
Supplemental Data S1

Fragment-Based Learning
of Visual Object Categories
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Supplemental Results

The Categories Used Were Fine-Grained, and the
Classification Task Was Nontrivial

One concern about the testing paradigm we used (Figure 3) is
that the subjects can ‘‘cheat,’’ i.e., do the task by comparing
a given fragment to the corresponding parts of individual sam-
ple objects from the relevant categories. Figure S1 may be
used to convince oneself that it is not possible to do the task
reliably in this fashion. Choose a fragment of interest from
a given object, but do not look up its class designation. Next
choose one object each from class A and class B. Assign the
fragment to either category by comparing the chosen fragment
to the chosen objects. Repeat this several times for different
objects and fragments and estimate your performance for
each fragment. Empirical data show that, although the

subjects could in principle adopt this strategy, in practice
they do not do so (Figures 4D and 4E).

Fragments Were Learned during Training and Not Testing

Although the performance with the main fragments during the
testing phase was comparable to the performance with whole
objects during training, it is possible that at least some of the
learning took place during the testing phase, especially
because the subjects encountered the fragments repeatedly
during the testing phase. This issue is germane to whether
fragment learning accompanies category learning per se. It is
unlikely that the subjects learned fragments during the testing,
both because no feedback was provided during testing and
because no more than 50% or 33% of the fragments (in exper-
iment 1 or 2, respectively) were informative about the task.

Figure S1. Exemplar Objects from the Three VP Object Classes

Four objects are shown from each class in a randomly intermingled fashion. Note that it is difficult to correctly classify the objects into the three correct

classes without learning or knowing the classes. The class designations are shown at the bottom of the figure.



Nonetheless, we examined the data for evidence of learning
during the testing. Figure S6 shows the performance of the six
subjects in the main task experiment 1a during the first and the
last session of testing. The performance improved for no sub-
ject. Indeed, the performance showed a modest decrease
overall, although the decrease was statistically insignificant
(one-tailed Mann-Whitney test, p > 0.05). Performance with
control and IPControl fragments, or the reaction times for all
three fragment types, also showed no significant change dur-
ing testing (not shown). Results from experiments 1b and 2
were qualitatively similar (not shown). Together, these results
indicate that subjects had learned the informative fragments
by the end of the training session, i.e., before the testing began.

The Classification Performance Is Highly Correlated

with the Mutual Information of the Individual Fragments
To test the extent to which the classification performance is
determined by the mutual information (MI) value of the main
fragments, we isolated a different set of main fragments (not
shown) with a range of low-to-high MI values (x axis). We
then tested the categorization performance by using each of

these fragments with the same training and testing procedure
as above. This figure shows the average categorization perfor-
mance (6SEM) of four subjects for each fragment. The thin
dotted line denotes chance level performance. The perfor-
mance was highly correlated with the MI values (correlation
coefficient r, 0.86; p < 0.05), consistent with previous studies
[S1, S2].

These results indicate that main fragments with high MI
values can be expected to elicit correspondingly high perfor-
mance. Therefore, the high performance elicited by the main
fragments in experiments 1a, 1b, and 2 (Figures 4A, S4, and
S5) is directly attributable to the fact these fragments had MI
values at or near 1 (see Tables S1 and S2 below).

In some experimental contexts, performances at or near
100% are potentially problematic because they may reflect
response saturation, thereby making it difficult to compare
performances across the various conditions. However, high
performance is not problematic in our context, in which the
comparison of interest is between the main versus control
fragments and not across the various main (or control) frag-
ments. Indeed, high performance is advantageous in our con-
text because the data from various main (or control) fragments
amount to independent measurements of the corresponding
category-learning effect.

