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Supporting Material
The Supporting Material has two main sections, Supplemental Computations and 

Supplemental Methods, followed by a Supplemental Note concerning the definition of 

the Lyapunov exponent.

Supplemental Computations

Supplemental Computations is divided into five subsections.  In Section 1 we show 

that the simple FN model and more complex biophysical models make qualitatively 

similar predictions of dynamical instability ( 0  ).  In Section 2 we show that low-

rate stimulation causes the FN model to fire regularly, in lock-step to the applied 

stimulus (cf. the irregular pattern to high-rate stimulation shown in Fig. 1).  In Section 

3 we show that high-rate biphasic stimulation produces instability similar to 

monophasic stimulation.  In Section 4 we show that instability during the action 

potential modulates the effect of noise on the voltage-like variable x in the FN 

model.  In Section 5 we show that dynamical instability ( 0  ) produces 

desynchronization of the neural firing with respect to the stimulus at late times 

( 10 /t   ).  In Sections 6 and 7, respectively, we show that dynamical instability 

produces exponential interspike interval histograms and decorrelated sequential 

intervals at late times.

1. Dynamical instability at high rates in neural models

In this section we compute the Lyapunov exponent  of the FN model and more 

complex biophysical models in response to pulse trains.  The biophysical models we 

consider are the Hodgkin-Huxley (HH) model of the squid giant axon (Hodgkin and 

Huxley 1952) and the Schwarz-Eikhof (SE) model of the mammalian sciatic nerve 

fiber (Schwarz and Eikhof 1987).  The surface (upper) and density (lower) plots of 
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Supplemental Fig. 1 show the Lyapunov exponent predicted by FN model for

stimulus pulse amplitudes A between 0.5 and 2 times the threshold A
!

and for 

interpulse times T between 0.1 and 10 times the refractory time 
dt .  Corresponding 

plots for the HH and SE models are shown in Supplemental Figs. 2 and 3.  

Supplemental Figure 4 shows the Lyapunov exponent for all three models as a 

function of the stimulus pulse rate for a fixed pulse amplitude ( 1.13278A A
!

! " ).

These plots show that, like the FN model, the biophysical HH and SE models are 

dynamically unstable ( 0  ) at high stimulation rates, which suggests that dynamical 

instability at high rates is a general feature of neural excitation and refractoriness and 

not merely a peculiarity of the FN model.  Additionally, Supplemental Fig. 5 shows 

that during the action potential the behavior of ( ) (0)t# # ! # #
 !  !

R R is also qualitatively 

similar across the three models.
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Supplemental Fig. 1.  The rate and level dependence of the Lyapunov exponent 
of the FN model when driven by uniform pulse trains.  Surface plot (a) and density 

plot (b) of the Lyapunov exponent of the FN model as a function of the pulse train 

amplitude A A
!

! and interpulse time dT t! , where A
!

is the threshold to an isolated 

pulse and dt is the nominal refractory time.  In the density plot, red dots indicate

0  .  Due to their limited resolution these plots do not necessarily capture details of 

the fine structure within the major peak regions.  The refractory time is 3.66dt " , 

expressed in the dimensionless units of equations (1) and (2).



4

Supplemental Fig. 2.  The rate and level dependence of the Lyapunov exponent 
of the HH model when driven by uniform pulse trains.  Surface plot (a) and 

density plot (b) of the Lyapunov exponent of the HH model as a function of the pulse 

train amplitude A A
!

! and interpulse time dT t! , where A
!

is the threshold to an 

isolated pulse and dt is the nominal refractory time.  In the density plot, red dots 

indicate 0  .  Due to their limited resolution these plots do not necessarily capture 
details of the fine structure within the major peak regions.  The refractory time is 

2 8 ms" $dt .



5

Supplemental Fig. 3.  The rate and level dependence of the Lyapunov exponent 
of the SE model when driven by uniform pulse trains.  Surface plot (a) and density 

plot (b) of the Lyapunov exponent of the SE model as a function of the pulse train 

amplitude A A
!

! and interpulse time
dT t! , where A

!
is the threshold to an isolated 

pulse and 
dt is the nominal refractory time.  In the density plot, red dots indicate 

0  .  Due to their limited resolution these plots do not necessarily capture details of 
the fine structure within the major peak regions.  The refractory time is 

0 388 ms" $dt .
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Supplemental Fig. 4.  High-rate instability in the FN, HH, and SE models.  Plots 

of Lyapunov exponent versus the interpulse time 
dT t! for the FN (a), HH (b), and SE 

(c) models.  The stimulus level of is =1.13278A A
!

! .

Supplemental Fig. 5.  Short-term instability in the FN, HH, and SE models 

during the action potential.  The time course of the “voltage” variable, ( )x t , of the 

FN model (a) and the magnitude of the perturbation vector ( ) (0)t# # ! # #
 !  !

R R (b) in 

response to a brief current pulse delivered at 0t " .  A positive slope 

( ( ) (0) ) / 0d t dt# # ! # #  
 !  !

R R indicates short-term dynamical instability.  Corresponding 

plots for the HH and SE model are shown in panels (c, d) and (e, f), respectively.  The 

pulse amplitude of is =1.13278A A
!

! in all cases.    
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2. Regular firing at low stimulation rates in the FN model

Figure 1 of the main text shows the irregular firing pattern produced by the FN model 

when stimulated at 5 kHz.  Supplemental Figure 6 shows that when the stimulus rate

is reduced to 1 kHz the FN model fires regularly, in lock-step to the stimulus pulses.

