

Supplementary Figure 1. 2A peptide-mediated polycistronic expression.

Five genes liked by 2A peptide are transcribed into a single mRNA molecule. Polypepetides are co-translationally cleaved and release their N-terminal peptides fused with residual 2A peptide. Thus the molecular weights increase 2.5 kDa except C-terminal protein.

Supplementary Figure 2. Enhancement of reprogramming by combination of serumbased and serum-free media.

(a) Time schedules of medium change from serum-based medium to serum-free medium. On day 0, MEFs were infected by a mixture of retroviruses carrying the four factors individually. Next day, infected MEFs were replated onto feeders. Cells were cultured with ESC medium between day 3 to day 14. In protocol 1 and 3, serum-based and serum-free medium was used for the entire period, respectively. In protocol 2, serum-based medium was used until day 7 and then switched to the serum-free medium. Triangles, medium changes; EFM, embryonic fibroblast medium; F15L, serum-based ESC medium; K15L, serum-free ESC medium. (b) Immunochemistry of iPSC colonies. On day 14, colonies were fixed and immunostained with anti-Nanog followed by chromogenic detection with DAB. Open and closed arrowheads, positive and negative for staining, respectively. Due to overdevelopment, even negative colonies show light brown. (c, d) The numbers of AP-positive and Nanog-positive colonies, respectively. Data are shown as mean \pm s.d. (n=3). *, p<0.05 (Student' s t test compared to protocol 1). Scale bar, 5mm

Supplementary Figure 3

Supplementary Figure 3. Characterization of primary iPSCs reprogrammed by the *piggyBac* transposon system.

(a), Immunostaining of Nanog in primary iPSC lines. They are morphologically indistinguishable from ESCs and express endogenous Nanog uniformly. Top, phase contrast image; bottom, Nanog immunostaining. (b) Restriction enzyme map of the reprogramming transposon vector. A thick line represents a probe for Southern blot analysis. (c) A representative result of Southern blot analysis of primary iPSCs. Genomic DNAs were digested with *Hind*III and hybridized with the 5' terminal repeat of the *piggyBac* transposon. Lane 1-7, primary iPSCs generated by transfection of 2.0 µg of OSKM* transposon and 2.0 µg of *piggyBac* transposase-expressing plasmid. Lane 8-10, primary iPSCs generated by transfection of 4 factors carried by transposon individually together with the *piggyBac* transposase-expressing plasmid. Lane 11, *piggyBac* transposon-free mouse genomic DNA as a negative control. The copy numbers of integrated transposon were shown under each lane. (d) Detailed Southern blot analysis of 3 primary iPSC clones with 2-copy integration. Genomic DNAs were digested with different restriction enzymes and hybridized with the 5' terminal repeat of the *piggyBac* transposon. In all lanes, there were no more than 3 bands, indicating that these clones had 2 transposon copies. Scale bar, 100 µm

Supplementary Figure 4

Supplementary Figure 4. Transposon integration sites of 3 selected primary iPSC lines.

(**a**, **b**) Integration site 1 and 2 of iPS25. (**c**, **d**) Integration site 1 and 2 of iPS28. (**e**, **f**) Integration site 1 and 2 of iPS216. Gray and black lines show non-repetitive and repetitive sequences, respectively. Blue box, exon; Arrowheads, integration site-specific primers used in **Figure 3c-e**. The numbers under each line indicate positions of TTAA sequences, which are the target site of the *piggyBac* transposon (based on UCSC July 2007 assembly). Scale bar, 500 bp

Supplementary Figure 5. Southern blot analyses on integration-free iPSC genomes using probes against different parts of the transgene.

(a) Positions of probes (thick lines) used for Southern blot analyses. (b) Restriction maps of the endogenous loci of the 4 genes. (**c-f**) Southern blot analyses. Genomic DNAs were digested by *Hin*dIII and hybridized with probes shown in (a). Transgenes were detected in primary iPSC lines (iPS25, 28, and 216), but not in integration-free iPSC lines (iPS25 Δ 1, 25 Δ 2, 28 Δ 6, 28 Δ 8, 216 Δ 12, and 216 Δ 13), further proving transposon removal together with Southern blot analysis using the 5' terminal repeat probe shown in **Figure 3b**. Note that the control ESC line used has a B6129F1 background. In Oct4 and Klf4, polymorphisms can be seen. Scale bar, 500 bp

Supplementary Figure 6. PCR analysis of vector integration in integration-free iPSCs.

 (\mathbf{a}, \mathbf{b}) Positions of PCR amplicons in the reprogramming transposon and the *piggyBac* transposase expression vectors, respectively. (c) PCR results indicating that there is no evidence of random integration derived from both transpoon and transposase expression vectors. As a positive control, both plasmids were spiked into MEF genomic DNA at levels designed to simulate single-copy integration per genome.

