60 (d, 2 H), 7.76 (d, 2 H). ¹³C NMR (75 MHz, CDCl₃) d -1.27, 17.5, 19.2, 22.8, 31.4, 31.7, 33.7, 38.7, 47.4, 59.1, 63.3, 67.2, 71.5, 71.6, 74.1, 95.1, 120.2, 125.1, 125.3, 127.2, 127.9, 131.1, 131.2, 141.5, 143.9, 144.1, 156.3, 156.4. (M+Na⁼) calcd for C₃₆H₄₆Cl₃NO₈Si 753.20627, found 776.19549. [a]_D = 0.0 (c 2, CHCl₃)

(*R*,*Z*)-1-(2,2,2-trichloroethyl) 9-(2-(trimethylsilyl)ethyl) 7-((*S*)-2-((*R*)-2-(2-((*tert*-

butoxycarbonylamino)methyl)thiazol-4-yl)-4-methyl-4,5-dihydrothiazole-4-carboxamido)-3-

methylbutanoyloxy)non-4-enedioate 8. The protected amine (118mg 0.157 mmol) was dissolved in CH₂Cl₂ (7.85 mL) and treated with Et₂NH, then allowed to stir for 2 hrs. The reaction was concentrated, then taken up in EtOAc and re-concentrated again to remove any left over Et₂NH. The thiazolinethiazole (61.7 mg, 0.172 mmol) and PyBOP (164mg, .471 mmol) were dissolved in CH₂Cl₂ (2.87 mL) and treated with *i*Pr₂NEt and allowed to stir for 5 minutes. Then the crude amine in CH₃CN (1.42 mL) was slowly added to the PyBOP solution and allowed to stir overnight. The reaction was then condensed and purified with column chromatography (30-50% EtOAc/Hex). ¹H NMR (300 MHz CDCl₃) \tilde{a}_3 s, 9 H), 0.82 (d, *J*= 3 H), 0.88 (m, 3 H), 0.97 (m, 2 H), 1.47 (s, 9 H), 1.62 (s, 3 H), 2.15 (m, 1 H), 2.45 (m, 3 H), 2.57 (m, 5 H), 3.34 (d, *J*= 11.4 1 H), 3.81 (d, *J*= 11.4, 1 H), 4.15 (m, 2 H), 4.48 (m, 1H), 4.63 (d, *J*= 6.3 Hz, 2 H), 4.74 (s, 2 H), 5.31 (m, 2 H), 5.43 (m, 1 H), 5.54 (m, 1 H), 8.06 (s, 1 H). ¹³C NMR (75 MHz, CDCl₃) d -1.3, 17.5, 17.7, 19.3, 22.8, 24.9, 28.5, 31.2, 33.7, 38.7, 38.8, 41.6, 42.6, 51.4, 57.3, 63.3, 71.5, 74.1, 80.7, 85.0, 95.1, 125.1, 125.3, 131.0, 131.1, 148.5, 155.9, 170.3, 170.4, 170.8, 170.9, 171.4, 171.5, 174.4. (M+H⁼) calcd for C₃₅H₅₃Cl₃N₄O₈S₂Si 870.21108, found 871.21836. [a]_D = -19.86 (c 2, CHCl₃)

Formation of the Trichloroethyl ester protected Largazole Azumamide hybrid 9a. The acyclic precursor (77mg, 0.088 mmol) was dissolved in CH₂Cl₂ (2.95 mL) and cooled to 0°C. TFA (0.15 mL) was slowly added to the cooled solution. The reaction was allowed to warm to room temperature and stirred overnight. The reaction was then condensed, and re-dissolved in toluene and condensed again to remove any excess TFA. The crude amino acid was dissolved in CH₂Cl₂ (4.4 mL) then cooled to 0°C and treated with *i*Pr₂NEt (0.093mL, 0.53 mmol) and stirred for 30 min. In a separate flask HOBt (23 mg, 0.177 mmol), HATU (67 mg, 0.177 mmol) were dissolved in CH₃CN (88.7 mL) and treated with *i*Pr₂NEt (0.093 mL, 0.53 mmol). The crude amino acid solution was then added via syringe pump addition to the HATU solution in a 10-hour addition. The reaction was allowed to stir for an additional 6 hours before solvents were removed and purified with silica gel chromatography (30%-50% EtOAc/ Hex). ¹H NMR (300 MHz CDCl₃) d0. 47 d, *J*= 6.9 Hz, 3 H), 0.69 (d, *J*= 8.7 Hz, 3 H), 1.24 (s, 1H), 1.87 (s, 3 H), 2.13 (m, 1 H), 2.43 (m, 3 H), 2.52 (d, J= 6.6 Hz, 2 H), 2.72 (m, 4 H), 3.29 (d, J= 12.3 Hz, 1 H), 4.05 (d, J= 11.4 Hz, 1 H), 4.27 (dd, J= 3, 17.7 Hz, 1 H), 4.64 (dd, J= 3, 9.3 Hz, 1 H), 4.75 (s, 2 H), 5.25 (m, 2 H), 5.40 (m, 1 H), 5.53 (m, 1 H), 6.33 (m, 1 H), 7.10 (d, J= 9.3 Hz, 1 H), 7.78 (s, 1 H) ¹³C NMR (75 MHz, CDCl₃) d 14.4, 16.5, 18.5, 18.7, 19.3, 22.8, 24.1, 24.9, 29.4, 31.2, 32.7, 33.7, 33.9, 34.3, 35.5, 39.2, 41.2, 43.4, 43.7, 57.8, 59.7, 60.6, 72.5, 74.1, 83.8, 95.1, 110.5, 118.4, 124.9, 125.1, 127.3, 131.2, 146.8, 167.0, 168.7, 169.5, 170.6, 171.5, 173.2. (M+H⁼) calcd for C₂₅H₃₁Cl₃N₄O₆S₂ 675.0637, found 675.06428 [a]_D = -0.94 (c 2, CHCl₃)

Largazole Auzumamide E Hybrid 9b. The macrocycle (40) (9.8 mg, 0.015 mmol) was dissolved in dry THF (0.5 mL, 0.03M) and vigorously stirred. Then Zn dust (35mg, 36 mmol) was added to the solution followed by 1M NH₄OAc (0.083 mL, .18M) and allowed to stir for 24 hours under argon. The reaction was then filtered and taken up in EtOAc and washed with 5% aq KHSO₄ (2x 2 mL) and Brine (2x 2 mL) then dried over Na₂SO₄, filtered and solvents removed. Purification by PTLC (MeOH / CH₂Cl₂ 10%). ¹H NMR (300 MHz CDCl₃) d0.47 (d, J= 6.9 Hz, 3 H), 0.69 (d, J= 6.9 Hz, 3 H), 0.85 (m, 2 H), 1.88 (s, 3 H), 2.14 (m, 1 H), 2.41 (m, 5 H), 2.71 (m, 4 H), 3.29 (d, J= 11.4 Hz, 1 H), 4.06 (d, J=11.4 Hz, 1 H), 4.27 (dd, J= 3.3, 17.4 Hz, 1 H), 4.45 (d, J= 6.0 Hz, 2 H), 4.64 (dd, J= 3.0, 9.3 Hz, 1 H), 5.29 (m, 2 H), 5.42 (m, 1H), 5.51 (m, 1 H), 5.85 (t, J= 6.0 Hz, 1 H), 6.40 (m, 1 H), 7.11 (d, J= 9.3 Hz, 1 H), 7.79 (s, 1 H). ¹³C NMR (75 MHz, CDCl₃) d 14.4, 16.6, 19.2, 21.8, 24.2, 29.9, 31.1, 33.7, 39.3, 41.3, 43.5, 57.8, 60.6, 68.4, 68.6, 72.4, 124.8, 131.4, 168.2, 169.6, 170.2, 172.1, 173.6. (M-H⁼) calcd for C₂₃H₃₀N₄O₆S₂ 521.1534, found 521.15292. [a]_D = +10.107 (c 2, CHCl₃)

