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Appendix (by Arthur J. Robson)

1 Detailed Assumptions for the Model

The gross energy production rate, G, of an individual is an increasing function of the quantity,

K, and the quality, Q, of somatic capital. The energy net of fertility is then an increasing

function, F , say, of this gross energy, G, and a decreasing function of fertility, s.

Assumption 1. G : [0,∞)2 → [0,∞), G ∈ C2 ([0,∞)2) . G(0, Q) = G(K, 0) = 0,

GK(K,Q) > 0, GQ(K,Q) > 0, for all K > 0 and Q > 0.
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F ∈ C2 ((0,∞)× [0,∞)). In addition, lim(G,s)→(0,0) F (G, s) = 0 ≡ F (0, 0). Also FG(G, s) ∈

(0, c], for some c < ∞, Fs(G, s) < 0, FGs(G, s) > 0, Fss(G, s) < 0, for all G > 0 and

s ≥ 0. For analytic simplicity, finally, Fs(G, s) → −∞, as s → ∞, for all G ≥ 0, and

lim(G0,s0)→(0,s) F (G
0, s0) = −∞, for all s > 0.

Investment in somatic capital is irreversible and capital does not depreciate. Further,

there is an initial period of maximal growth, until age t∗, say, followed by a growth plateau–

Assumption 2. The capital stock, K(t), at age t, evolves as

dK(t)

dt
= v(t) where K(0) = K0 > 0,

where investment v(t) ∈ [0, v̄], for some v̄ ∈ (0,∞). Indeed, there exists t∗ ≥ 0 such that

v = v̄, for all t ∈ [0, t∗] but v = 0, for all t > t∗.

The energy cost of this investment in quantity is αv, for some α > 0.

In the absence of investment in quality, quality Q depreciates at a constant rate, ρ.

Investment to offset or reverse such depreciation, w, has an energetic cost, where this cost

is an increasing function of the quantity of somatic capital, K. Formally:

Assumption 3. The quality of somatic capital at age t, Q(t), evolves as:

dQ(t)

dt
= w(t)− ρ; where ρ > 0, for all Q(t) > 0, but

dQ(t)

dt
= 0, whenever Q(t) = 0 and Q(0) = Q0.
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The energetic cost of investment in quality is

βd(w,K), where β > 0, d : [0,∞)2 → [0,∞), d ∈ C2
¡
[0,∞)2

¢
,

and d(0,K) = d(w, 0) = dw(0, K) = 0 for all w,K ≥ 0

Furthermore dww(w,K) > 0 for all w ≥ 0 and K > 0

whereas dK(w,K) > 0, for all w > 0 and K ≥ 0.

Lower mortality comes at a greater cost and, indeed, at a greater marginal cost, as follows:

Assumption 4. If µ(t) is the rate of mortality at age t, and p(t) ∈ [0, 1] is the

probability of survival to age t, then

1

p(t)

dp(t)

dt
= −µ(t) where p(0) = 1.

The energetic cost of µ is

e : (µ,∞)→ [0,∞), e ∈ C2
¡
µ,∞

¢
,

e0(µ) < 0, e00(µ) > 0, for all µ ∈ (µ,∞).

e(µ) → ∞, as µ→ µ;whereas e(µ)→ 0, as µ→∞.

For ease of reference, the Euler-Lotka equation is included in this Appendix–

Z ∞

0

e−rtp(t)s(t)dt = 1. (1)

Similarly included is the steady-state “budget balance condition”–

Z ∞

0

e−rtp(t)(F (G(K(t), Q(t)), s(t))− αv(t)− βw(t)d(K(t))− e(µ(t)))dt ≥ 0. (2)
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2 Interpretation of the Parameter β

This subsection continues the discussion of the size of the parameter β that is started in the

second paragraph after the statement of Theorem 1. Consider then a germline which has

quantity k > 0, and quality q. For simplicity, take the quantity and quality of this germline

to be constant over time. The quality of the germline is the initial quality of an individual, so

that q = Q0. The cost of maintaining the quality of the germline, with same technology as for

the somatic line, is then βd(ρ, k), with marginal cost βdw(ρ, k). Suppose that individuals are

created from the germline at a constant continuous rate δ > 0.1 It follows that the marginal

benefit of a higher quality germline is then δψ(0, β), where ψ(0, β) is marginal lifetime benefit

from higher initial quality for an individual of age t = 0. This marginal valuation of quality

is defined in the next subsection and is used in the proof of Theorem 1.2 Altogether, the

condition βdw(ρ, k) = δψ(0, β) describes the optimal choice of the quality of the germline q,

given this is also the initial quality of an individual, Q0.