Supplemental Fig. 6. Low-rate stimulation produces dynamical stability ( ! " ) 

and regular firing in the FN model.  The stimulus is a 1 kHz pulse train with the 

same amplitude as that used in Fig. 5 ( =1 12992A A
!

! $ ).  The timing of the individual 

pulses is represented by black dots.  Each pulse evokes a spike. The value of the 

Lyapunov exponent is -12 06 ms % $" .

3. Dynamical instability produced by biphasic pulse trains in the FN 
model

The physiological experiments of Litvak et al. and Miller et al. used “biphasic” 

pulses, consisting of a brief cathodic phase followed by an anodic phase of equal 

duration.  Monophasic and biphasic pulse trains are represented schematically in 

Supplemental Fig. 7a.  Like stimulation with a monophasic pulse train (Supplemental 

Fig. 7b, black), stimulation with a biphasic pulse train produces fluctuations in the

Lyapunov exponent ( ) as the stimulus period T is reduced, and, for a range of 

values of T , the Lyapunov exponent exceeds zero, indicating dynamical instability.  
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Supplemental Fig. 7a.  Schematic illustration of monophasic and biphasic pulse 
trains.  For simplicity, the negative-going pulses are placed halfway between the 

positive-going pulses.  

Supplemental Fig. 7b. Biphasic pulse trains produce dynamical instability at 

high stimulation rates in the FN model.  Plots of the Lyapunov exponent  versus 
the fundamental period T of the stimulating biphasic pulse train (red) and the 

stimulating monophasic pulse train (black).  The fundamental period is expressed in 

units of the nominal refractory time dt .

4. Dynamical instability modulates the effect of noise during the action 
potential

Although the noise-forcing term that is added to the differential equation for ( )x t&

(Equation 1) is constant, Figure 8 shows that its effect on the root-mean-square (rms) 

amplitude of ( )x t (about the mean) is modulated during the action potential by the 

(short-term) dynamical instability, defined as {ln( ( ) (0) )}
d

t
dt

# # ! # #
 !  !

R R .
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Supplemental Fig. 8. Dynamical instability modulates the effect of noise on the 

voltage-like variable x.  The time evolution, ( )x t , of the voltage-like variable of the

noise-free FN model in response to a brief pulse (a), the magnitude of the perturbation 

vector ( ) (0)t# # ! # #
 !  !

R R (b), the short-term Lyapunov exponent defined as 

{ln( ( ) (0) )}
d

t
dt

# # ! # #
 !  !

R R (c), the rms value about the mean of the voltage-like variable

( rmsx ) of the stochastic FN model ( RS=0 07$ ) computed at the end of 

sequential, 0.0112 ms bins (d).  The simulation was restarted on the noise-free solution 

at the beginning of each bin, so rmsx reflects the influence of noise during the bin 

rather than the cumulative effects of noise occurring in previous bins.  The values of 

rmsx are averages obtained from 2000 independent realizations of the stochastic 
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process.

5. Dynamical instability produces desynchronization with respect to the 
stimulus at late times

Auditory-nerve fibers stimulated electrically at high rates typically fire synchronously

for the first few spikes and then desynchronize (Litvak et al. 2001). Here we use the 

spike-train autocorrelation histogram to quantify degree of synchrony predicted by the 

noise-free FN model when stimulated at high rates.  The autocorrelation histogram is 

computed in the same manner as the cross-correlation histogram (see Methods), but 

using two copies of a single spike train, as opposed to different spike trains.  A value 

of zero indicates desynchronization with respect to the stimulus, and the significance 

of the fluctuations about zero is determined by comparing to the corresponding 

renewal process.  The 1% and 99% quantiles are indicated by the gray points.  

Supplemental Figure 9 (a–c) shows that dynamical instability ( 0  ) in the 

FN model produces renewal-like desynchronization after an initial synchronous 

transient.  Stimulus levels were chosen to produce firing rates of approximately 50, 

150 and 250 spikes/sec, which are within the physiological range of auditory-nerve 

fibers. As indicated by the gray bar, the synchronous transient decays over the time 

scale of 10 / .  The addition of ongoing noise reduces the amplitude of the transient

(Supplemental Fig. 10, a–c) and causes the desynchronized, renewal-like behavior to 

occur sooner.  The gray bar indicates the time interval between 1/  and 10 /  

(absolute values are used because the noise causes the Lyapunov exponent to be 

negative).  
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Supplemental Fig. 9.  Dynamical instability produces renewal-like interval 
histograms at late times.  The single-sided autocorrelation histogram (a–c), the 

interspike interval histogram with a linear vertical scale (d–f), the interspike interval 

histogram with logarithmic vertical scale (g–i), and the conditional mean interval 

histogram (j–l) for deterministic FN-generated spike trains with rates of 

approximately 50 (a, d, g, j), 150 (b, e, h, k), and 250 spikes sec! (c, f, i, l).  Gray 

points denote the 99% and 1% quantiles for the corresponding renewal process 

generated by shuffling the interspike intervals.  The gray bars indicate the time 

interval between t
 

and 10t
 

, where 1t
 

 ' ! .  The bin width is equal to the interpulse 

time T .
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Supplemental Fig. 10.   Noise smoothes interval histograms in the FN model. The 

single-sided cross-correlation histogram (a–c), the interspike interval histogram with 

linear vertical scale (d–f), the interspike interval histogram with logarithmic vertical 

scale (g–i), and the conditional mean interval histogram (j–l) for stochastic FN-

generated spike trains with rates of approximately 50 (a, d, g, j), 150 (b, e, h, k), and 

250 spikes sec! (c, f, i, l).  The noise level was adjusted to produce a relative spread 

of RS 0 07$" .  Gray points denote the 99% and 1% quantiles for the corresponding 

renewal process generated by shuffling the interspike intervals.  The gray bars 

indicate the time interval between t
 

# # and 10 t
 

# # , where 1t
 

 ' ! .  The Lyapunov 

exponent was negative for all three conditions.  The bin width is equal to the 

interpulse time T .  

