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I.  Computational details 

 

A.  Asymmetric double-well potential 

 To calculate the classical configuration integrals involving W: 
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 we first interpolated W1, W2, and W3 on a 0.01Å grid, which is mass-scaled in units of atomic 

mass unit (AMU), before carrying out the numerical integrations.  The areas of the integrations 

were chosen such that their values are converged at least up to 3 significant figures.  All the 

numerical integrations and interpolation were performed with Mathematica.1  We also computed 

the eigenenergies of this asymmetric double-well potential by the Rayleigh-Ritz variational 

method (Section II), in which the Schrödinger equation was solved in a basis of 114 Gauss-

Hermite polynomials.  The partition functions calculated by summing over these eigenenergies 

with the Boltzmann factor are virtually identical to the quantum results reported in the Mielke-

Truhlar paper.2 

 

B.  The Morse potential for bond vibration 

 The numerically exact bound eigenenergy states nE ′  for the Morse potential are:3,4 
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where  is Planck’s constant divided by 2π and 2 2 eMDγζ = .  The quantum number n′  can 

be chosen from any non-negative integers as long as nE ′  are smaller than the dissociation energy 

De.  Although the form in Eq. (S2) is only numerically exact, it has been validated for the most 

unfavorable internuclear case, i.e., a hydrogen molecule.4  The quantum vibrational (bound) 

partition function is obtained by summing over all bound energy states n eE D′ ≤  with the 

Boltzmann factor: 
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where nE ′  is the energy in Eq. (S2), kB is Boltzmann’s constant, and T is temperature.  On the 

other hand, the classical vibrational (bound) partition function is given by 
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where h is Planck’s constant, 1r  is the point ( )1 eV r D= , p is the momentum associated with r.  

The limits of the above integral are used to ensure only the energy smaller than De is included in 

the partition function. 

 Special care has to be taken when we use the effective centroid potential W to calculate 

( )boundqmQ .  Since the Morse potential is an unbound potential (i.e., ( )V ∞ ≠ ∞ ), if we 

integrate over the whole phase-space with W, the quantum partition function we obtain is the 

Boltzmann’s sum of both bound eigenenergy states and the unbound continuous energy states, 

i.e., 

 ( ) ( ) ( )2
0

bound unbound ,
2

W rB
qm qm

Mk T e dr Q Qβ

π

∞
− = +∫  (S5) 

Similarly, if we integrate over the whole phase-space with V, the classical partition function we 

calculate is the Boltzmann’s sum of both bound and unbound continuous energy states, i.e., 
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Please note that since the energy spectrum of both quantum and classical unbound states are 

continuous, we have the following identity: 

 ( ) ( )unbound unbound .qm clQ Q=  (S7) 

Thus, by combing Eq. (S5), (S6), and (S7), we can express ( )boundqmQ  in terms of W as 

follows: 
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Eq. (S8) is an exact expression relating ( )boundqmQ  to W, although it requires calculating three 

different integrals. 
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 We should use Eq. (S8) to compute ( )boundqmQ .  However, the orders of magnitude of 

each of the three integrals in Eq. (S8) actually are quite different from that of ( )boundqmQ  (e.g., 

at 200 K, ( ) 2bound 3.44 10clQ −= ×  and ( ) 7bound 5.45 10qmQ −= × ), so a very high precision for 

each of these three integration is required to achieve an accurate value of ( )boundqmQ , 

particularly at low temperature.  Fortunately enough, at lower temperature, ( )boundqmQ  is 

getting closer to the following estimates: 
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Eq. (S9) provides a much simpler way to evaluate ( )boundqmQ  at low temperature involving 

only one integral to compute.  Because at lower temperature, more bound states are contributed 

by the vicinity of 0r , the equilibrium position.  At the zero-temperature limit, there is only one 

bound state (the ground state or zero-point energy) located at the minimum point of W.5-8 

 We used Eq. (S8) for T =  200, 300, 400, 500, and 1000 K.  The zero lower-limit and 

infinity upper-limit of the first two integrals in Eq. (S8) have been replaced by 10.3r  ( 1r  is the 

point where ( )1 eV r D= ) and 03r  respectively. These two limits are chosen for the accuracy up to 