Overlap among Fragments
In both experiments 1 and 2, the fragments overlapped with
each other in some cases. For instance, the ten main frag-
ments in experiment 1 occurred in four nonoverlapping clus-
ters in two different regions of the embryo (top center and far
right in Figure 2B). The largest of these clusters consisted of
five fragments, 0, 1, 3, 4, and 6, with fragments with 1 and 6
mutually nonoverlapping. The second cluster consisted of
fragment 2, which was close to, but did not overlap, the first
cluster. The third cluster consisted of fragments 5, 8, and 9,
and fourth cluster consisted of fragment 7 by itself. The ten
control fragments in this experiment also showed comparable
clustering (Figure 2D). We decided against excluding frag-
ments on the sole basis of overlap, because they were judged

Figure S2. IPControl Fragments Used in Experiment 1b

IPControl fragments used in experiment 1b (A) and the location of the frag-

ments (B). The fragments are overlaid on a typical object from class A. The

behavioral data from these fragments are shown in Figure 4C. See text for

details.

Figure S3. Performance with Main Fragments in Experiment 1b

Each bar shows the average percentage (6SEM) of trials in which the sub-

jects classified a given fragment as belonging to class A. The thin dotted line

denotes 50%, or chance level performance. The thick black lines in the

background denote the mean (solid line) and the SEM (dashed lines) of

the subjects with whole objects during the last two sessions of training.
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to be mutually dissimilar by an objective measure (see Supple-
mental Experimental Procedures). Moreover, our results hold
even when only the data from nonoverlapping fragments are
considered (see Figures 4A and 4B). This was also true for
fragments from experiments 1b and 2 (see Figures 4C, S4,
and S5; also see Figures S2 and S7).

Supplemental Experimental Procedures

Using VP to Create Naturalistic Object Classes

We created novel, naturalistic categories by using the VP algorithm (Fig-

ure 1), which simulates key processes of biological evolution. Broadly

speaking, in case of evolution, biological object categories arise when her-

itable random variations are differentially passed on to the next generation

Figure S4. Fragments Used in Experiment 2

(A) Main fragments.

(B) Location of the main fragments, overlaid on a typical object from class C.

(C) Control fragments.

(D) Location of the control fragments.

(E) IPControl fragments.

(F) Location of the IPControl fragments. See text for details.

Figure S5. Performance in Experiment 2

In (A)–(C), each bar shows the average percentage (6SEM) of trials in which the subjects classified a given fragment as belonging to class C. The thin dotted

line denotes 50%, or chance level performance. The thick black lines in the background in (A) denote the mean (solid line) and the SEM (dashed lines) of the

subjects with whole objects during the last two sessions of training.
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by processes such as natural selection, genetic drift, extinction, etc. (for

a rigorous exposition, see [S3]). Equivalently for the present purposes,

biological categories can also arise through externally imposed selection,

such as in the breeding of farm animals and plants. In order to keep the

origin of the categories as transparent as possible, the version of the VP

algorithm used in this study only simulates the bare essentials of the phylo-

genetic process (see Discussion).

In the VP algorithm, shape variations among objects of a given generation

arise randomly. All variations are heritable in principle in that each object

starts as an exact replica of its parent and develops further on its own.

Selection is externally imposed and consists of the fact that at each gener-

ation, only some of the objects are allowed to generate descendents. The

children of a given parent constitute an object class (Figure 1A). We empha-

size that the goal of the VP algorithm was not to develop a realistic simula-

tion of evolution per se but rather to create naturalistic object categories by

simulation of morphological aspects of phylogenesis. For this reason, the

VP algorithm bypasses many of the important complexities of biological

evolution, such as the reshuffling of heritable characteristics through sexual

reproduction and the fact that multicellular organisms typically develop

from a single-cell embryo. Moreover, selection is imposed externally in

our case. Nonetheless, it is worth noting that the categories arise naturally

in VP, by means of selective propagation of heritable variations.

VP algorithm can, in principle, use any virtual object as a substrate. In the

present study, we used a previously described type of naturalistic objects

called digital embryos [S4]. In brief, the digital-embryo algorithm can create

a virtually endless variety of naturalistic 3D shapes by simulating the natural

processes of embryonic development, such as morphogen-mediated cell

division, cell growth, and cell movement.

By using VP, we created three novel classes of digital embryo objects,

classes A, B, and C, each containing w1500 objects. It is important to

emphasize that the classes were generated without any regard to whether

or how they could be classified and whether they contained any fragments

useful for this classification.