6. Dynamical instability produces exponential interspike interval 

distributions at late times

Litvak et al. (2003) used the interspike interval histogram to characterize the temporal 

characteristics of the spike trains produced by auditory-nerve fibers when stimulated

electrically at 5 kHz.  This histogram kh is computed from the spike train { }nt by 

forming the first-order intervals 1{ } { }n n nt t" (" % and counting the number of intervals 
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falling into each of k bins defined by ( 1 2) ( 1 2)k T k T"% ! ) * ( ! .  The histogram is 

normalized by dividing the number of intervals in each bin by the total number of 

intervals.  Interval histograms from the noise-free FN model, plotted in a manner 

similar to figure 7 of  Litvak et al. (2003), are shown in Supplemental Fig. 9, with 

linear (d–f) and logarithmic (g–i) vertical axes. Like most electrically stimulated 

fibers, the interval distributions from the noise-free FN model are exponential at late 

times but non-exponential at short times.  Ongoing noise reduces the prominence of 

the non-exponential transient (Supplemental Fig. 10).

7. Dynamical instability produces decorrelated sequential intervals at 
late times

Litvak et al. (2003) quantified the degree of correlation between sequential interspike 

intervals by the conditional mean interval histogram.  The conditional mean interval 

histogram is computed by first forming K subsequences of length kJ from the 

sequence of intervals { }n" .  These subsequences, denoted { }k j" + , have the property 

that each of the kJ elements of the thk   subsequence is preceded by an interval of 

duration k" which falls into the thk bin.  From these K subsequences the conditional 

mean interval histogram k" is constructed according to 1

1

k

k

J

k k jJ

j

" " +

"

" , .  A flat

histogram implies that the probability of an interval falling into the thk bin is 

independent of the duration of the preceding interval, and hence that sequential 

intervals are decorrelated.  The statistical significance of deviations from flatness is

evaluated by comparison to the corresponding renewal process, formed by shuffling 

the intervals.   

Conditional mean interval histograms from the noise-free FN model, plotted in 

a manner similar to figure 7 of  Litvak et al. (2003), are shown in Fig. 9 (j–l).  Gray 
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points represent the 1% and 99% quantiles of the corresponding renewal process.  

Like most electrically stimulated fibers, the conditional mean interval histogram falls 

within the bounds of the corresponding renewal process at late times.  This is

consistent the interspike interval being independent of the preceding interval, except 

when the preceding interval is short.  This decorrelation at late times also occurs in 

the presence of ongoing noise Fig. 10 (j–l).  

Supplemental Methods

Here we demonstrate that the numerical methods used in this study produce estimates 

of the Lyapunov exponent that are robust to errors associated with finite averaging 

time and finite computational precision.  We also demonstrate that the estimates of the 

Lyapunov exponent exhibit power-law convergence.

The robustness of the finding of dynamical instability in the FN model

Although the two numerical methods used in this study, the NDSolve method and the 

fixed-step-size Euler method, may make different predictions about a particular 

solution at late times, even when started with nominally identical initial conditions, 

we demonstrate that they nevertheless yield similar estimates of the Lyapunov

exponent.   
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Supplemental Fig. 11.  Lower precision solutions diverge from the high-precision 

solution at similar rates.  (a) Time evolution of the excitation variable, x , of the 
FitzHugh-Nagumo system when driven by a near threshold pulse train 

( =1.13278A A
!

! ) at a rate corresponding to 5 kHz ( 3.578T " ).  The different curves 

correspond to different solution methods (see figure legend).  (b) The time evolution 

of the phase-plane distance between a high-precision solution (14.5 decimal digits)

and three lower precision solutions (see figure legend). 

Supplemental Figure 11a shows predictions of the voltage-like variable ( )x t

generated by: 1) the NDSolve algorithm with a high numerical precision setting of 

14.5 decimal digits (dashed black line), 2) the NDSolve algorithm with a precision

setting of 8 digits that is used for the noise-free simulations in the main text (thin 

black line), 3) the Euler method with a small step size (thick black line), and 4) the 

Euler method with the larger step size (gray line) used for the stochastic simulations 

in the main text.  The predictions visually overlap during the first approximately 

45t " time units, corresponding to the first 12 pulses, after which the prediction of 

the larger step-size Euler method noticeably diverges from the other solutions.  Later 
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at 70t " the smaller step-size Euler prediction diverges from the NDSolve solutions.  

Around 180t " or the 50th pulse, the less precise NDSolve solution diverges from the 

higher precision NDSolve solution.  This behavior is consistent with dynamical 

instability magnifying the effects of computational error and imprecision.

Supplemental Figure 11b plots the distance ( )-R in the phase-plane between 

the high-precision NDSolve solution and the three lower precision solutions.  

Consistent with Supplemental Fig. 11a, the phase-plane distance between each of the 

lower precision solutions and the reference solution increases linearly (on a log scale) 

as the simulation progresses, with the distance eventually approaching unity (or zero 

on a log scale).  This maximum separation is determined by the width of the attractor 

in phase space (Fig. 2 of main text).  The similar exponential rate of separation of the 

solutions suggests that the three methods, though differing in their precision, may 

produce similar estimates of the Lyapunov exponent .  