General procedure for the cross-metathesis reactions. Adapting the procedure described by Luesch and coworkers,² macrocycle 10 was dissolved in the indicated solvent (to ~0.026M) and heated to reflux under argon. Solutions of sacrificial olefin (2.0 equiv., ~0.26M) and catalyst (0.2 equiv., ~0.052M) were then added to the reaction. The resulting mixture was stirred at reflux for a further 3 hr., with equivalent portions of olefin (2.0

² Taori, K.; Paul, V. J.; Luesch, H. J. Am. Chem. Soc. 2008, 130, 13506-13506.

equiv., ~0.26M in toluene) and catalyst (0.2 equiv., ~0.052M in toluene) being added each hour. After the last addition of olefin and catalyst, the reaction was refluxed for 1 hr. and then cooled to room temperature. Several drops of DMSO were added and the mixture was stirred overnight. Concentration *in vaccuo*, followed by column chromatography provided the substituted olefins as products.

Boc-protected benzamide 11a and amine 11b. According to the general procedure, 0.025g (0.057 mmol) macrocycle **10** was combined with olefin **53**³ to yield 0.012g (0.017 mmol, 30% yield) compound **11a**, which eluted slowly in 100% EtOAc. Clear oil. ¹H NMR (300 MHz, CDCl₃) δ 0.62 (d *J* = 6.9 Hz, 3H), 0.73 (d *J* = 6.9 Hz, 3H), 1.53 (s, 9H), 1.87 (s, 3H), 1.98-2.00 (m, 1H), 2.42-2.65 (m, 5H), 2.77 (dd *J* = 6.0, 15.6 Hz, 1H), 3.31 (d *J* = 11.4 Hz, 1H), 3.91 (dd *J* = 4.2, 16.8 Hz, 1H), 4.00 (d *J* = 11.4 Hz, 1H), 4.54 (dd *J* = 4.8, 9.3 Hz, 1H), 4.86 (dd *J* = 8.1, 16.8 Hz, 1H), 5.69-5.79 (m, 2H), 5.86-5.97 (m, 1H), 6.61-6.67 (m, 1H), 6.90 (t *J* = 7.8 Hz, 1H), 6.98 (d *J* = 7.2 Hz, 1H), 7.08 (td *J* = 1.2, 8.1 Hz, 1H), 7.19 (d *J* = 9.0 Hz, 1H), 7.48 (d *J* = 7.8 HZ, 1H), 7.67 (s, 1H), 7.98 (bs, 1H), 8.40 (bs, 1H). HRMS (ESI): *m/z* calcd. for C₃₃H₄₂N₆NaO₇S₂ (M + Na)⁺ 721.24541, found 721.24526. 0.010g Benzamide **11a** was deprotected in 1mL CH₂Cl₂ and 0.2mL TFA. After 2 hr., the solvents were removed and the product amine **11b** purified by preparative thin layer chromatography.

Boc-protected benzamide 12a and amine 12b. According to the general procedure, 0.039g (0.089 mmol) macrocycle **10** was combined with olefin **54** to yield 0.012g (0.017 mmol, 20% yield) compound **12a**, which eluted slowly in 100% EtOAc. Clear oil. ¹H NMR (300 MHz, CDCl₃) δ 0.59 (d *J* = 6.9 Hz, 3H), 0.73 (d *J* = 6.9 Hz, 3H), 1.50 (s, 9H), 1.86 (s, 3H), 1.99-2.00 (m, 1H), 2.15-2.32 (m, 3H), 2.32-2.41 (m, 3H), 2.66-2.73 (m, 2H), 3.30 (d *J* = 11.4 Hz, 1H), 4.02 (d *J* = 11.4 Hz, 1H), 4.28 (dd *J* = 3.6, 17.7 Hz, 1H), 4.57 (dd *J* = 4.5, 9.6 Hz, 1H), 4.99 (dd *J* = 6.9, 17.7 Hz, 1H), 5.61-5.72 (m, 2H), 5.86 (dt *J* = 7.2, 14.4 Hz, 1H), 6.59-6.66 (m, 1H), 7.01 (t *J* = 8.4 Hz, 1H), 7.11-7.16 (m, 3H), 7.26 (d *J* = 9.0 Hz, 1H), 7.49 (d *J* = 8.1 Hz, 1H), 7.67 (s, 1H), 8.48 (s, 1H). HRMS (ESI): *m/z* calcd. for C₃₄H₄₄N₆NaO₇S₂ (M + Na)⁺ 735.26106, found 735.2609. 0.004g Benzamide **12a** was deprotected in 1mL CH₂Cl₂ and 0.2mL TFA. After 2 hr., the solvents were removed and the product amine **12b** purified by preparative thin layer chromatography.

S-Trityl-α-thioamide 13a. According to the general procedure, 0.060g (0.14 mmol) macrocycle 10 was combined with olefin 55⁴ in presence of the Hoveyda-Grubbs second generation catalyst in toluene to yield 0.046g (0.058 mmol, 42% yield) compound 13a, which eluted in 10:1 CH₂Cl₂:CH₃OH. Clear oil. (13a): $[\alpha]^{24}_{D}$: +12.4 (c = 1, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 0.53 (d *J* = 6.8 Hz, 3H), 0.69 (d *J* = 6.8 Hz, 3H), 1.81 (s, 3H), 1.96-2.10 (m, 3H), 2.64 (dd *J* = 3.6, 15.6 Hz, 1H), 2.76 (dd *J* = 8.8, 15.6 Hz, 1H), 3.03 (s, 2H), 3.25 (d *J* = 11.2 Hz, 1H), 3.52 (t *J* = 5.6 Hz, 1H), 4.00 (d *J* = 11..2 Hz, 1H), 4.25 (dd *J* = 3.2, 17.2 Hz, 1H), 4.55 (dd *J* = 4.0, 9.6 Hz, 1H), 5.20 (dd *J* = 8.8, 17.2 Hz, 1H), 5.49 (dd *J* = 6.4, 15.6 Hz, 1H), 5.63-5.96 (m, 1H), 5.71 (dt *J* = 4.2, 15.6 Hz, 1H), 6.00 (t *J* = 4.2 Hz, 1H), 6.50-6.52 (m, 1H), 7.15-7.29 (m, 9H), 7.37-7.39 (m, 6H), 7.70 (s, 1H). ¹³C NMR (100.6 MHz, CDCl₃): δ 14.3, 17.1, 19.1, 24.4, 29.9, 34.1, 35.9, 40.8, 41.2, 41.4, 43.5, 58.2, 68.0, 71.5, 127.3, 128.1, 128.4, 129.6, 130.0, 144.1, 168.4, 168.9, 169.3. HRMS (ESI): *m/z* calcd. for C₄₁H₄₃N₅NaO₅S₃ (M + Na)⁺ 804.23185, found 804.23259.