We arbitrarily selected 200 embryos from each class for use in the exper-

iments. Each 3D object was rendered without externally applied texture and

with the same viewing and lighting parameters against a neutral gray back-

ground in the OpenGL graphics environment (www.opengl.org) with the

software developed by Brady [S4] (also see http://www.psych.ndsu.

Figure S6. Performance in the Main Task over the Course of Testing in

Experiment 1a

The performance of each subject (gray lines) during the first and the last (i.e.,

fourth) sessions of testing show no evidence of learning during testing. (The

data from the intervening sessions are omitted for visual clarity.) The gray

line denoted by the arrow represents overlapping data from two subjects.

The thick black line denotes the average of all six subjects.

Figure S7. Categorization Performance as a Function of MI Values of the

Main Fragments

Table S1. Mutual Information of Individual Fragments in Experiment 1

Fragment Type # Belonged to Category Categorization Task MI

Main

0 A A versus B (main task) 1.0

1 A A versus B (main task) 1.0

2 A A versus B (main task) 1.0

3 A A versus B (main task) 1.0

4 A A versus B (main task) 1.0

5 A A versus B (main task) 0.95

6 A A versus B (main task) 0.95

7 A A versus B (main task) 0.95

8 A A versus B (main task) 0.95

9 A A versus B (main task) 0.95

Control

0 A A versus B (main task) 0

A versus C (control task) 1.0

1 A A versus B (main task) 0

A versus C (control task) 1.0

2 A A versus B (main task) 0

A versus C (control task) 1.0

3 A A versus B (main task) 0

A versus C (control task) 1.0

4 A A versus B (main task) 0

A versus C (control task) 1.0

5 A A versus B (main task) 0.01

A versus C (control task) 1.0

6 A A versus B (main task) 0

A versus C (control task) 1.0

7 A A versus B (main task) 0.01

A versus C (Control task) 1.0

8 A A versus B (main task) 0.03

A versus C (control task) 1.0

9 A A versus B (main task) 0

A versus C (control task) 1.0

IPControl

0 A A versus B (main task) 0.05

1 A A versus B (main task) 0.05

2 A A versus B (main task) 0.05

3 A A versus B (main task) 0.05

4 A A versus B (main task) 0.06

5 A A versus B (main task) 0.06

6 A A versus B (main task) 0.06

7 A A versus B (main task) 0.07

8 A A versus B (main task) 0.07

9 A A versus B (main task) 0.07
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nodak.edu/brady/downloads.html) and modified extensively by the

authors. The images were stored as 8-bit, 256 3 256 pixel grayscale

bitmaps.

Rationale for Using VP

The existing studies of informative fragments, although important, have

some significant limitations, all related to how informative fragments oper-

ate. By their very nature, informative fragments are parts of specific exem-

plar objects of a category, and not generic prototypes [S5, S6]. That is,

a given fragment containing an eye is not a general model of what an eye

‘‘looks like,’’ but is extracted from a specific bitmap of a specific face.

This property of informative fragments has important computational advan-

tages [S5, S6]. But it also means that, for a familiar category, the object

exemplars from which the fragments are isolated computationally are not

the same as those from which the categories were first learned by the sub-

jects. Thus, fragments from familiar categories do not address the issue of

how categorization (i.e., assigning an object to a familiar category) is related

to category learning (i.e., acquiring a previously unfamiliar category). For

instance, do we learn informative fragments during category learning, i.e.,

is fragment learning a part of category learning? Do we learn fragments

only when it is necessary to do so (e.g., when the object of interest is par-

tially occluded) or incidentally as a part of category learning?

Object categories that address the aforementioned issues must meet the

following four criteria: First, the categories must be new to the subject, so

that they need to be learned. Second, the new categories must be suffi-

ciently different from the familiar categories, so that subjects cannot learn

the new categories as variations of the familiar ones (e.g., SUVs as variants

of cars). Third, to ensure that behavioral and computational results can be

directly compared with each other, the fragments should be extracted

from the same images as those used by subjects for category learning.

This makes using highly familiar categories, such as faces or cars, undesir-

able because subjects are often exposed to uncontrolled instances of these

categories in everyday life. Finally, the categories should still capture regu-

larities inherent in natural object classes so as to approach conditions rep-

resentative of natural category learning. No currently available method of

creating object categories meets all of these criteria, whereas the VP algo-

rithm meets them all.