Supplemental Figure 12a shows the estimate of the Lyapunov exponent for 

these three methods as a function of the stimulus duration.  The Lyapunov exponent

was estimated by solving the FN equations (1) and (2) along with the variational 

equations (5), as described in the Methods. The total stimulus duration is

200 5totalt T NT" ( , where 3.578T " is the interpulse time.  The responses to the 

initial 200 pulses were discarded to minimize the influence of transients.  Five 

estimates of  were then made based on the remaining five stimulus segments of 

length NT .  Error bars indicate the standard deviation of the five estimates of the less 

precise Euler method.  This plot shows that even the least precise Euler method 

produces within 50 time units (14 pulses) an estimate that is significantly greater than 

zero.  The estimates for the later times, along with error bars for all the methods, are 

shown in Fig. 12b–d.  These data suggest that the estimate of the Lyapunov exponent 
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based on the least precise Euler method converges to a value that is somewhat less 

than that predicted by the more precise NDSolve algorithm, but that decreasing the 

step size of the Euler method to 44 37 10%- " $ .t improves the accuracy of the

estimate.         

Supplemental Fig. 12.  Different solution methods produce similar estimates of 

the Lyapunov exponent.  (a) The mean estimate of the Lyapunov exponent versus 

the duration of a 5 kHz near threshold ( =1.13278A A
!

! ) pulse train.  The different 

symbols correspond to different solution methods, as in Supplemental Fig. 11.  Black 

diamonds, representing the least precise method, are accompanied by error bars that 

indicate the standard deviation of estimates based on five sequential pulse trains of 

duration NT .  Panels b–c show the Lyapunov exponent estimate versus t  at late 
times, with error bars indicating the standard deviation of five sequential estimates.

While the different procedures appear to converge on slightly different values 

of  , the rate at which the estimates converge to these different values is similar.  

This convergence rate is illustrated in Supplemental Fig. 13 which plots, on 

logarithmic axes, the standard deviation of the Lyapunov exponent estimate versus the 

simulation duration t .  The approximately linear behavior, with common slopes 

across methods, suggests that the methods have similar power-law convergence rates.  
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Supplemental Fig. 13.  Variability of the Lyapunov exponent estimate decreases 
with averaging time for three solution algorithms.  The logarithm of the standard 

deviation of the Lyapunov exponent estimate (
10

Log
 

# ) as a function of the logarithm 

of the stimulus duration (
10

Log t ) for three solution methods (see figure legend).

We now further investigate the effects of numerical precision on the estimates 

using the NDSolve method.  The NDSolve method uses an algorithm that adaptively 

varies the step size in order to achieve the precision goal set by the user.  For 

sufficiently high precision settings, typically above 8 decimal digits, computations 

must be carried out with a precision greater than the standard machine precision of 

approximately 16 decimal digits.  This higher precision is achieved in Mathematica

by using arbitrary precision numbers at the expense of longer computation time

(Wolfram 1996).  Supplemental Figure 14 shows the estimates of  for 

200 5 300 1700( . " pulses for a range of precision settings.  Because the mean of 

every estimate falls within the confidence interval of all the other estimates, we 

conclude that the finding of instability ( 0  ) is robust to errors in computational 

precision.      
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Supplemental Fig. 14.  The estimate of the Lyapunov exponent is robust to 
increases in computational precision.  The mean of five estimates of the Lyapunov 

exponent plotted as a function of the numerical precision setting of the NDSolve 

algorithm.  With a numerical precision of p, the local error is less than

10 10p p

iX% %( , where iX is the absolute value of the thi independent variable

(Wolfram 1996). The Lyapunov exponent estimates were obtained from pulse trains 

of duration 200 5 300 1700NT T T" ( . " .  The responses to the initial 200 pulses 
were discarded, and estimates were then formed based on the responses to each of the 

five subsequent segments consisting of 300 pulses.  The error bars represent the 

standard deviation of these estimates.  The stimulus conditions are the same as in 

Supplemental Figs. 11–13.

In summary, we have shown that for a typical near threshold, high-rate 

condition both the NDSolve method and the fixed-step-size Euler method predict 

dynamical instability ( 0)  , and further that this prediction of instability is robust to 

the errors associated with the finite duration and the finite precision of the 

calculations.  

Supplemental Note

For the driven FN model the phase space is, strictly speaking, three dimensional, and 

thus there are three Lyapunov exponents, one for each dimension (Eckmann and 

Ruelle 1985).  The evolution in this third dimension is given trivially by the equation 

( ) 1& "t t (Strogatz 1994).  Along this time axis, there is neither contraction nor 

stretching, and hence one of the three exponents is identically zero always.  Further, 
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because the system is dissipative, the volume of a small cube of initial conditions will 

shrink under the influence of the flow.  The long-term rate of change in the volume is 

directly proportional to the sum of the Lyapunov exponents (Eckmann and Ruelle 

1985), and, because this volume is contracting, the sum of the exponents must be less 

than zero, thus when one of the two non-zero exponents is positive the other must be 

negative.  Furthermore, an arbitrary perturbation vector, under the influence of the 

flow, will seek out the direction of either growth or of slowest contraction (Wolf et al. 

1985), thus, the exponent determined by solving the variational equations corresponds 

to the positive exponent, if there is one, or to the negative exponent which is closest to 

zero.  This exponent we refer to as “the Lyapunov exponent.”
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Supporting Material 
The Supporting Material has two main sections, Supplemental Computations and 

Supplemental Methods, followed by a Supplemental Note concerning the definition of 

the Lyapunov exponent. 