Thiol 13b. According to the general procedure, 0.035g **13a** was deprotected to give 0.022g **13b** after preparative thin layer chromatography. **(13b):** $[\alpha]^{24}_{D}$: +6.1 (c = 0.5, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 0.56 (d *J* =6.9 Hz, 3H), 0.71 (d *J* =6.9 Hz, 3H), 1.88 (s, 3H), 1.95 (t *J* = 9.0 Hz, 1H), 2.04-2.16 (m, 1H), 2.26-2.33 (m, 2H), 2.70 (dd *J* = 3.0, 16.2 Hz, 1H), 2.88 (dd *J* = 9.9, 16.2 Hz, 1H), 3.24-3.32 (m, 2H), 3.19 (d *J* = 8.7 Hz, 1H), 3.30 (d *J* = 11.4 Hz, 1H), 3.42-3.50 (m, 1H), 4.06 (d *J* = 11.4 Hz, 1H), 4.35 (dd *J* = 3.6, 17.7 Hz, 1H), 4.61 (dd *J* = 3.3, 9.3 Hz, 1H), 5.25 (dd *J* = 9.3, 17.7 Hz, 1H), 5.56 (dd *J* = 7.2, 15.3 Hz, 1H), 5.64-5.70 (m, 1H), 5.83 (dt *J* = 7.2, 15.3 Hz, 1H), 6.44 (d *J* = 6.0 Hz, 1H), 6.74 (s, 1H), 7.19 (d *J* = 9.6 Hz, 1H), 7.80 (s, 1H). ¹³C NMR (100.6 MHz, CDCl₃): δ 17.0, 19.1, 24.5, 28.5, 32.3, 34.4, 38.8, 40.8, 41.3, 43.6, 58.1, 72.6, 77.4, 84.6, 124.6, 129.8, 131.8, 147.7, 168.2, 169.4, 169.5, 169.6, 173.7. HRMS (ESI): *m/z* calcd. for C₂₃H₃₁N₅NaO₅S₃ (M + Na)⁺ 576.13795, found 576.13795.

S-Trityl-α-thioamide 14a. According to the general procedure, 0.052g (0.12 mmol) macrocycle 10 was combined with olefin 56 in presence of the Grubbs second generation catalyst in toluene to yield 0.014g (0.018 mmol, 15% yield) compound 14a, which eluted in 10:1 CH₂Cl₂:CH₃OH. Clear oil. (14a): $[\alpha]^{24}_{D}$: +8.1 (c = 1, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 0.50 (d *J* = 6.9 Hz, 3H), 0.67 (d *J* = 6.9 Hz, 3H), 1.89 (s, 3H), 2.00-2.11 (m, 3H), 2.61 (dd *J* = 2.7, 16.5 Hz, 1H), 2.78 (dd *J* = 10.2, 16.5 Hz, 1H), 2.94-3.05 (m, 2H), 3.10 (s, 2H), 3.27 (d *J* = 11.4 Hz, 1H), 4.04 (d *J* = 11.4 Hz, 1H), 4.25 (dd *J* = 3.0, 17.7 Hz, 1H), 4.58 (dd *J* = 3.6, 9.6 Hz, 1H), 5.25 (dd

⁴

J = 9.3, 17.4 Hz, 1H), 5.43 (dd J = 6.9, 15.6 Hz, 1H), 5.57-5.63 (m, 1H), 5.69 (dt J = 6.9, 11.1 Hz, 1H), 6.06 (t J = 5.4 Hz, 1H), 6.33 (dd J = 3.0, 9.3 Hz, 1H), 7.14 (d J = 9.6 Hz, 1H), 7.20-7.37 (m, 9H), 7.38-7.42 (m, 6H), 7.75 (s, 1H). ¹³C NMR (100.6 MHz, CDCl₃): δ 16.9, 19.1, 24.4, 32.2, 34.4, 36.1, 38.9, 40.7, 41.3, 43.6, 58.0, 68.0, 72.4, 77.5, 84.5, 124.7, 127.3, 128.4, 129.2, 129.7, 131.8, 144.2, 147.6, 168.1, 169.1, 169.5, 173.7. HRMS (ESI): m/z calcd. for C₄₂H₄₅N₅NaO₅S₃ (M + Na)⁺ 818.2475, found 818.2469.

Thiol 14b. According to the general procedure, 0.035g **14a** was deprotected to give 0.022g **14b** after preparative thin layer chromatography. **(14b):** $[\alpha]^{24}_{D}$: +15.6 (c = 0.5, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 0.56 (d *J* =6.9 Hz, 3H), 0.71 (d *J* =6.9 Hz, 3H), 1.88 (s, 3H), 1.95 (t *J* = 9.0 Hz, 1H), 2.04-2.16 (m, 1H), 2.26-2.33 (m, 2H), 2.70 (dd *J* = 3.0, 16.2 Hz, 1H), 2.88 (dd *J* = 9.9, 16.2 Hz, 1H), 3.24-3.32 (m, 2H), 3.19 (d *J* = 8.7 Hz, 1H), 3.30 (d *J* = 11.4 Hz, 1H), 3.42-3.50 (m, 1H), 4.06 (d *J* = 11.4 Hz, 1H), 4.35 (dd *J* = 3.6, 17.7 Hz, 1H), 4.61 (dd *J* = 3.3, 9.3 Hz, 1H), 5.25 (dd *J* = 9.3, 17.7 Hz, 1H), 5.56 (dd *J* = 7.2, 15.3 Hz, 1H), 5.64-5.70 (m, 1H), 5.83 (dt *J* = 7.2, 15.3 Hz, 1H), 6.44 (d *J* = 6.0 Hz, 1H), 6.74 (s, 1H), 7.19 (d *J* = 9.6 Hz, 1H), 7.80 (s, 1H). ¹³C NMR (100.6 MHz, CDCl₃): δ 17.0, 19.1, 24.5, 28.5, 32.3, 34.4, 38.8, 40.8, 41.3, 43.6, 58.1, 72.6, 77.4, 84.6, 124.6, 129.8, 131.8, 147.7, 168.2, 169.4, 169.5, 169.6, 173.7. HRMS (ESI): *m/z* calcd. for C₂₃H₃₁N₅NaO₅S₃ (M + Na)⁺ 576.13795, found 576.13795.

S-Trityl-α-thioketone 15a. According to the general procedure, 0.044g (0.10 mmol) macrocycle 10 was combined with olefin 57⁵ in presence of the Hoveyda-Grubbs second generation catalyst in 1,2-dichloroethane to yield 0.040g (0.051 mmol, 51% yield) compound 15a, which eluted in EtOAc. Clear oil. (15a): $[\alpha]^{24}_{D}$: +11.0 (c = 1, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 0.55 (d *J* = 6.9 Hz, 3H), 0.71 (d *J* = 6.9 Hz, 3H), 1.85 (s, 3H), 2.04-2.41 (m, 7H), 2.66 (dd *J* = 3.6, 15.9 Hz, 1H), 2.79 (dd *J* = 8.4, 15.9 Hz, 1H), 2.93 (d *J* = 14.7 Hz, 1H), 3.00 (d *J* = 14.7 Hz, 1H), 3.28 (d *J* = 11.4 Hz, 1H), 4.03 (d *J* = 11.4 Hz, 1H), 4.29 (dd *J* = 6.3, 17.7 Hz, 1H), 4.57 (dd *J* = 3.9, 9.6 Hz, 1H), 5.25 (dd *J* = 9.3, 17.7 Hz, 1H), 5.45 (dd *J* = 6.3, 15.3 Hz, 1H), 5.62-5.68 (m, 1H), 5.79 (dt *J* = 6.3, 15.3 Hz, 1H), 6.54 (dd *J* = 2.4, 9.0 Hz, 1H), 7.18-7.33 (m, 10H), 7.36-7.41 (m, 6H), 7.72 (s, 1H). ¹³C NMR (100.6 MHz, CDCl₃): δ 17.1, 19.1, 24.5, 26.3, 34.2, 40.4, 40.8, 41.4, 42.8, 43.5, 58.2, 67.3, 71.8, 84.7, 124.4, 127.2, 127.4, 128.3, 129.8, 133.7, 144.3, 147.7, 164.8, 168.3, 168.9, 169.5, 173.7, 205.5. HRMS (ESI): *m/z* calcd. for C₄₂H₄₄N₄NaO₅S₃ (M + Na)⁺ 803.2366, found 803.23654.