Experiments

Two independent experiments were carried out with the same set of three

classes. The two experiments differed in which category was distinguished

from which (A versus C or B versus C, see below). Each experiment con-

sisted of isolating the fragments, training the subjects, and subsequently

testing them, all with the same given set of objects.

Extracting Fragments for Experiment 1

For this experiment, the ‘‘Main’’ task was defined as distinguishing objects

of class A from objects of class B. Ten informative fragments supporting the

main task were isolated (‘‘Main’’ fragments). Each main fragment was a small

20 3 20 pixel (0.53� 3 0.53�) subimage of a class A object. We used small

fragments because larger fragments were found to contain smaller informa-

tive subfragments, even when the fragment on the whole was uninformative.

This is undesirable because subjects can potentially restrict their attention

just to the informative subpart of an uninformative fragment.

The fragments were selected, on the basis of their MI, out of many candi-

date fragments. All 20 3 20 pixel fragments on a dense grid (with step size of

7 pixels) were considered. This resulted in more than 500 candidate frag-

ments per image, or a total of about 115,000 candidate fragments for the

200 images. MI of each fragment for the main task was calculated. The frag-

ment with the highest MI was selected, and the set of candidate fragments

was pruned on the basis of visual similarity (see below) to this selected

fragment. The process was repeated until a total of ten main fragments

(Figure 2A) were selected.

Visual similarity was evaluated with the correlation coefficient of pixel

values. To detect small overlaps between fragments, we also allowed the

correlated fragments to move with respect to one another. Candidate

fragments with visual similarity greater than 0.8 were considered too similar

to a selected fragment and were removed. This constraint reduced shape

redundancy across the selected fragments.

Main fragments are useful for performing the main task. Therefore, we

expect human subjects to preferentially use these fragments during this

task. For assessment of the degree of this preference, noninformative frag-

ments need to be selected as a basis for comparison.

A naive approach would be to select fragments as above but with minimal,

rather than maximal, MI. A disadvantage of this approach is that it tends to

select visually uninteresting fragments. For example, image patches that

are uniform or almost uniform in intensity have very low MI, so that several

of these would typically be selected by the naive approach. Such fragments

would indeed be uninformative, but for a trivial reason. So that the compar-

ison is fair, it is desirable to avoid selecting such fragments.

We introduce two principled methods of selecting interesting but uninfor-

mative fragments for comparison. First, we introduce a ‘‘Control’’ task,

which is to discriminate class A from class C. Ten fragments that are unin-

formative for the main task were selected, subject to the constraint that they

have high MI for the control task (‘‘Control’’ fragments). As before, these

were selected from a pool of candidate fragments—all 20 3 20 pixel frag-

ments of a class A object on a dense grid. First, all candidate fragments

with MI for the control task less than 0.7 were removed (recall that the MI

can vary between 0 and 1 in our case). Next, fragments uninformative for

the main task were selected with the procedure described above, but frag-

ments with minimal (rather than maximal) MI were chosen. The intuition be-

hind this method is that visually uninteresting fragments are expected to be

uninformative for any task. For example, the uniformly gray patches from the

background provide information for neither the main nor the control task.

the constraint of having high control task MI therefore ruled out such

patches. Indeed, the resulting control fragments (Figure 2C) have significant

visual content.