Supplemental Computations 

Supplemental Computations is divided into five subsections.  In Section 1 we show 

that the simple FN model and more complex biophysical models make qualitatively 

similar predictions of dynamical instability ( 0  ).  In Section 2 we show that low-

rate stimulation causes the FN model to fire regularly, in lock-step to the applied 

stimulus (cf. the irregular pattern to high-rate stimulation shown in Fig. 1).  In Section 

3 we show that high-rate biphasic stimulation produces instability similar to 

monophasic stimulation.  In Section 4 we show that instability during the action 

potential modulates the effect of noise on the voltage-like variable x  in the FN 

model.  In Section 5 we show that dynamical instability ( 0!  ) produces 

desynchronization of the neural firing with respect to the stimulus at late times 

( 10 /t ! ).  In Sections 6 and 7, respectively, we show that dynamical instability 

produces exponential interspike interval histograms and decorrelated sequential 

intervals at late times. 

1. Dynamical instability at high rates in neural models

In this section we compute the Lyapunov exponent !  of the FN model and more 

complex biophysical models in response to pulse trains.  The biophysical models we 

consider are the Hodgkin-Huxley (HH) model of the squid giant axon (Hodgkin and 

Huxley 1952) and the Schwarz-Eikhof (SE) model of the mammalian sciatic nerve 

fiber (Schwarz and Eikhof 1987).  The surface (upper) and density (lower) plots of 
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Supplemental Fig. 1 show the Lyapunov exponent predicted by FN model for 

stimulus pulse amplitudes A  between 0.5 and 2 times the threshold A"  and for 

interpulse times T  between 0.1 and 10 times the refractory time dt .  Corresponding 

plots for the HH and SE models are shown in Supplemental Figs. 2 and 3.  

Supplemental Figure 4 shows the Lyapunov exponent for all three models as a 

function of the stimulus pulse rate for a fixed pulse amplitude ( 1.13278A A"# $ ).

These plots show that, like the FN model, the biophysical HH and SE models are 

dynamically unstable ( 0!  ) at high stimulation rates, which suggests that dynamical 

instability at high rates is a general feature of neural excitation and refractoriness and 

not merely a peculiarity of the FN model.  Additionally, Supplemental Fig. 5 shows 

that during the action potential the behavior of ( ) (0)t% % # % %
 !  !

   is also qualitatively 

similar across the three models. 
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Supplemental Fig. 1.  The rate and level dependence of the Lyapunov exponent 

of the FN model when driven by uniform pulse trains.  Surface plot (a) and density 

plot (b) of the Lyapunov exponent of the FN model as a function of the pulse train 

amplitude A A"#  and interpulse time dT t# , where A"  is the threshold to an isolated 

pulse and dt  is the nominal refractory time.  In the density plot, red dots indicate 

0!  .  Due to their limited resolution these plots do not necessarily capture details of 

the fine structure within the major peak regions.  The refractory time is 3.66dt $ ,

expressed in the dimensionless units of equations (1) and (2). 
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Supplemental Fig. 2.  The rate and level dependence of the Lyapunov exponent 

of the HH model when driven by uniform pulse trains.  Surface plot (a) and 

density plot (b) of the Lyapunov exponent of the HH model as a function of the pulse 

train amplitude A A"#  and interpulse time dT t# , where A"  is the threshold to an 

isolated pulse and dt  is the nominal refractory time.  In the density plot, red dots 

indicate 0!  .  Due to their limited resolution these plots do not necessarily capture 

details of the fine structure within the major peak regions.  The refractory time is 

2 8 ms$ &dt .
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Supplemental Fig. 3.  The rate and level dependence of the Lyapunov exponent 

of the SE model when driven by uniform pulse trains.  Surface plot (a) and density 

plot (b) of the Lyapunov exponent of the SE model as a function of the pulse train 

amplitude A A"#  and interpulse time dT t# , where A"  is the threshold to an isolated 

pulse and dt  is the nominal refractory time.  In the density plot, red dots indicate 

0!  .  Due to their limited resolution these plots do not necessarily capture details of 

the fine structure within the major peak regions.  The refractory time is 

0 388 ms$ &dt .



6

Supplemental Fig. 4.  High-rate instability in the FN, HH, and SE models.  Plots 

of Lyapunov exponent versus the interpulse time dT t#  for the FN (a), HH (b), and SE 

(c) models.  The stimulus level of is =1.13278A A"# .

Supplemental Fig. 5.  Short-term instability in the FN, HH, and SE models 

during the action potential.  The time course of the “voltage” variable, ( )x t ,  of the 

FN model (a) and the magnitude of the perturbation vector ( ) (0)t% % # % %
 !  !

   (b) in 

response to a brief current pulse delivered at 0t $ .  A positive slope 

( ( ) (0) ) / 0d t dt% % # % %  
 !  !

   indicates short-term dynamical instability.  Corresponding 

plots for the HH and SE model are shown in panels (c, d) and (e, f), respectively.  The 

pulse amplitude of is =1.13278A A"#  in all cases.     
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2. Regular firing at low stimulation rates in the FN model 

Figure 1 of the main text shows the irregular firing pattern produced by the FN model 

when stimulated at 5 kHz.  Supplemental Figure 6 shows that when the stimulus rate 

is reduced to 1 kHz the FN model fires regularly, in lock-step to the stimulus pulses. 