How then is this story consistent with the stylized facts that the germline is very small,

and that the initial quality of an individual, while high, is certainly finite? It can be

shown that ψ(0, β) has a well-defined limit as β → ∞. It follows readily that if β satisfies

βdw(ρ, k) = δψ(0, β), and β > β > 0, then β → ∞ as k → 0 but q is constant. Hence the

assumption of Theorem 1 that β is large reflects these two stylized facts.

1Suppose each individual uses a vanishingly small amount of the germline itself.
2The dependence of ψ on β is made explicit for the present purpose.
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3 Proof of Theorem 1

Theorem 1 states necessary properties satisfied by any solution to the basic evolutionary

problem. The plan of this proof is as follows. First, it is shown that any solution to the basic

evolutionary problem defined in Theorem 1 is also a solution to a “transformed problem” of

maximizing total expected discounted energy surplus, for a given value of r, together with

the requirement that this maximum surplus be zero, subject to the constraints in the basic

problem other than (2). It is then shown that any such solution path for the transformed

problem has the properties described in Theorem 1. That is:

Lemma 1. Any solution to the basic evolutionary problem of maximizing r subject to

Assumptions 1-4, the Euler-Lotka equation (1) and the budget balance condition (2) is also

a solution to the transformed problem–

max
t∗≥0

W (t∗, r) ≡ U(r) (3)

where

W (t∗, r) ≡

max
s≥0,w≥0,µ≥0

½Z t∗

0

e−rtp(t)(F (G(K0 + v̄t, Q(t)), s(t))− αv̄ − βd(w(t),K0 + v̄t)− e(µ(t)))dt

+

Z ∞

t∗
e−rtp(t)(F (G(K(t∗), Q(t)), s(t))− βd(w(t),K(t∗))− e(µ(t)))dt

¾
(4)

subject to

1 =

Z ∞

0

e−rtp(t)s(t)dt (5)
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dp(t)

dt
= −p(t)µ(t), for all t ∈ [0,∞), p(0) = 1 (6)

dQ(t)

dt
= w(t)− ρ, for all Q(t) > 0, but (7)

dQ(t)

dt
= 0, whenever Q(t) = 0, Q(0) = Q0

and where

max
t∗≥0

W (t∗, r) = U(r) = 0. (8)

Proof. Suppose that t∗0, s0(·), w0(·), and µ0(·), together with the implied v0(·), K 0(·),

Q0(·), and p0(·), are a solution to the basic evolutionary problem, of maximizing r subject to

Assumptions 2-4, (1), and (2), yielding a maximized growth rate of r0. However, suppose

this is not a solution to the transformed problem described by (3), (4), (5), (6), and (7), and

(8). It follows that there exist t∗, s(·), w(·), and µ(·), together with the implied K(·), Q(·),

and p(·), satisfying (5), (6), and (7), such that½Z t∗

0

e−r
0tp(t)(F (G(K0 + v̄t, Q(t)), s(t))− αv̄ − βd(w(t),K0 + v̄t)− e(µ(t)))dt

+

Z ∞

t∗
e−r

0tp(t)(F (G(K(t∗), Q(t)), s(t))− βd(w(t), K(t∗))− e(µ(t)))dt

¾
> 0.

(It need not be that t∗, s(·), w(·), and µ(·) differ from t∗0, s0(·), w0(·), and µ0(·).) There is

then a r = r0 + ε, for ε > 0, that is feasible for the basic problem. To show this, choose

s̃(t) = s(t) + δ(ε), for δ(ε) > 0 such that
R∞
0

e−rtp(t)s̃(t)dt = 1, and such that the strict

inequality above still holds, while leaving t∗, w(·), and µ(·) and the implied K(·), Q(·), and

p(·) unaltered, for example. This is the required contradiction.

The proof now constructs a time path that can be shown to be a partial solution to the

transformed problem. Consider, indeed, any fixed t∗ ≥ 0, with the associated investment
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and capital profiles v(τ) and K(τ). That is, v(τ) = v̄, and K(τ) = K0+ v̄τ , for all τ ∈ [t, t∗];

v(τ) = 0 and K(τ) = K(t∗) = K∗, say, for all τ > t∗. Take any t ≥ 0, and parameter

η > 0. Define F̃ (K,Q, η) = maxs≥0 (F (G(K,Q), s) + ηs) . Thus −Fs(G, s) = η, if s > 0;

−Fs(G, s) ≥ η, if s = 0. Also note that, by the envelope theorem, F̃K = FGGK and F̃Q =

FGGQ.