Table S2. Mutual Information of Individual Fragments in Experiment 2

Fragment Type # Belonged to Category Categorization Task MI

Main

0 C C versus A (Main task) 1.0

1 C C versus A (Main task) 1.0

2 C C versus A (Main task) 1.0

3 C C versus A (Main task) 1.0

4 C C versus A (Main task) 1.0

5 C C versus A (Main task) 1.0

6 C C versus A (Main task) 1.0

7 C C versus A (Main task) 1.0

8 C C versus A (Main task) 1.0

9 C C versus A (Main task) 1.0

Control

0 C C versus A (Main task) 0.07

C versus B (Control task) 0.8

1 C C versus A (Main task) 0.08

C versus B (Control task) 0.71

2 C C versus A (Main task) 0.09

C versus B (Control task) 0.7

3 C C versus A (Main task) 0.19

C versus B (Control task) 0.95

4 C C versus A (Main task) 0.2

C versus B (Control task) 0.71

5 C C versus A (Main task) 0.2

C versus B (Control task) 0.71

6 C C versus A (Main task) 0.2

C versus B (Control task) 0.78

7 C C versus A (Main task) 0.21

C versus B (Control task) 0.86

8 C C versus A (Main task) 0.22

C versus B (Control task) 0.71

9 C C versus A (Main task) 0.23

C versus B (Control task) 0.74

IPControl

0 C C versus A (Main task) 0.05

1 C C versus A (Main task) 0.05

2 C C versus A (Main task) 0.05

3 C C versus A (Main task) 0.05

4 C C versus A (Main task) 0.06

5 C C versus A (Main task) 0.06

6 C C versus A (Main task) 0.06

7 C C versus A (Main task) 0.06

8 C C versus A (Main task) 0.06

9 C C versus A (Main task) 0.06
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We also isolated ten additional fragments by using an interest-point

detector (‘‘IPControl’’ fragments). Interest-point detectors select areas of

an image that have significant visual content, such as corners or intersec-

tions [S7] or high entropy [S8]. Such detectors are heavily used in computer

vision (for a review, see [S9]). In our experiments, we used the popular Harris

interest-point detector [S10, S11]. First, we detect all interest points in an

image (typically, there are 300–600 per image). Because these points are

by definition visually interesting, we then simply proceed to select ten frag-

ments with low MI for the main task (as before, subject to the constraint of

being visually dissimilar to one another) (see Figure S2).

Compared to control fragments, IPControl fragments explore the set of

uninformative fragments more fully because the criterion for selection is

based more directly on local visual content. By contrast, control fragments

are constrained to be informative for an auxiliary task (the control task), and

this criterion will certainly miss those visually interesting fragments that

happen to be uninformative for the control task. On the other hand, the

IPControl fragments may be uninformative for a trivial reason. Interest-point

detector rules out the most trivial cases (such as patches of uniform inten-

sity) but may still pass other uninteresting content (for example, a patch

containing high-spatial-frequency random noise). Control fragments do

not run that risk because they are guaranteed to be informative for some

other task (the control task) and therefore are useful for categorization.

To summarize, we selected a total of 30 fragments for experiment 1. All of

these are subimages of the main class objects. Out of these fragments, ten

are informative for the main task, and 20 are uninformative.

Extracting Fragments for Experiment 2

The goal of our experiments was to determine whether human subjects

learn to use informative fragments in categorization. However, experiment

1 described above only involves a single categorization task (the main

task). To ensure the results are not specific to this particular set of cate-

gories, it is desirable to evaluate performance on a different set of cate-

gories. In experiment 2, we used the same three object classes (A, B, and

C) but redefined their roles. To this end, we designated the main task as

distinguishing objects of class C from objects of class A, and the control

task was designated as distinguishing class C from class B. We then

selected 30 additional fragments with the procedure described above, but

with the new class designations.

Training in the Categorization Task

Subjects

All psychophysical procedures used in this study were reviewed and

approved in advance by the University of Minnesota Institutional Review

Board. Ten healthy adult volunteers that had normal (or corrected-to-nor-

mal) vision participated in this study. All subjects provided informed

consent prior to the study and were compensated for their participation.

Six subjects (three females) participated in experiment 1, and four different

subjects (three females) participated in experiment 2.

Training Paradigm

Subjects in a given experiment were trained in the main task appropriate for

that experiment. Subjects received no training in the control task and were

not aware of existence of a third class (class C in experiment 1, class A in

experiment 2). The reason is that all fragments used in the experiments

were evaluated only with respect to MI in the main task, whereas the control

task played only an auxiliary role.