Supplemental Fig. 6. Low-rate stimulation produces dynamical stability (  < 0 ) 

and regular firing in the FN model.  The stimulus is a 1 kHz  pulse train with the 

same amplitude as that used in Fig. 5 ( =1 12992A A"# & ).  The timing of the individual 

pulses is represented by black dots.  Each pulse evokes a spike. The value of the 

Lyapunov exponent is -12 06 ms! ' &" .

3. Dynamical instability produced by biphasic pulse trains in the FN 

model

The physiological experiments of Litvak et al. and Miller et al. used “biphasic” 

pulses, consisting of a brief cathodic phase followed by an anodic phase of equal 

duration.  Monophasic and biphasic pulse trains are represented schematically in 

Supplemental Fig. 7a.  Like stimulation with a monophasic pulse train (Supplemental 

Fig. 7b, black), stimulation with a biphasic pulse train produces fluctuations in the 

Lyapunov exponent (! ) as the stimulus period T  is reduced, and, for a range of 

values of T , the Lyapunov exponent exceeds zero, indicating dynamical instability.    
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Supplemental Fig. 7a.  Schematic illustration of monophasic and biphasic pulse 

trains.  For simplicity, the negative-going pulses are placed halfway between the 

positive-going pulses.   

Supplemental Fig. 7b. Biphasic pulse trains produce dynamical instability at 

high stimulation rates in the FN model.  Plots of the Lyapunov exponent !  versus 

the fundamental period T  of the stimulating biphasic pulse train (red) and the 

stimulating monophasic pulse train (black).  The fundamental period is expressed in 

units of the nominal refractory time dt .

4. Dynamical instability modulates the effect of noise during the action 

potential 

Although the noise-forcing term that is added to the differential equation for ( )x t(

(Equation 1) is constant, Figure 8 shows that its effect on the root-mean-square (rms) 

amplitude of ( )x t  (about the mean) is modulated during the action potential by the 

(short-term) dynamical instability, defined as {ln( ( ) (0) )}
d

t
dt

% % # % %
 !  !

  .
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Supplemental Fig. 8. Dynamical instability modulates the effect of noise on the 

voltage-like variable x.  The time evolution, ( )x t , of the voltage-like variable of the 

noise-free FN model in response to a brief pulse (a), the magnitude of the perturbation 

vector ( ) (0)t% % # % %
 !  !

   (b), the short-term Lyapunov exponent defined as 

{ln( ( ) (0) )}
d

t
dt

% % # % %
 !  !

   (c),  the rms value about the mean of the voltage-like variable 

( rmsx ) of the stochastic FN model ( RS=0 07& ) computed at the end of 

sequential, 0.0112 ms bins (d).  The simulation was restarted on the noise-free solution 

at the beginning of each bin, so rmsx  reflects the influence of noise during the bin 

rather than the cumulative effects of noise occurring in previous bins.  The values of 

rmsx  are averages obtained from 2000 independent realizations of the stochastic 
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process.

5. Dynamical instability produces desynchronization with respect to the 

stimulus at late times

Auditory-nerve fibers stimulated electrically at high rates typically fire synchronously 

for the first few spikes and then desynchronize (Litvak et al. 2001). Here we use the 

spike-train autocorrelation histogram to quantify degree of synchrony predicted by the 

noise-free FN model when stimulated at high rates.  The autocorrelation histogram is 

computed in the same manner as the cross-correlation histogram (see Methods), but 

using two copies of a single spike train, as opposed to different spike trains.  A value 

of zero indicates desynchronization with respect to the stimulus, and the significance 

of the fluctuations about zero is determined by comparing to the corresponding 

renewal process.  The 1% and 99% quantiles are indicated by the gray points.   

Supplemental Figure 9 (a–c) shows that dynamical instability ( 0!  ) in the 

FN model produces renewal-like desynchronization after an initial synchronous 

transient.  Stimulus levels were chosen to produce firing rates of approximately 50, 

150 and 250 spikes/sec, which are within the physiological range of auditory-nerve 

fibers.  As indicated by the gray bar, the synchronous transient decays over the time 

scale of 10 /! .  The addition of ongoing noise reduces the amplitude of the transient 

(Supplemental Fig. 10, a–c) and causes the desynchronized, renewal-like behavior to 

occur sooner.  The gray bar indicates the time interval between 1/ !  and 10 / !

(absolute values are used because the noise causes the Lyapunov exponent to be 

negative).   
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Supplemental Fig. 9.  Dynamical instability produces renewal-like interval 

histograms at late times.  The single-sided autocorrelation histogram (a–c), the 

interspike interval histogram with a linear vertical scale (d–f), the interspike interval 

histogram with logarithmic vertical scale (g–i), and the conditional mean interval 

histogram (j–l) for deterministic FN-generated spike trains with rates of 

approximately 50  (a, d, g, j), 150  (b, e, h, k), and 250 spikes sec#  (c, f, i, l).  Gray 

points denote the 99%  and 1%  quantiles for the corresponding renewal process 

generated by shuffling the interspike intervals.  The gray bars indicate the time 

interval between t!  and 10t! , where 1t! !) # .  The bin width is equal to the interpulse 

time T .
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Supplemental Fig. 10.   Noise smoothes interval histograms in the FN model. The 

single-sided cross-correlation histogram (a–c), the interspike interval histogram with 

linear vertical scale (d–f), the interspike interval histogram with logarithmic vertical 

scale (g–i), and the conditional mean interval histogram (j–l) for stochastic FN-

generated spike trains with rates of approximately 50  (a, d, g, j), 150  (b, e, h, k), and 

250 spikes sec#  (c, f, i, l).  The noise level was adjusted to produce a relative spread 

of RS 0 07&" .  Gray points denote the 99%  and 1%  quantiles for the corresponding 

renewal process generated by shuffling the interspike intervals.  The gray bars 

indicate the time interval between t!% %  and 10 t!% % , where 1t! !) # .  The Lyapunov 

exponent was negative for all three conditions.  The bin width is equal to the 

interpulse time T .