3 significant figures (sig. fig.) because identical results (in 3 sig. fig.) can be obtained with 

smaller regions to be integrated, i.e., integrating from 1r  to 01.5r .  For T =  50 and 100 K, we 

used Eq. (S9) to compute the partition functions.  We justified the value of 0r∆  by changing it 

from 0.1 to 0.5 and comparing the result with the one obtained by Eq. (S8) at higher temperature 

200 K.  All values are identical at least up to 3 significant figures.  All the numerical integrations 

and interpolations were performed using Mathematica.1  To compute all integrals involving W 

numerically, we first interpolated 300 points of W1 or W2 between 10.3r  and 03r  before carrying 

out the numerical integrations. 
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C.  Symmetric and asymmetric Eckart potentials 

 The Eckart potential may be defined as follows:9 
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where x is the reaction coordinate,  L is a characteristic length, A and B are constants associated 

with the height and symmetry of the barrier.  For general values of A and B (with 0B > ), the 

expression in Eq. (S10) has limiting values of 0V →  as x →−∞  and V A→  as x →+∞ , so 

that A represents the endothermicity of the reaction or the reaction energy.  When B A> , V 

shows a maximum value with 
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Vmax is the height of the energy barrier for motion from the negative infinity of x to the positive 

infinity.  When 0A = , the potential reduces to be symmetric and ( )V x  can be conveniently 

written in terms of a hyperbolic cosine function: 
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where max 4
BV =  (with 0A = ). 

 The exact probability of tunneling transmission over Eckart barrier is9 

 ( )
( ) ( ){ } ( )
( ) ( ){ } ( )

cosh 2 cosh 2
1  when 

,cosh 2 cosh 2

0                                                                              when 

a E b E d E
E A

E a E b E d E

E A

γ γ γ

γ γ γ

π π

π π

⎧ ⎡ ⎤ ⎡ ⎤− +⎣ ⎦ ⎣ ⎦⎪ − >⎪ϒ = ⎡ ⎤ ⎡ ⎤+ +⎨ ⎣ ⎦ ⎣ ⎦⎪
≤⎪⎩

 (S14) 



 6

where E is the total energy of the incident particle with mass M, 
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and h is Planck’s constant. 

 In Johnston’s textbook,10,11 aγ , bγ , and dγ  are expressed in terms of 1α  and 2α .  1α  is 

related to the height of the barrier from left to right, 1V , while 2α  is related to the height of the 

barrier from right to left, 2V : 
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and iω∗  is the imaginary angular frequency at the top of the barrier: 

 
( )22 22

2 3

1 .
2

A B
i i

M L B
πω∗

−
=  (S22) 

 For a symmetric Eckart barrier (i.e., 0A = ), the probability of tunneling transmission 

over the barrier is simplified as follows:12 
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with  
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The quantum rate constant of a chemical reaction over the Eckart barrier is10 
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where RQ  is the partition function for the reactant.  Since the potential is flatten out at negative 

infinity of x, the reactant in this model is essentially a free particle.  RQ  for a free particle in 

classical mechanics is the same as that in quantum mechanics.  But ( )Eϒ  for a classical particle 

is zero for maxE V< , and unity for maxE V> .  As a result, the ratio of the quantum to classical rate 

constants for the Eckart potential is given as follows: 
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In other words, this κ is the quantum tunneling correction factor to the classical rate constant for 

the Eckart barrier, which may also be called as transmission coefficient.  Since ( ) 0Eϒ =  when 

E A≤  [Eq. (S14)], κ is the same for both forward and backward chemical reactions. 

 In terms of path-integral quantum transition state theory (PI-QTST),13-17 qmk  is 

approximated as follows (with no correction for re-crossings): 

 ( )max
1 exp ,B
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k Tk k W k T
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where maxW  is the maximum point or the saddle point of the effective centroid potential.  Note 

that maxW  is not necessarily located at the xmax in Eq. (S12). 