Lemma 2. For any Q > 0, given β is large enough, there exists a time path (Q(τ), L(τ), ψ(τ)) ≥

0 for any initial t ≥ 0, satisfying, for some T > 0,

Q(t) = Q,
dQ(τ)

dτ
= w(τ)−ρ, where βdw(w,K) = ψ, for all τ ∈ [t, T ], and Q(τ) = 0, for all τ ≥ T

dL(τ)

dτ
= (r + µ)L− F̃ + αv + βd+ e,

where L(τ) > 0 and − e0(µ) = L, for all t ∈ [0, T ), and L(τ) = 0 for all τ ≥ T

dψ

dτ
= (r + µ)ψ − F̃Q for all τ ∈ [t, T ], and ψ(τ) = 0 for all τ ≥ T.

Proof. For simplicity, it is assumed here that t∗ < T and is indeed small enough that

F̃ − αv = 0 for the first time at T . Since this holds for the optimal t∗, this assumption is

without true loss of generality. A further minor complication that prevents direct application

of a standard result for existence of a solution to a system of ordinary differential equations

is that µ→∞ as τ → T. Consider then an artificial cost of mortality

eµ̄ : (µ,∞)→ [0,∞), for any µ̄ > µ, where

eµ̄(µ) = e(µ)− e(µ̄), for all µ ∈ (µ, µ̄), but eµ̄(µ) = 0, for all µ ≥ µ̄
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The artificial problem becomes–

Q(t, µ̄) = Q,
dQ(τ , µ̄)

dτ
= w(τ)−ρ, where βdw(w,K) = ψ, for all τ ∈ [t, T ], and Q(T, µ̄) = 0

dL(τ , µ̄)

dτ
= (r + µ)L− F̃ + αv + βd+ eµ̄,

where − e0µ̄(µ) = −e0(µ) = L, if such µ ≤ µ̄ but µ = µ̄ otherwise, for all τ ∈ [t, T ],

and L(T, µ̄) = 0

dψ(τ, µ̄)

dτ
= (r + µ)ψ − F̃Q for all τ ∈ [t, T ], and ψ(T, µ̄) = 0.

It is straightforward then to show that this system of equations satisfies the appropriate

Lipshitz condition and so has a unique solution for (Q(τ , µ̄), L(τ , µ̄), ψ(τ , µ̄)) on [t, T ], for an

arbitrary T > t, disregarding the condition that Q(t) = Q. This solution can be constructed

backwards from T. In the limiting case where β → ∞ there is obviously a unique strictly

monotonically decreasing solution to the first equation, given by w = 0 and Q(τ) = Q −

(τ − t)ρ so that T = Q
ρ
+ t. If β is large enough, it must still be possible to choose T (µ̄) > t

such that Q(t) = Q, for any Q > 0.

It is also straightforward to show that, when β is large enough, there exists a time path

(Q(τ), L(τ), ψ(τ)) and terminal time T such that

(Q(τ , µ̄), L(τ , µ̄), ψ(τ , µ̄))→ (Q(τ), L(τ), ψ(τ)) and T (µ̄)→ T , as µ̄→∞, f or all τ ∈ [t, T ].

This pointwise limit (Q(τ), L(τ), ψ(τ)),with the additional condition that (Q(τ), L(τ), ψ(τ)) =

0, for τ ≥ T, must then be a solution to the original problem.

The proof now proceeds by showing that the time path found above yields a partial

solution to the transformed problem.
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Indeed, the time path found in Lemma 1 implies a value of 1
p(t)

R T
t
e−rtp(τ)s(τ)dτ =

R(Q, η, t), say, where R(·) is continuous. R(·) is also strictly increasing in η, since s > 0 is

increasing in η; further, F̃ is increasing in η, so L(τ) is increasing in η, µ is decreasing and

p(τ) is increasing in η. Since, in addition, R(Q, 0, t) = 0 and R(Q, η, t) → ∞, as η → ∞,

there exists a unique η(Q,R, t) > 0 associated with each Q > 0, R > 0, and t ≥ 0. Thus,

a unique L can be obtained not only for each (Q, η, t) but also for each (Q,R, t), justifying

not only the notation L(Q, η, t) but also L(Q,R, t).

Now define

V (Q,R, t) = L(Q,R, t)− η(Q,R, t)R.