6. Dynamical instability produces exponential interspike interval 

distributions at late times 

Litvak et al. (2003) used the interspike interval histogram to characterize the temporal 

characteristics of the spike trains produced by auditory-nerve fibers when stimulated 

electrically at 5 kHz.  This histogram kh  is computed from the spike train { }nt  by 

forming the first-order intervals 1{ } { }n n nt t* +$ '  and counting the number of intervals 
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falling into each of k  bins defined by ( 1 2) ( 1 2)k T k T*' # , - + # .  The histogram is 

normalized by dividing the number of intervals in each bin by the total number of 

intervals.  Interval histograms from the noise-free FN model, plotted in a manner 

similar to figure 7 of  Litvak et al. (2003), are shown in Supplemental Fig. 9, with 

linear (d–f) and logarithmic (g–i) vertical axes. Like most electrically stimulated 

fibers, the interval distributions from the noise-free FN model are exponential at late 

times but non-exponential at short times.  Ongoing noise reduces the prominence of 

the non-exponential transient (Supplemental Fig. 10).  

7. Dynamical instability produces decorrelated sequential intervals at 

late times 

Litvak et al. (2003) quantified the degree of correlation between sequential interspike 

intervals by the conditional mean interval histogram.  The conditional mean interval 

histogram is computed by first forming K  subsequences of length kJ  from the 

sequence of intervals { }n* .  These subsequences, denoted { }k j* . , have the property 

that each of the kJ  elements of the thk   subsequence is preceded by an interval of 

duration k*  which falls into the thk  bin.  From these K  subsequences the conditional 

mean interval histogram k*  is constructed according to 1

1

k

k

J

k k jJ

j

* * .
$

$ / .  A flat 

histogram implies that the probability of an interval falling into the thk  bin is 

independent of the duration of the preceding interval, and hence that sequential 

intervals are decorrelated.  The statistical significance of deviations from flatness is 

evaluated by comparison to the corresponding renewal process, formed by shuffling 

the intervals.    

Conditional mean interval histograms from the noise-free FN model, plotted in 

a manner similar to figure 7 of  Litvak et al. (2003), are shown in Fig. 9 (j–l).  Gray 
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points represent the 1% and 99% quantiles of the corresponding renewal process.  

Like most electrically stimulated fibers, the conditional mean interval histogram falls 

within the bounds of the corresponding renewal process at late times.  This is 

consistent the interspike interval being independent of the preceding interval, except 

when the preceding interval is short.  This decorrelation at late times also occurs in 

the presence of ongoing noise Fig. 10 (j–l).   

Supplemental Methods 

Here we demonstrate that the numerical methods used in this study produce estimates 

of the Lyapunov exponent that are robust to errors associated with finite averaging 

time and finite computational precision.  We also demonstrate that the estimates of the 

Lyapunov exponent exhibit power-law convergence. 

The robustness of the finding of dynamical instability in the FN model

Although the two numerical methods used in this study, the NDSolve method and the 

fixed-step-size Euler method, may make different predictions about a particular 

solution at late times, even when started with nominally identical initial conditions, 

we demonstrate that they nevertheless yield similar estimates of the Lyapunov 

exponent.    
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Supplemental Fig. 11.  Lower precision solutions diverge from the high-precision 

solution at similar rates.  (a) Time evolution of the excitation variable, x , of the 

FitzHugh-Nagumo system when driven by a near threshold pulse train 

( =1.13278A A"# ) at a rate corresponding to 5 kHz  ( 3.578T " ).  The different curves 

correspond to different solution methods (see figure legend).  (b) The time evolution 

of the phase-plane distance between a high-precision solution (14.5 decimal digits) 

and three lower precision solutions (see figure legend).  

Supplemental Figure 11a shows predictions of the voltage-like variable ( )x t

generated by: 1) the NDSolve algorithm with a high numerical precision setting of 

14.5 decimal digits (dashed black line), 2) the NDSolve algorithm with a precision 

setting of 8 digits that is used for the noise-free simulations in the main text (thin 

black line), 3) the Euler method with a small step size (thick black line), and 4) the 

Euler method with the larger step size (gray line) used for the stochastic simulations 

in the main text.  The predictions visually overlap during the first approximately 

45t "  time units, corresponding to the first 12 pulses, after which the prediction of 

the larger step-size Euler method noticeably diverges from the other solutions.  Later 
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at 70t "  the smaller step-size Euler prediction diverges from the NDSolve solutions.  

Around 180t $  or the 50th pulse, the less precise NDSolve solution diverges from the 

higher precision NDSolve solution.  This behavior is consistent with dynamical 

instability magnifying the effects of computational error and imprecision. 

Supplemental Figure 11b plots the distance ( )0  in the phase-plane between 

the high-precision NDSolve solution and the three lower precision solutions.  

Consistent with Supplemental Fig. 11a, the phase-plane distance between each of the 

lower precision solutions and the reference solution increases linearly (on a log scale) 

as the simulation progresses, with the distance eventually approaching unity (or zero 

on a log scale).  This maximum separation is determined by the width of the attractor 

in phase space (Fig. 2 of main text).  The similar exponential rate of separation of the 

solutions suggests that the three methods, though differing in their precision, may 

produce similar estimates of the Lyapunov exponent! .