S-Trityl-α-thioketone 16a. According to the general procedure, 0.048g (0.11 mmol) macrocycle 10 was combined with olefin 58 in presence of the Hoveyda-Grubbs second generation catalyst in 1,2-dichloroethane to yield 0.054g (0.067 mmol, 62% yield) compound 16a, which eluted in EtOAc. Clear oil. (16a): $[\alpha]^{24}_{D}$: +5.1 (c = 2, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 0.52 (d *J* = 6.9 Hz, 3H), 0.70 (d *J* = 6.9 Hz, 3H), 1.43-1.53 (m, 2H), 1.87 (s, 3H), 1.89-1.97 (m, 2H), 2.06-2.23 (m, 3H), 2.65 (dd *J* = 2.7, 16.5 Hz, 1H), 2.82 (dd *J* = 10.5, 16.5 Hz, 1H), 3.06 (s, 2H), 3.28 (d *J* = 11.4 Hz, 1H), 4.05 (d *J* = 11.4 Hz, 1H), 4.26 (dd *J* = 2.4, 17.7 Hz, 1H), 4.60 (dd *J* = 3.3, 9.3 Hz, 1H), 5.27 (dd *J* = 9.0, 17.7 Hz, 1H), 5.38 (dd *J* = 6.9, 17.7 Hz, 1H), 5.60-5.66 (m, 1H), 5.74 (dt *J* = 6.6, 15.3 Hz, 1H), 6.43 (d *J* = 7.8 Hz, 1H), 7.15-7.33 (m, 10H), 7.37-7.44 (m, 6H), 7.77 (s, 1H). ¹³C NMR (100.6 MHz, CDCl₃): δ 16.9, 19.2, 22.9, 24.4, 31.5, 34.5, 40.8, 41.0, 41.3, 42.9, 43.6, 57.9, 67.3, 72.6, 84.6, 124.5, 127.2, 127.3, 128.3, 129.8, 134.8, 144.4, 147.7, 164.8, 168.2, 169.2, 169.7, 173.8, 205.8. HRMS (ESI): *m/z* calcd. for C₄₃H₄₆N₄NaO₅S₃ (M + Na)⁺ 817.25225, found 817.25292.

2-{2-[(tert-Butoxycarbonyl)methyl]thiazol-4-yl}-4,5-dihydrothiazole-4-carboxylic acid (18). 0.800g (3.3 mmol) Thiazole nitrile **17** and 0.446g (3.6 mmol, 1.1 equiv.) cysteine were dissolved 33 mL dry CH₃OH and 0.5 mL dry Et₃N was added dropwise. The resulting solution was heated at reflux overnight. The reaction was subsequently cooled to room temperature and the solvents removed in vaccuo. The crude reaction mixture was then dissolved in sat. aqu. NaHCO₃ and washed with diethyl ether. The aqueous layer was then acidified to pH ~3-4 by dropwise addition of 3N HCl and extracted with EtOAc (3x 30mL). The combined organics were dried over Na₂SO₄, filtered, and concentrated to provide 1.15g (3.3 mmol, ~100% yield from **17**) of acid **18** in spectroscopically pure form. Pale orange foam. [α]²⁴_D: +30.9 (c = 1, CH₃OH). ¹H NMR (400 MHz, CDCl₃) δ 9.79 (bs, 1H), 7.98 (s, 1H), 5.59 (s, 1H), 4.59 (d *J* = 6.3 Hz, 2H), 3.88 (d *J* = 11.4 Hz, 1H), 3.30 (d *J* = 11.4 Hz, 1H), 1.66 (s, 3H). ¹³C NMR (100.6 MHz, CDCl₃): δ 175.74, 170.38, 170.16, 165.03, 155.91, 147.77, 123.3, 84.23, 80.70, 42.39, 41.31, 28.51, 27.17, 26.67, 24.30. HRMS (ESI): *m/z* calcd. for C₁₄H₁₉N₃NaO₄S₂ (M + Na)⁺ 380.07147, found 380.07165.

Thiazoline-thiazole acyclic precursor 20 and thiazole-thiazole acyclic precursor 21. 0.300g (0.36 mmol, 1.0 equiv.) diester 19 and 0.147g (0.42 mmol, 1.2 equiv.) acid 18 were coupled according to the same procedure described above for synthesis of 43. The two resulting products could be separated via column chromatography, washing first with 4:1, then with 2:1 hexanes:EtOAc. 0.110g (33% yield) 21 eluted first, followed quickly by 0.052g (15% yield) 20. (20): ¹H NMR (300 MHz, CDCl₃) δ 0.03 (s, 9H), 0.75 (d J = 6.9 Hz, 3H), 0.82 (d J = 6.9 Hz), 0.84 (d J = 6.9 Hz), 0 Hz, 3H), 0.93-0.99 (m, 2H), 1.49 (s, 9H), 1.99-2.21 (m, 5H), 2.55 (dd J = 5.4, 15.6 Hz, 1H), 2.69 (dd J = 7.8, 15.6 Hz, 1H), 3.61-3.74 (m, 2H), 4.12-4.18 (m, 2H), 4.53 (dd J = 4.8, 9.0 Hz, 1H), 4.62 (d J = 6.0 Hz, 1H), 5.19 (t J =9.0 Hz, 1H), 5.25-5.32 (m, 1H), 5.37 (dd J = 7.5, 15.3 Hz, 1H), 5.59-5.74 (m, 2H), 7.16-7.29 (m, 9H), 7.37-7.40 (m, 6H), 7.92 (s, 1H). ¹³C NMR (100.6 MHz, CDCl₃): δ -1.2, 17.5, 17.7, 19.2, 28.6, 31.3, 31.5, 31.7, 35.8, 39.9, 42.6, 57.0, 63.4, 66.8, 72.1, 79.4, 80.7, 121.7, 126.8, 128.0, 128.1, 129.8, 134.3, 145.0, 148.7, 155.9, 165.7, 169.9, 170.6, 171.2 HRMS (ESI): m/z calcd. for C₄₉H₆₃N₄O₇S₃Si (M + H)⁺ 943.35463, found 943.3619. (21): $[\alpha]^{24}_{D}$: -1.1 (c = 2, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ -0.01 (s, 9H), 0.90-0.98 (m, 8H), 1.49 (s, 9H), 2.01-2.08 (m, 2H), 2.14-2.21 (m, 2H), 2.23-2.30 (m, 1H), 2.56 (dd J = 5.4, 15.6 Hz, 1H), 2.70 (dd J = 8.1, 15.6 Hz, 1H), 4.11-4.16 (m, 2H), 4.66 (d J = 5.7, 2H), 4.72 (dd J = 4.8, 9.3 Hz, 1H), 5.32-5.43 (m, 1H), 5.39 (dd J = 8.7, 15.6 Hz, 1H), 5.63-5.76 (m, 2H), 7.19-7.30 (m, 8H), 7.37-7.44 (m, 7H), 7.88 (d J = 9.0 Hz, 2H), 7.92 (s, 1H), 8.11 (s, 1H). ¹³C NMR (100.6 MHz, CDCl₃): δ -1.3, 17.5, 18.0, 19.4, 28.6, 31.3, 31.6, 32.0, 40.0, 42.6, 57.2, 63.5, 66.9, 72.3, 77.5, 80.8, 117.6, 124.4, 126.9, 127.9, 128.1, 129.8, 134.5, 145.1, 148.4, 150.4, 156.0, 161.2, 162.7, 170.5, 171.0. HRMS (ESI): m/z calcd. for C₄₉H₆₀N₄NaO₇S₃Si (M + Na)⁺963.32911, found 963.32983.