During each training trial for experiment 1, two sample objects and a test

object (6.7� 3 6.7� each) were presented simultaneously 9� (center-to-cen-

ter distance) apart. One of the sample objects was drawn randomly from

class A, and the other was drawn randomly from class B. The class member-

ship of the sample objects was indicated on the subject’s screen, and the

relative locations of the objects from the two classes were randomly

switched across trials. Depending on the trial, the test object was drawn

either from class A or from class B but was never the same object as either

of the sample objects in a given trial. By using a key press, the subject had to

classify the test object into class A or class B on the basis of the sample

objects. After the subject made his/her report, the correct classification

was shown on screen, so that the subject could to re-examine the three

objects in light of the feedback. The subject was allowed unlimited time

both to make the initial report and to review the subsequent feedback, so

as to approximate natural viewing conditions as closely as practicable.

The subject used another key press to proceed to the next trial. A given sub-

ject was considered trained if he or she performed significantly above 75%

accuracy (i.e., at p < 0.002 by binomial test) for at least two consecutive

blocks of 40 trials each. Subjects trained for a median of eight blocks (i.e.,

a total of 320 trials) before reaching this asymptotic level of performance.

Because there were 200 embryos in each class (see above), this means

that during the training phase, the subject saw each given embryo and

average of 1.63.

The training procedure for experiment 2 was identical to that for experi-

ment 1, except that the class designations were different, as described

above.

Testing the Fragments

During the testing phase, the subjects performed the classification task on

the sole basis of a given fragment (Figure 3; see below). The subjects were

not told anything about the fragments, except that they were derived from

the type of objects they had seen during the training phase.

During the testing phase of experiment 1, we generated the test object by

compositing the fragment of interest on an object drawn randomly from

class A or class B (i.e., by graphically overlaying the given fragment over

the given background object). The composite object was shown to the

subject behind a rectangular translucent occluder with a hole, so that only

the fragment (0.53� 3 0.53�) was visible through the hole, unhindered in

its proper position on the object, whereas the rest of the object appeared

as a faded ‘‘background’’ (see Figure 3). This design helped ensure that

the subjects saw the fragment in its proper context. This is more advanta-

geous in our context than presenting a given fragment by itself without

the context because it minimizes the possibility that subject may have to

use task-irrelevant semantic and spatial (e.g., configural) cues (e.g., left

eye) to help perform the task.

Two sample objects, one drawn from each class, were shown on either

side of the test object as during the training phase, although the class

membership was not indicated for any of the three objects. The sample

objects were provided to help ensure that (1) the task tested object catego-

rization and not fragment categorization and (2) task required only implicit

perceptual learning and not declarative (or explicit) association between

a fragment with a category.

We confirmed that the subject could not use the sample objects to do

a simple pixel-wise comparison between the fragment and the relevant

regions of the sample objects, since the subjects were unable to perform

the task with the same testing paradigm without first learning the correct

categories (see Figures 4D and 4E). For a demonstration of this effect, the

reader should choose a fragment of interest in Figure S1 and try categoriz-

ing it by comparing it to a whole object each from class A and class B.

Subjects had to classify, by using a key press, the test object into the

class represented by either sample object on the sole basis of the given

fragment of the test object. Subjects were told that the faded background

portion of the test object (i.e., the portion visible behind the translucent

occluder) was randomly drawn, so that they would not be able to perform

the task above chance levels with the background object. No feedback

was provided. To help ensure that the testing conditions reflected catego-

rization under natural conditions as closely as possible, we allowed subjects

free eye movements and unlimited time to make their responses. The aver-

age response time of the subjects was 5.30 s 6 0.16 SEM (not shown) and

was indistinguishable from the corresponding response times during the

last two blocks of the training phase (ANOVA, unbalanced design; p > 0.05).

The trials for the various main and control fragments were randomly inter-

leaved. For each fragment, the performance of each subject was measured

over a total of 16 trials spread over four sessions of four trials each.

Testing for experiment 1 was carried out in two stages. During the first

stage (experiment 1a), the main and the control fragments were tested

with randomly interleaved trials for all six subjects in this experiment. During

the second stage (experiment 1b), the main and the IPControl fragments

were similarly tested for three of the six subjects.

The testing procedure for experiment 2 was identical to that for experi-

ment 1, with two exceptions. First, the class designations were different,

as described above. Second, main, control, and IPControl fragments were

all tested together with randomly interleaved trials.
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