Supplemental Figure 12a shows the estimate of the Lyapunov exponent for 

these three methods as a function of the stimulus duration.  The Lyapunov exponent 

was estimated by solving the FN equations (1) and (2) along with the variational 

equations (5), as described in the Methods. The total stimulus duration is 

200 5totalt T NT$ + , where 3.578T "  is the interpulse time.  The responses to the 

initial 200 pulses were discarded to minimize the influence of transients.  Five 

estimates of !  were then made based on the remaining five stimulus segments of 

length NT .  Error bars indicate the standard deviation of the five estimates of the less 

precise Euler method.  This plot shows that even the least precise Euler method 

produces within 50 time units (14 pulses) an estimate that is significantly greater than 

zero.  The estimates for the later times, along with error bars for all the methods, are 

shown in Fig. 12b–d.  These data suggest that the estimate of the Lyapunov exponent 
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based on the least precise Euler method converges to a value that is somewhat less 

than that predicted by the more precise NDSolve algorithm, but that decreasing the 

step size of the Euler method to 44 37 10'0 $ & 1t  improves the accuracy of the 

estimate.           

Supplemental Fig. 12.  Different solution methods produce similar estimates of 

the Lyapunov exponent.  (a) The mean estimate of the Lyapunov exponent versus 

the duration of a 5 kHz  near threshold ( =1.13278A A"# ) pulse train.  The different 

symbols correspond to different solution methods, as in Supplemental Fig. 11.  Black 

diamonds, representing the least precise method, are accompanied by error bars that 

indicate the standard deviation of estimates based on five sequential pulse trains of 

duration NT .  Panels b–c show the Lyapunov exponent estimate versus t  at late 

times, with error bars indicating the standard deviation of five sequential estimates. 

While the different procedures appear to converge on slightly different values 

of ! , the rate at which the estimates converge to these different values is similar.  

This convergence rate is illustrated in Supplemental Fig. 13 which plots, on 

logarithmic axes, the standard deviation of the Lyapunov exponent estimate versus the 

simulation duration t .  The approximately linear behavior, with common slopes 

across methods, suggests that the methods have similar power-law convergence rates.   
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Supplemental Fig. 13.  Variability of the Lyapunov exponent estimate decreases 

with averaging time for three solution algorithms.  The logarithm of the standard 

deviation of the Lyapunov exponent estimate (
10

Log !2 ) as a function of the logarithm 

of the stimulus duration (
10Log t ) for three solution methods (see figure legend). 

We now further investigate the effects of numerical precision on the estimates 

using the NDSolve method.  The NDSolve method uses an algorithm that adaptively 

varies the step size in order to achieve the precision goal set by the user.  For 

sufficiently high precision settings, typically above 8 decimal digits, computations 

must be carried out with a precision greater than the standard machine precision of 

approximately 16 decimal digits.  This higher precision is achieved in Mathematica

by using arbitrary precision numbers at the expense of longer computation time 

(Wolfram 1996).  Supplemental Figure 14 shows the estimates of !  for 

200 5 300 1700+ 1 $  pulses for a range of precision settings.  Because the mean of 

every estimate falls within the confidence interval of all the other estimates, we 

conclude that the finding of instability ( 0!  ) is robust to errors in computational 

precision.        
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Supplemental Fig. 14.  The estimate of the Lyapunov exponent is robust to 

increases in computational precision.  The mean of five estimates of the Lyapunov 

exponent plotted as a function of the numerical precision setting of the NDSolve 

algorithm.  With a numerical precision of p, the local error is less than 

10 10p p

iX' '+ , where iX  is the absolute value of the thi  independent variable 

(Wolfram 1996). The Lyapunov exponent estimates were obtained from pulse trains 

of duration 200 5 300 1700NT T T$ + 1 $ .  The responses to the initial 200 pulses 

were discarded, and estimates were then formed based on the responses to each of the 

five subsequent segments consisting of 300 pulses.  The error bars represent the 

standard deviation of these estimates.  The stimulus conditions are the same as in 

Supplemental Figs. 11–13. 

In summary, we have shown that for a typical near threshold, high-rate 

condition both the NDSolve method and the fixed-step-size Euler method predict 

dynamical instability ( 0)!  , and further that this prediction of instability is robust to 

the errors associated with the finite duration and the finite precision of the 

calculations.   

Supplemental Note

For the driven FN model the phase space is, strictly speaking, three dimensional, and 

thus there are three Lyapunov exponents, one for each dimension (Eckmann and 

Ruelle 1985).  The evolution in this third dimension is given trivially by the equation 

( ) 1( $t t  (Strogatz 1994).  Along this time axis, there is neither contraction nor 

stretching, and hence one of the three exponents is identically zero always.  Further, 
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because the system is dissipative, the volume of a small cube of initial conditions will 

shrink under the influence of the flow.  The long-term rate of change in the volume is 

directly proportional to the sum of the Lyapunov exponents (Eckmann and Ruelle 

1985), and, because this volume is contracting, the sum of the exponents must be less 

than zero, thus when one of the two non-zero exponents is positive the other must be 

negative.  Furthermore, an arbitrary perturbation vector, under the influence of the 

flow, will seek out the direction of either growth or of slowest contraction (Wolf et al. 

1985), thus, the exponent determined by solving the variational equations corresponds 

to the positive exponent, if there is one, or to the negative exponent which is closest to 

zero.  This exponent we refer to as “the Lyapunov exponent.”  
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