S-Trityl macrocycle 22a. According to the general procedure, 0.054g acyclic precursor 20 was deprotected and cyclized to provide 0.030g (72% yield) macrocycle 22a after purification by column chromatography. Eluent: EtOAc. (22a) Light yellow foam. $[\alpha]^{24}_{D}$: +30.0 (c = 1, CHCl₃). ¹H NMR (300 MHz, 1:1 CDCl₃:CD₃OD) δ 0.39 (d *J* = 6.9 Hz, 3H), 0.63 (d *J* = 6.9 Hz, 3H), 1.97-2.18 (m, 5H), 2.54 (dd *J* = 2.4, 16.5 Hz, 1H), 3.66 (dd *J* = 9.0, 14.7 Hz, 1H), 3.95 (dd *J* = 1.2, 11.4 Hz, 1H), 4.12 (d *J* = 17.4 Hz, 1H), 4.54 (dd *J* = 3.6, 9.6 Hz, 1H), 5.15 (d *J* = 17.4 Hz, 1H), 5.29-5.34 (m, 1H), 5.35 (dd *J* = 6.9, 15.6 Hz, 1H), 5.50-5.57 (m, 1H), 5.65 (dt *J* = 6.9, 15.3 Hz, 1H), 6.98 (d *J* = 9.6 Hz, 1H), 7.14-7.26 (m, 10H), 7.32-7.36 (m, 6H), 7.77 (s, 1H). ¹³C NMR (100.6 MHz, CDCl₃): δ 16.6, 19.4, 31.6, 31.8, 34.4, 37.8, 38.9, 40.1, 41.2, 58.0, 73.2, 78.2, 125.7, 127.1, 127.3, 128.3, 130.0, 133.8, 145.2, 147.0, 166.4, 169.0, 169.5, 171.0, 171.5. HRMS (ESI): *m/z* calcd. for C₃₉H₄₀N₄NaO₄S₃ (M + Na)⁺ 747.21039, found 747.21042.

Thiol 22b. According to the general procedure, 0.035g **22a** was deprotected to give 0.022g **22b** after preparative thin layer chromatography. Clear oil. **(22b)** $[\alpha]^{24}{}_{D}$: -1.1 (c = 0.2, CHCl₃). ¹H NMR (300 MHz, 1:1 CDCl₃:CD₃OD) δ 0.52 (d *J* = 6.9 Hz, 3H), 0.70 (d *J* = 6.9 Hz, 3H), 1.42 (t *J* = 4.8 Hz, 1H), 2.08-2.14 (m, 1H), 2.32-2.40 (m, 2H), 2.53-2.61 (m, 2H), 2.89 (dd *J* = 10.2, 16.8 Hz, 1H), 3.68 (dd *J* = 8.7, 14.1 Hz, 1H), 4.02 (d *J* = 11.4 Hz, 1H), 4.30 (dd *J* = 3.3, 17.7 Hz, 1H), 4.63 (dd *J* = 3.6, 9.6 Hz, 1H), 5.28 (dd *J* = 9.3, 17.7 Hz, 1H), 5.40 (d *J* = 6.0 Hz, 1H), 5.55 (ddt *J* = 1.5, 6.6, 15.3 Hz, 1H), 6.45-6.50 (m, 1H), 7.13 (d *J* = 9.0 Hz, 1H), 7.79 (s, 1H). ¹³C S12

NMR (100.6 MHz, CDCl₃): δ 16.8, 19.2, 24.1, 34.3, 36.6, 37.8, 38.9, 40.8, 41.4, 57.9, 72.3, 124.7, 129.0, 132.9, 147.5, 168.0, 169.1, 169.6, 170.8. HRMS (ESI): *m/z* calcd. for C₂₀H₂₆N₄NaO₄S₃ (M + Na)⁺ 505.10139, found 505.10156.

S-Trityl-thiazole-thiazole macrocycle 23a. 0.020g (0.028 mmol, 1.0 equiv.) **22a** was dissolved in 1 mL dry CH₂Cl₂ and cooled to 0 °C. 0.021mL (0.14 mmol, 5.0 equiv.) DBU was added dropwise, followed by 0.014mL (0.14 mmol, 5 equiv.) BrCCl₃ in 1 mL CH₂Cl₂. The reaction was allowed to warm to room temperature and stirred overnight. The resulting solution was then poured over cold (0 °C) saturated aqueous NaHCO₃, extracted, concentrated, and dried. The product was then purified by column chromatography, eluting in 1:2 hexanes: EtOAc (0.010g, 52% yield). **(23a)** $[\alpha]^{24}_{\text{D}}$: -7.0 (c = 1, CHCl₃). ¹H NMR (300 MHz, DMSO-*d*₆) δ 0.70 (d *J* = 6.9 Hz, 3H), 0.79 (d *J* = 6.9 Hz, 3H), 1.91-1.99 (m, 2H), 2.07-2.12 (m, 2H), 2.16-2.24 (m, 1H), 2.33 (d *J* = 14.1 Hz, 1H), 2.61 (dd *J* = 10.8, 15.0 Hz, 1H), 4.39 (dd *J* = 5.1, 17.4 Hz, 1H), 4.77 (dd *J* = 7.2, 17.4 Hz, 1H), 5.17 (dd *J* = 3.9, 9.9 Hz, 1H), 5.35 (dd *J* = 7.5, 15.0 Hz, 1H), 5.50-5.65 (m, 2H), 7.19-7.28 (m, 3H), 7.28-7.35 (m, 12H), 7.62 (d *J* = 9.6 Hz, 1H), 8.30 (s, 1H), 8.32 (s, 1H), 8.72 (t *J* = 6.3 Hz, 1H). ¹³C NMR (100.6 MHz, DMSO-*d*₆): δ 16.6, 19.4, 31.6, 31.8, 34.4, 37.8, 38.9, 40.1, 41.2, 58.0, 73.2, 78.2, 125.7, 127.1, 127.3, 128.3, 130.0, 133.8, 145.2, 147.0, 166.4, 169.0, 169.5, 171.0, 171.5. HRMS (ESI): *m/z* calcd. for C₃₉H₃₈N₄NaO₄S₃ (M + Na)⁺ 745.19474, found 745.19430.

Thiol 23b. According to the general procedure, 0.010g **23a** was deprotected to give 0.005g **23b** after preparative thin layer chromatography. **(23b):** Clear oil. $[\alpha]^{24}_{D}$: -1.1 (c = 0.2, CHCl₃). ¹H NMR (300 MHz, DMSO-*d₆*) δ 0.82-0.85 (m, 6H), 2.21-2.29 (m, 4H), 2.39 (d *J* = 14.1 Hz, 1H), 2.65 (dd *J* = 10.5, 14.7 Hz, 1H), 4.40 (dd *J* = 4.8, 17.1 Hz, 1H), 4.77 (dd *J* = 7.2, 18.3 Hz, 1H), 5.21 (dd *J* = 3.9, 9.9 Hz, 1H), 5.47-5.61 (m, 2H), 5.75 (dt *J* = 6.9, 14.7 Hz, 1H), 7.68 (d *J* = 9.9 Hz, 1H), 8.31 (s, 1H), 8.33 (s, 1H), 8.74 (t *J* = 5.4 Hz, 1H). ¹³C NMR (100.6 MHz, DMSO-*d₆*): δ 16.8, 19.2, 24.1, 34.3, 36.6, 37.8, 38.9, 40.8, 41.4, 57.9, 72.3, 124.7, 129.0, 132.9, 147.5, 168.0, 169.1, 169.6, 170.8. HRMS (ESI): *m/z* calcd. for C₂₀H₂₄N₄NaO₄S₃ (M + Na)⁺ 503.08519, found 503.08369.