It follows that

Lemma 3. Further, there exists β̄ > 0, independent of α and v̄, such that, if β > β̄,

then V (Q,R, t) is the value function for the subproblem given by (4), (5), (6), and (7). The

optimal µ = argmaxµ∈[µ,µ̄] [−e(µ)− µV + µVRR] ; the optimal s = argmaxs≥0 F̃ ; and the

optimal w satisfies βdw(w,K) = ψ.

Proof. i) Given the assumptions on e, −e0(µ) = L, if L > 0; µ = ∞, if L ≤ 0; and

L = V + ηR, the optimality of µ follows since

−e(µ)− (µ+ r)V + µVRR ≥ −e(µ0)− (µ0 + r)V + µ0VRR, for all µ0 ∈ [µ,∞),

if it can be shown that VR(Q,R, t) = −η. But this is a consequence of

Lη(Q, η, t) = R
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since this implies

LR(Q,R, t) = Lη(Q, η, t)
∂η

∂R
= R

∂η

∂R
so that VR = LR −

∂η

∂R
R− η = −η.

But the result that Lη(Q, η, t) = R follows from the envelope theorem.3 That is,

Lη(Q, η, t) = R+
1

p(t)

Z T

t

e−r(τ−t)
∂p(τ)

∂η
(F̃ − αv − βd− e)dτ

+
1

p(t)

Z T

t

e−r(τ−t)p(τ)F̃Q
∂Q

∂η
dτ

− 1

p(t)

Z T

t

e−r(τ−t)p(τ)βdw
∂w

∂η
dτ

+
1

p(t)

Z T

t

e−r(τ−t)p(τ)(−e0(µ))∂µ
∂η

dτ

+
e−r(T−t)p(T )L(T )

p(t)

∂T

∂η

= R− e−r(τ−t)
∂p(τ)

∂η
L

¯̄̄̄T
t

1

p(t)
− e−r(τ−t)p(τ)

∂Q

∂η
ψ

¯̄̄̄T
t

1

p(t)
= R,

since L(T ) = 0; −e0(µ) = L; ∂p(t)
∂η

= 0, given p(t) is fixed; ∂Q(t)
∂η

= 0, given Q(t) = Q is fixed;

d

dτ

µ
e−r(τ−t)

∂p

∂η
L

¶
= −e−r(τ−t)

µ
∂p

∂η
r +

∂p

∂η
µ+ p

∂µ

∂η

¶
L+e−r(τ−t)

³
(µ+ r)L− (F̃ − αv − βd− e)

´ ∂p

∂η

= −e−r(τ−t)p∂µ
∂η

L− e−r(τ−t)
³
F̃ − αv − βd− e

´ ∂p

∂η

and, similarly,

d

dτ

µ
e−r(τ−t)ψ

∂Q

∂η
p

¶
= −e−r(τ−t)F̃Q

∂Q

∂η
p+ e−r(τ−t)pψ

∂w

∂η

3An heuristic proof of this version of the envelope theorem is given here. There are a number of similar

appeals to the envelope theorem in this appendix, the heuristic proofs of which are omitted. Rigorous proofs

can obtained from results by Coddington and Levinson (1955, Chapter 1.7), concerning the dependence of

the solution to a differential equation on various parameters.
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V (Q,R, t) is the value function because

ii) Given F (G, ·) is concave and −η = VR(Q,R, t), the optimality of s follows since

F (G, s)− VRs ≥ F (G, s0)− VRs
0, for all s0 ≥ 0.

iii) By the envelope theorem,

VQ(Q,R, t) =
1

p(t)

Z T

t

e−r(τ−t)
∙
F̃Q

∂Q(τ)

∂Q
− βdw

∂w(τ)

∂Q

¸
p(τ)dτ.

The optimality of the choice of w then follows since

VQ(Q,R, t) = βdw where βdw = ψ.

Consider, indeed,

d

dτ

∙
e−r(τ−t)pψ

∂Q(τ)

∂Q

¸
= −e−r(τ−t)pF̃Q

∂Q(τ)

∂Q
+ e−r(τ−t)pψ

∂w(τ)

∂Q

Hence

p(t)ψ(t) =

Z T

t

e−r(τ−t)
∙
F̃Q

∂Q(τ)

∂Q
− βdw

∂w(τ)

∂Q

¸
p(τ)dτ,

as required.

Consider now the choice of optimal t∗ as in (3). Note that V (Q0, 1, r) = W (t∗, r), as in

(4).

Lemma 4. There exist ᾱ > 0, independent of the value of β > β̄ and of v̄, such that,

if α < ᾱ, then there exists t∗ > 0 maximizing W (t∗, r).