 For the symmetric Eckart potential, the parameters we used are: 1836M = electronic 

mass, -11047.2 cmω∗ = , and 1 2 12α α= = .  This set of parameters has been extensively used to 
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test the tunneling effects for PIMC simulations.10,13,18  But for modeling the kinetic isotope 

effects on the protium/deuterium transfers over the symmetric Eckart barrier, we used the 

following parameters,19 which are close to the ones used above:  1.0078250 and 2.0141018M =  

AMU (atomic mass units), max 5.7307 kcal/molV = , and 1.0967L = Å. 

 For the asymmetric Eckart potential, we used this set of parameters:16  18 kcal/molA
π

= − , 

54 kcal/molB
π

= , 8
3

L
π

= Å, and 1836 electronic massM = . 
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II.  Eigenenergies of the asymmetric double-well potential 

 

 

Quantum state Eigenenergy (hartree)
1 4.20895E-03 
2 1.17045E-02 
3 1.32405E-02 
4 1.69572E-02 
5 1.98854E-02 
6 2.39617E-02 
7 2.84721E-02 
8 3.34363E-02 
9 3.87813E-02 

10 4.44689E-02 
11 5.04686E-02 
12 5.67559E-02 
13 6.33117E-02 
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III.  Instructions to obtain analytical closed forms of KP1/P20, KP2/P20, KP3/P6 at the 

zero-Ω limit in the formats of Mathematic notebook and FORTRAN 

 

 The nth-order Kleinert variational perturbation (KPn) approximation, ( )0nW xΩ , can be 

written in terms of ordinary integrations:5 
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order polynomial, i.e., 
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then the non-cumulant integrals associated with ( ) 0
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where 2 2
0 0 0

1
2

c b M x= − Ω , 2
1 1 0c b M x= + Ω , 2

2 2
1
2

c b M= − Ω , and i ic b=  for the rest of i.  

( )FK1term i , ( )FK2term ,i j , and ( )FK3term , ,i j k  are lengthy functions in terms of ( )a Ω , 

( )aij Ω , and ( )aijk Ω . 
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 These FK terms are the same as the ones published in the previous study,20 though the 

zero-Ω limit results of ( )0a Ω = , ( )0aij Ω = , and ( )0aijk Ω =  are now (as part of this 

Supporting Information) available in the formats of Mathematica notebook (i.e., 

“aijk_aij_aLimitOmegaZeroPublicDL.nb”) and FORTRAN (i.e., 

“FK1_aLimitOmegaZeroFortran.txt”, “FK2_aij40LimitOmegaZeroFortran.txt”, and 

“FK3_a222to666_aijkLimitOmegaZeroFortran.txt”). 
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IV.  Instructions to obtain analytical closed forms of KP1/P20, KP2/P20, KP3/P6 at the 

zero-temperature limit in the formats of Mathematic notebook and FORTRAN 

 

 At the limit of zero-temperature, the FK terms in Eq. (S31), (S32), and (S33) becomes 

( )FK1termLimitTemperatureZero i , ( )FK2termLimitTemperatureZero ,i j , and 

( )FK3termLimitTemperatureZero , ,i j k , respectively.  All are available (as part of this 

Supporting Information) in both formats of Mathematica notebook (i.e., 

“FK1FK2FK3termLimitTemperatureZeroPublicDL.nb”) and FORTRAN (i.e., 

“FK1term0to20LimitTemperatureZeroFortran.txt”, 

“FK2term00to2020LimitTemperatureZeroFortran.txt”, and 

“FK3term000to666LimitTemperatureZeroFortran.txt”).   

 

 The associated ( )LimitTemperatureZeroa Ω , ( )LimitTemperatureZeroaij Ω , and 

( )LimitTemperatureZeroaijk Ω  are available in both Mathematica notebook format (i.e., 

“aijk_aij_aLimitTemperatureZeroPublicDL.nb”) and FORTRAN format (i.e., 

“FK1_aLimitTemperatureZeroFortran.txt”, “FK2_aij40LimitTemperatureZeroFortran.txt”, and 

“FK3_a222to666_aijkLimitTemperatureZeroFortran.txt”) as well. 

 

 

 

 

 NOTE: All current analytical zero-temperature results are valid only when Ω is positive, 

though all results in principle should be even functions of Ω. 
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