Acid 27. Amine 24^6 was dissolved in CH₂Cl₂ and treated with 1.83mL (1.31 mmol, 1.5 equiv.) Et₃N, followed by dropwise addition of a solution of 2.29g (10.5 mmol, 1.2 equiv.) Boc anhydride in CH₂Cl₂. The resulting reaction was stirred overnight, then quenched with saturated aqueous NaHCO₃. The organic layer was separated, dried

over Na₂SO₃, filtered, and concentrated to give the Boc protected amine as a white solid. This solid was then dissolved in 90 mL CH₃OH together with 1.62g (8.7 mmol, 1.0 equiv.) α-methyl cysteine and 2.44 mL (17.5 mmol, 2.0 equiv.) Et₃N. The resulting solution was heated at reflux overnight. The reaction was subsequently cooled to room temperature and the solvents removed in vaccuo. The crude reaction mixture was then dissolved in saturated aqueous NaHCO₃ and washed with diethyl ether. The aqueous layer was then acidified to pH ~3-4 by dropwise addition of 3N HCl and extracted with EtOAc (3x 30mL). The combined organics were dried over Na₂SO₄, filtered, and concentrated to provide 0.500g (1.4 mmol, 30% yield) of acid **27** in spectroscopically pure form. **(27)** $[\alpha]^{24}_{D}$: +55.2 (c = 2, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 1.46 (s, 9H), 1.67 (s, 3H), 3.28 (d *J* = 11.7 Hz, 1H), 3.81 (d *J* = 11.7 Hz, 1H), 4.47 (d *J* = 5.4 Hz, 2H), 5.53 (s, 1H), 7.37 (d *J* = 7.8 Hz, 1H), 7.74 (t *J* = 7.8 Hz, 1H), 8.00 (d *J* = 7.8 Hz, 1H). ¹³C NMR (100.6 MHz, CDCl₃): δ 21.9, 24.2, 28.6, 36.1, 40.5, 45.5, 47.9, 79.8, 85.1, 120.6, 123.9, 137.4, 149.9, 156.4, 157.4, 157.6, 171.3, 175.8. HRMS (ESI): *m/z* calcd. for C₁₆H₂₀N₃Na₂O₄S (M-H+2Na)⁺ 396.09699, found 396.09616.

Thiazoline-pyridine acyclic precursor 28. 1.100g (1.3 mmol, 1.0 equiv.) diester 19 and 0.500g (1.4 mmol, 1.1 equiv.) acid 27 were coupled according to the same procedure described above for synthesis of 43. 0.800g (0.90 mmol, 59% yield) 28 was obtained after column chromatography. (28): Clear oil. $[\alpha]^{24}_{D}$: -22.1 (c = 2, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 0.73 (d *J* = 6.9 Hz, 3H), 0.81 (d *J* = 6.9 Hz, 3H), 0.94-0.99 (m, 2H), 1.47 (s, 9H), 1.58 (s, 3H), 2.03-2.19 (m, 5H), 2.55 (dd *J* = 5.7, 15.9 Hz, 1H), 2.69 (dd *J* = 8.1, 15.9 Hz, 1H), 3.31 (d *J* = 11.7 Hz, 1H), 3.69 (d *J* = 11.7 Hz, 1H), 4.13-4.18 (m, 2H), 4.48-4.53 (m, 3H), 5.37 (dd *J* = 7.5, 15.3 Hz, 1H), 5.48-5.52 (m, 1H), 5.61-5.74 (m, 2H), 7.18-7.29 (m, 10H), 7.35-7.40 (m, 7H), 7.68 (t *J* = 7.8 Hz, 1H), 7.98 (d *J* = 7.8 Hz, 1H). ¹³C NMR (100.6 MHz, CDCl₃): δ -1.2, 17.5, 17.6, 19.3, 25.0, 28.7, 31.3, 31.5, 39.9, 40.8, 45.7, 56.9, 63.3, 66.8, 72.0, 79.8, 85.9, 120.2, 124.0, 126.8, 128.0, 128.1, 129.7, 134.2, 137.6, 145.0, 150.1, 156.3, 157.9, 169.9, 170.7, 171.2, 174.7. HRMS (ESI): *m/z* calcd. for C₅₂H₆₆N₄NaO₇S₂Si (M + Na)⁺ 973.40344, found 973.40443.

S-Trityl macrocycle 29a. According to the general procedure, 0.400g (0.42 mmol) 28 was deprotected and cyclized to provide 0.200g (0.27 mmol, 64% yield) macrocycle 29a after column chromatography. Eluent: EtOAc. (29a): Clear oil. $[\alpha]^{24}_{D}$: +16.7 (c = 1, CHCl₃). ¹H NMR (300 MHz, 10:1 CDCl₃:CD₃OD) δ 0.52 (d *J* = 6.9 Hz, 3H), 0.74 (d *J* = 6.9 Hz, 3H), 1.84 (s, 3H), 2.03-2.17 (m, 5H), 2.64-2.79 (m, 2H), 3.38 (d *J* = 11.4 Hz, 1H), 4.09 (d *J* = 11.4 Hz, 1H), 4.30 (d *J* = 17.7 Hz, 1H), 4.68 (dd *J* = 3.9, 9.9 Hz, 1H), 5.00 (dd *J* = 6.6, 17.7 Hz, 1H), 5.40 (dd *J* = 6.6, 15.6 Hz, 1H), 5.60-5.66 (m, 1H), 5.75 (dt *J* = 7.8, 15.6 Hz, 1H), 7.10-7.37 (m, 18H), 7.64 (d *J* = 7.5 Hz, 1H), 7.80 (t *J* = 7.5 Hz, 1H). ¹³C NMR (100.6 MHz, 10:1 CDCl₃:CD₃OD): δ 16.2, 19.0, 24.5, 31.3, 31.5, 33.5, 38.7, 41.2, 43.4, 43.6, 51.4, 57.4, 66.7, 73.3, 84.3, 123.2, 124.7, 126.7, 128.0, 128.2, 129.7, 133.3, 138.2, 144.9, 148.7, 157.4, 166.0, 169.2, 170.0, 173.3, 173.6. HRMS (ESI): *m/z* calcd. for C₄₂H₄₄N₄NaO₄S₂ (M + Na)⁺755.26962, found 755.26961.

Thiol 23b. According to the general procedure, 0.033g **23a** was deprotected to give 0.019g **23b** after preparative thin layer chromatography. **(29b):** Clear oil. $[\alpha]^{24}_{D}$: +3.4 (c = 0.2, CHCl₃). ¹H NMR (300 MHz, 10:1 CDCl₃:CD₃OD) δ 0.54 (d *J* = 6.9 Hz, 3H), 0.75 (d *J* = 6.9 Hz, 3H), 1.43 (t *J* = 7.8 Hz, 1H), 1.89 (s, 3H), 2.04-2.17 (m, 1H), 2.32-2.39 (m, 2H), 2.49-2.57 (m, 2H), 2.69-2.86 (m, 2H), 3.39 (d *J* = 11.4 Hz, 1H), 4.10 (d *J* = 11.4 Hz, 1H), 4.37 (dd *J* = 2.4, 17.7 Hz, 1H), 4.72 (dd *J* = 3.9, 9.9 Hz, 1H), 5.04 (dd *J* = 6.9, 17.7 Hz, 1H), 5.57 (dd *J* = 6.6, 15.6 Hz, 1H), 5.67-5.73 (m, 1H), 5.87 (dt *J* = 7.2, 15.6 Hz, 1H), 7.38 (d *J* = 7.8 Hz, 1H), 7.66 (d *J* = 7.8 Hz, 1H), 7.84 (t *J* = 7.8 Hz, 1H). ¹³C NMR (100.6 MHz, 10:1 CDCl₃:CD₃OD): δ 16.9, 19.2, 24.1, 24.8, 33.8, 36.7, 41.8, 43.8, 44.1, 51.4, 57.7, 72.5, 85.0, 123.5, 124.6, 128.6, 132.7, 138.1, 156.9, 169.0, 169.3, 173.6. HRMS (ESI): *m/z* calcd. for C₂₃H₃₀N₄NaO₄S₂ (M + Na)⁺ 513.16007, found 513.16058.