Proof. The envelope theorem implies that

Wt∗(t
∗, r) = v̄

Z T

t∗
e−rτp(τ)

h
F̃K − βdK

i
dτ − αe−rt

∗
p(t∗)v̄,
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Hence

Wt∗(T, r) = −αe−rTp(T )v̄ < 0.

On the other hand,

Wt∗(0, r) = v̄

Z T

0

e−rτp(τ) [FGGK − βdK] dτ − αv̄ > 0,

whenever α < ᾱ, and β > β̄. (Note that βdK(w,K) → 0 as β → ∞ because dK(w,K)
dw(w,K)

→

dwK(0,K)
dww(0.K)

= 0, as w → 0, by l’Hôpital’s rule.) Hence there exists an optimal t∗ ∈ (0, T ),

satisfying 1
p(t∗)

R T
t∗ e

−r(τ−t∗)p(τ) [FGGK − βdK ] dτ = α.

We are now in a position to establish the key properties of the time paths claimed in

Theorem 1.4

Lemma 5. The properties of the time paths of fertility, s(t), and mortality, µ(t), that

are described in Theorem 1 now follow.

Proof. Take the optimal t∗ and define y(t) = F̃ (K,Q, η)−αv(t)−βd(w(t),K(t)), v(t) =

v̄. Now dG
dt
= GK v̄+GQ(w−ρ) > 0 and dy

dt
= FG(GK v̄+GQ(w−ρ))−βdw(w(t),K(t))dw(t)dt

−

βdK(w(t), K(t))v̄ = (F̃K − ψ dK
dw
)v̄ + GQ(w − ρ) − ψ dw(t)

dt
> 0, for all t ∈ [0, t∗), whenever

β and v̄ are large enough. (Recall that dK(w,K)
dw(w,K)

→ dwK(0,K)
dww(0.K)

= 0 as w → 0, by l’Hôpital’s

rule. Note also that dw(t)
dt

=
dψ
dt
dw

ψdww
and dw(w,K)

dww(w,K)
→ 0 as w → 0, so dw(t)

dt
→ 0 as β → ∞.)

Although G(K(t), Q(t)) is continuous, y(t∗+) − y(t∗−) = v̄, whereas dG
dt
= GQ(w − ρ) < 0

4Note that it is not necessary to invoke (8) to establish Theorem 1. This condition simply serves to

tie down the maximum value of r. If this condition is applied, it can be shown that the basic evolutionary

problem and the transformed problem have precisely the same solutions.
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and dy
dt
= F̃Q(w−ρ)−βdw(w(t),K(t))dw(t)dt

= F̃Q(w−ρ)−ψ dw(t)
dt

< 0, for all t > t∗, whenever

β is large enough.

The path of s(t) can now be characterized. That is, there must now exist a tL ∈ [0, t∗)

such that s(t) = 0 for all t ≤ tL and, since ds
dt
= −FGs(G,s)

Fss(G,s)
dG
dt
, if s > 0, then ds

dt
> 0, for all

t ∈ (tL, t∗). Further, since −Fs(G(K(t), Q(t)), 0) → ∞, as t → T, there exists tH ∈ (t∗, T )

such that −Fs(G(K(t), Q(t)), 0) = η.. Hence s > 0 and ds
dt

< 0, for all t ∈ (t∗, tH), but

s(t) = 0 for all t ∈ [tH , T ).

The path of µ(t) follows since L(t) = 1
p(t)

R T
t
e−r(τ−t)p(τ)(y(τ)− e(µ))dτ is hump-shaped,

where the maximum of L(t) is not after the maximum of y(t) at t∗. Indeed, as long as t 6= t∗,

dL(t)
dt

= (µ(t)+r)L(t)−y(t)+e(µ) and d2L(t)
dt2

= dµ
dt
L(t)+(µ+r)dL

dt
− dy

dt
+e0(µ)dµ

dt
= (µ+r)dL

dt
− dy

dt
.

Thus, if dL
dt
≥ 0 for any t > t∗, this implies L(T ) > 0, a contradiction. Thus dL

dt
< 0 for all

t > t∗. In addition, if dL
dt
= 0 at any t < t∗, then d2L

dt2
< 0, so that there can be at most one

critical point in this range, which must be a maximum. Given that y(t) jumps up at t∗, dL
dt

jumps down. Altogether, then, L(t) must have a unique maximum at some t̂ ≤ t∗. Hence

mortality µ(t) is U-shaped with a unique minimum at t̂.
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