Oxazoline-oxazole 34. 1.1g (4.3 mmol, 1.0 equiv.) Oxazole 30^7 was dissolved in 200mL 2:1 THF:H₂O and treated with 0.205g (8.6 mmol, 2.0 equiv.) LiOH. The resulting solution was stirred for ~1 hr., when TLC showed complete disappearance of starting material. The reaction was acidified with 1N HCl and extracted with CH₂Cl₂. The organic layer was dried over Na₂SO₃, filtered, and concentrated to give the crude acid, which was taken on without further purification. The acid was taken up in dry CH₂Cl₂. 4.47g (8.6 mmol, 2.0 equiv.) PyBOP was added, followed by 0.874g (5.2 mmol, 1.2 equiv.) α -methyl-serine-methylester-HCL salt⁸ and 2.24mL (12.9 mmol, 3.0 equiv.) *i*Pr₂NEt. The resulting reaction was stirred for ~2 hr., then concentrated and passed through a short plug of silica, washing with EtOAc, to give alcohol **32**.

Crude alcohol **32** was dissolved in 100mL CH₂Cl₂ (to ~0.003M), cooled to 0 °C and treated with 14mL TFA (to ~0.3M). The reaction was stirred ~2 hr., when TLC showed complete disappearance of starting material. The reaction mixture was concentrated, the residue dissolved in toluene, and concentrated again. The crude amine salt was dried on an oil pump pump for ~2 hr., then dissolved in 50mL dry CH₂Cl₂, cooled to 0 °C and treated successively with 0.720mL (8.6 mmol, 2.0 equiv.) Et₃N and 1.72g (5.2 mmol, 1.2 equiv.) Fmoc-*O*-

⁷ Phillips, A. J.; Uto, Y.; Wipf, P.; Reno, M. J.; David R. Williams, D. R. *Organic Letters* **2000** *2* (8), 1165-1168.

succinimide in $10mL CH_2Cl_2$. The resulting reaction was allowed to warm to room temperature and stirred overnight. The reaction was then quenched with saturated aqueous NaHCO₃, dried over Na₂SO₃, filtered, and concentrated. The residue was passed through a short plug of silica, washing with EtOAc to give alcohol **33**.

Crude alcohol **33** was dissolved in 20mL dry CH₂Cl₂ and cooled to -78 °C. 0.690mL (5.6 mmol, 1.2 equiv.) DAST was added dropwise and the reaction was allowed to stir at -78 °C for an additional 2 hr. The mixture was then poured onto a saturated aqueous solution of NaHCO₃ at 0 °C. The organic layer was separated, dried over Na₂SO₃, filtered, and concentrated. The residue was purified by column chromatography. An unidentified by-product elutes first in 1:1 hexanes: EtOAc, followed by the desired oxazoline **34** in 1:2 hexanes:EtOAc (0.455g, 0.99 mmol, 23% yield from **30**). (**34**): $[\alpha]^{24}_{D}$: +72.7 (c = 1, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 1.62 (s, 3H), 3.78 (s, 3H), 4.17 (d *J* = 8.7 Hz, 1H), 4.23 (t *J* = 6.9 Hz, 1H), 4.42-4.58 (m, 4H), 4.82 (d *J* = 8.7 Hz, 1H), 5.54-5.57 (m, 1H), 7.31 (t *J* = 7.5 Hz, 2H), 7.40 (t *J* = 7.5 Hz, 2H), 7.59 (d *J* = 7.5Hz, 2H), 7.76 (d *J* = 7.5 Hz, 2H), 8.12 (s, 1H). ¹³C NMR (100.6 MHz, CDCl₃): δ 25.1, 38.5, 47.3, 53.1, 67.4, 74.5, 77.6, 120.2, 125.3, 127.3, 127.9, 130.4, 141.5, 142.0, 143.9, 156.5, 158.5, 162.3, 173.4. HRMS (ESI): *m/z* calcd. for C₂₅H₂₃N₃NaO₆ (M + Na)⁺ 484.14791, found 484.14790.

Alcohol 36. 0.250g (0.54 mmol, 1.0 equiv.) 34 was dissolved in 30mL CH₃CN and treated with 3mL Et₂NH. The reaction was allowed to stir for 2 hr. and then concentrated, redissolved in EtOAc and concentrated again. The crude amine, thus obtained was taken up in 5 mL dry CH₂Cl₂ together with 0.010g (0.08 mmol, 0.15 equiv.) DMAP and added dropwise to a solution of 0.495g (0.81 mmol, 1.5 equiv.) 35 in 20mL CH₂Cl₂. The resulting reaction mixture was allowed to stir overnight, then concentrated and submitted immediately to column chromatography. 0.253g (0.39mmol, 73% yield) alcohol 36 eluted in 1:2 hexanes:EtOAc. (36): $[\alpha]^{24}_{D}$: -18.1 (c = 1, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 1.61 (s, 3H), 2.03-2.10 (m, 2H), 2.16-2.22 (m, 2H), 2.38 (dd *J* = 8.4, 15.3 Hz, 1H), 2.46 (dd *J* = 3.9, 15.3 Hz, 1H), 3.77 (s, 3H), 4.17 (d *J* = 9.0 Hz, 1H), 4.41-4.47 (m, 1H), 4.58 (d *J* = 5.4 Hz, 2H), 4.81 (d *J* = 9.0 Hz, 1H), 5.41 (dd *J* = 6.3, 15.6 Hz, 1H), 5.56 (dt *J* = 6.9, 15.6 Hz, 1H), 6.63-6.66 (m, 1H), 7.17-7.30 (m, 9H), 7.37-7.41 (m, 6H), 8.11 (s, 1H). ¹³C NMR (100.6 MHz, CDCl₃): δ 25.2, 31.6, 31.7, 36.7, 43.0, 53.1, 66.8, 69.1, 74.4, 76.4, 126.8, 128.1, 129.8, 129.9, 130.2, 132.7, 142.1, 145.1, 158.6, 162.3, 172.4, 173.4. HRMS (ESI): *m/z* calcd. for C₃₆H₃₇N₃NaO₆S (M + Na)⁺ 662.22953, found 662.22913.

Oxazoline-oxazole acyclic precursor 37. 0.250g (0.39 mmol) of alcohol **36** and 0.663g (2.0 mmol, 5 equiv.) *N*-Fmoc-L-valine were dissolved in 20 mL dry CH₂Cl₂. The reaction was cooled to 0° C and 0.449g (2.4 mmol, 6 equiv.) EDCI and 0.003g (0.02 mmol, cat.) DMAP were added in ~5 mL CH₂Cl₂, followed by 0.4 mL *i*Pr₂NEt. The reaction was allowed to warm to room temperature and stirred overnight, when TLC showed complete disappearance of **36**. The reaction was concentrated and the product (0.240g, 64% yield) purified by silica gel chromatography. Eluent: 1:2 hexanes:EtOAc. **(37):** $[\alpha]^{24}_{\text{D}}$: -2.0 (c = 1, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 0.83 (d *J* = 6.9 Hz, 3H), 0.90 (d *J* = 6.9 Hz, 3H), 1.58 (s, 3H), 1.64-1.73 (m, 1H), 2.00-2.18 (m, 5H), 2.49-2.62 (m, 2H), 3.76 (s, 3H), 4.12 (d *J* = 8.7 Hz, 1H), 4.10-4.21 (m, 2H), 4.36 (d *J* = 6.9 Hz, 2H), 4.45-4.60 (m, 2H), 4.77 S16

(d J = 8.7 Hz, 1H), 5.34-5.42 (m, 2H), 5.58-5.71 (m, 2H), 6.50 (t J = 5.1 Hz, 1H), 7.17-7.32 (m, 12H), 7.36-7.41 (m, 8H), 7.57 (d J = 7.5 Hz, 2H), 7.75 (d J = 7.5 Hz, 2H), 8.06 (s, 1H). ¹³C NMR (100.6 MHz, CDCl₃): δ 17.6, 17.9, 18.8, 19.3, 25.1, 31.2, 31.3, 31.5, 37.0, 41.5, 47.4, 53.1, 53.8, 59.4, 66.8, 67.1, 72.4, 74.5, 76.3, 120.2, 125.3, 126.8, 127.3, 127.9, 128.1, 129.8, 130.3, 134.1, 141.5, 142.0, 144.0, 144.1, 145.0, 156.6, 158.5, 162.0, 169.3, 171.3, 173.4. HRMS (ESI): *m/z* calcd. for C₅₆H₅₆N₄NaO₉S (M + Na)⁺983.36602, found 983.36673.

S-Trityl macrocycle 39a. 0.240g (0.25 mmol, 1.0 equiv.) acyclic precursor 37 was dissolved in 7.5 mL 4:1 THF:H₂O and cooled to 0 °C. A 0.5mL of a 0.5M aqueous solution of LiOH was added dropwise and the resulting reaction mixture was allowed to stir for ~3 hr. at 0 °C, when TLC demonstrated disappearance of the starting material. The reaction was neutralized by dropwise addition of 1N HCl and extracted with CH₂Cl₂. The combined organics were dried and filtered and solvents evaporated to provide the crude acid. This was immediately dissolved in 25 mL CH₃CN (to ~ 0.01 M) and treated with 1.25mL Et₂NH (to ~ 0.2 M). The reaction was stirred for ~ 2 hr., when the reaction was assumed to be complete. The resulting solution was concentrated, taken up in EtOAc, and concentrated again. The crude amino acid was dried on the mechanical pump overnight and then submitted to cyclization conditions as described above. Column chromatography provided 0.074g (0.10 mmol, 74% yield) macrocycle **39a** as a clear oil. (**39a**): $[\alpha]_{D}^{24}$: +42.2 (c = 1, CHCl₃). ¹H NMR (300 MHz, $CDCl_3$) δ 0.53 (d J = 6.9 Hz, 3H), 0.56 (d J = 6.9 Hz, 3H), 1.58 (s, 3H), 1.89-2.16 (m, 5H), 2.51 (dd J = 1.8, 17.1Hz, 1H), 2.87 (dd J = 9.9, 17.1 Hz, 1H), 3.82 (dd J = 3.6, 17.7 Hz, 1H), 3.99 (d J = 9.0 Hz, 1H), 4.32-3.36 (m, 1H), 4.62 (d J = 9.0 Hz, 1H), 4.60-4.69 (m, 1H), 5.34-5.49 (m, 2H), 5.58 (dt J = 6.9, 14.7 Hz, 1H), 7.08-7.21 (m, 2H), 5.58 (dt J = 6.9, 14.7 Hz, 14.7 Hz 9H), 7.26-7.31 (m, 7H), 7.62-7.67 (m, 1H), 7.97 (s, 1H). ¹³C NMR (100.6 MHz, 10:1 CDCl₃:CD₃OD): δ 17.1, 18.7, 21.1, 31.4, 34.0, 37.4, 39.9, 58.0, 66.8, 72.7, 73.6, 77.5, 78.8, 126.8, 128.0, 128.4, 129.2, 129.7, 133.2, 141.7, 144.9, 162.2, 164.1, 168.7, 171.9, 174.3. HRMS (ESI): m/z calcd. for $C_{40}H_{42}N_4NaO_6S$ (M + Na)⁺ 729.27173, found 729.27147.

Disulfide dimer 39c. To a vigorously stirring solution of 0.319g (1.3 mmol, 12 equiv.) I₂ in 300 mL 10% MeOH/CH₂Cl₂ was added 0.074g (0.10mmol, 1.0 equiv.) protected thiol **39a** in 60mL 10% MeOH/ CH₂Cl₂ dropwise over 10 minutes. The resulting mixture was stirred for a further 10 minutes. 250mL 0.01 N Na₂S₂O₃ was added and the organic phase extracted with CH₂Cl₂ the combined organic extract washed with brine, dried over Na₂SO₃, filtered, and the solvent removed. The residue was purified by flash chromatography, washing first with EtOAC, then 10:1 CH₂Cl₂:CH₃OH. **(39c):** Clear oil. $[\alpha]^{24}_{D}$: +19.0 (c = 0.5, CHCl₃). ¹H NMR (300 MHz, CDCl₃) d 0.67-0.70 (m, 6H), 1.66 (s, 3H), 2.12-2.18 (m, 1H), 2.40-2.47 (m, 2H), 2.71-2.80 (m, 3H), 3.02 (dd *J* = 9.6, 16.5 Hz, 1H), 3.96 (dd *J* = 4.5, 17.4 Hz, 1H), 4.05 (d *J* = 9.0 Hz, 1H), 4.51 (dd *J* = 3.6, 8.7 Hz, 1H), 4.73 (d *J* = 9.0 Hz, 1H), 4.85 (dd *J* = 9.0, 17.4 Hz, 1H), 5.54-5.69 (m, 2H), 5.90 (dt *J* = 6.9, 15.6 Hz, 1H), 6.89-6.94 (m, 1H), 8.01 (s, 1H). ¹³C NMR (100.6 MHz, 10:1 CDCl₃:CD₃OD): δ 17.4, 18.7, 21.4, 29.8, 31.9, 34.1, 37.6, 38.0, 40.3, 51.4, 58.1, 72.4, 74.0, 78.9, 128.5, 129.8, 133.7, 141.2, 161.0, 164.2, 168.7, 170.8, 174.1. HRMS (ESI): *m/z* calcd. for C₄₂H₅₄N₈NaO₁₂S₂ (M + Na)⁺949.31948, found 949.32045.

	TSEO TSEO T				
PPm 180					

HDAC Biochemical Assay

The inhibitory effect of compounds on deacetylase isoenzyme function was determined *in vitro* using an optimized homogenous assay performed in 384-well plate format. In this assay, In this assay, recombinant, full-length HDAC protein (HDAC1 3.33 ng/ μ L, HDAC2 1 ng/ μ L, HDAC3/NCor2 0.17 ng/ μ L, HDAC6 1.3 ng/ μ L; BPS Biosciences) is incubated with a commercially-available fluorophore conjugated substrate at a concentration equivalent to the substrate K_m (Upstate 17-372; 6 μ M for HDAC1, 3 μ M for HDAC2, 6 μ M for HDAC3 and 16 μ M for HDAC6). Reactions are performed in assay buffer (50 mM HEPES, 100 mM KCl, 0.001% Tween-20, 0.05% BSA, 200 μ M TCEP, pH 7.4) and followed for fluorigenic release of 7-amino-4-methylcoumarin from substrate upon deacetylase and trypsin enzymatic activity. Fluorescence measurements are obtained approximately every five minutes using a multilabel plate reader and plate-stacker (Envision; Perkin-Elmer). Data are analyzed on a plate-by-plate basis for the linear range of fluorescence over time. Data from the plate capture corresponding to the mid-linear range is imported into analytical software and annotated with well identity and compound concentration (Spotfire DecisionSite). Replicate experimental data from incubations with inhibitor are normalized to control, solvent-only wells and IC-50 is determined by logistic regression.