Supplementary Figure 7. Footprint analysis by sequencing.

(a) Integration sites of iPS25-derived lines. (b) Integration site of iPS216-derived lines. Reference sequence is the C57BI/6J genome. Sequences in transposon-free iPSC lines were identical to corresponding sequences of MEFs, indicating the perfect repair after transposon excision. TTAA target sites are boxed.

Supplementary Figure 8. Quantitative RT-PCR analyses of ESC-specific genes in integration-free iPSCs.

Expression levels of ESC-specific genes were normalized to *Gapdh*. Expression levels in iPSCs were compared to levels in ESCs.

Supplementary Figure 9. Targeting a puro-IRES-eGFP cassette into the *Nanog* locus.

(a) Schematic representation of gene targeting. A puro-IRES-eGFP cassette was knocked-in upstream of the translation initiation codon. Arrowheads, a primer pair to detect homologous recombination. A, *AfI*III sites. (**b**, **c**) Homologous recombination was verified by PCR across the 5' homologous arm (**b**) and by Southern blot analysis using a 3' external probe (**c**). (**d**) GFP expression in self-renewing iPSCs. Top, knock-in cell line, N6, derived from iPS25 Δ 1. Bottom, iPS25 Δ 1-derived cell line, U6, expressing GFP from a ubiquitous promoter. (**e**) Differentiation induced by all-*trans*-retinoic acid. At day 3, GFP expression was erased in the line N6 (top), whereas GFP was continuously expressed in the line U6 (bottom), indicating normal regulation of the *Nanog* promoter in cured iPSCs. Scale bars, 1 kb (**a**), 50 μ m (**d**,**e**)

Supplementary Table 1. Summary of blastocyst injections

Cell line	Embryos trasnferred	Chimerism at e10.5 ³	Contribution to gonad at e12.5 ⁴	Live pups	GFP chimerism
25∆1-U6 ¹	12	7/8	n/a	n/a	n/a
	12	n/a	n/a	2	0
	10	n/a	n/a	2	1 ⁵
	12	n/a	n/a	0	0 ⁶

25∆1-N6 ²	10	n/a	1/7	n/a	n/a
	10	n/a	n/a	5	1 ⁶
	10	n/a	n/a	4	1 ⁶

 $^{\rm 1}$ iPS25 $\!\Delta 1$ -derived line with ubiquitous expression of eGFP

² iPS25∆1-derived line in which eGFP has been knocked-in into the *Nanog* locus
³ Number of GFP-positive chimeric embryos / total embryos
⁴ Number of chimeric embryo with GFP-positve gonad / total embryos
⁵ Genotyped by GFP primers and observation under the fluorescent stereomicroscope

⁶ Genotyped by GFP primers

n/a, Not applicable

Supplementary Table 2. Oligonucleotides used in this study

F2A-linked 4-factor vector construction

Oct4-B-U1	CGGGATCCACCATGGCTGGACACCTGGCTTC
Oct4-F2A-S	ACGCGTCGACGGGCCCTGGGTTGGACTCCACGTCTCCCGCCAACTTGAGAAGGTC
	AAAATTCAACAGCTGTTTTCCGCTGCCGTTTGAATGCATGGGAGAGC
Sox2-X	CTCGAGATGTATAACATGATGGAGAC
Sox2-F2A-S	GTCGACGGGCCCTGGGTTGGACTCCACGTCTCCCGCCAACTTGAGAAGGTCAAAA
	TTCAACAGCTGTTTTCCGCTGCCCATGTGCGACAGGGGCAGTG
Klf4-X	CTCGAGATGGCTGTCAGCGACGCTCT
Klf4-F2A-S	GTCGACGGGCCCTGGGTTGGACTCCACGTCTCCCGCCAACTTGAGAAGGTCAAAA
	TTCAACAGCTGTTTTCCGCTGCCAAAGTGCCTCTTCATGTGTA
Myc-X	CTCGAGATGCCCCTCAACGTGAACTT
Myc-S	GTCGACTCATGCACCAGAGTTTCGAAGCT

Oct4-T2A-Sox2 modification

OctT2ASox	CCAATGCATTCAAACGGCGGCGGGGCCGGAGGAGGAGGGCAGAGGAAGTCTTCTAA CATGCGGTGACGTGGAGGAGAATCCTGGCCCAATGTATAACATGATGGAGACG
OtS-seqL	GCCCTGCTGCGAGTAGGACATGCTG

Sox2-T2A-Klf4 modification

StK-U1	GCAACGGCAGCTACAGCATGATGCAG
StK-U2	CAGAGGAAGTCTTCTAACATGCGGTGACGTGGAGGAGAATCCTGGCCCAATGGCTG
	TCAGCGACGCTCTGC
StK-L1	CAGGAGGTCGTTGAACTCCTCGGTCTC
StK-L2	ACCGCATGTTAGAAGACTTCCTCTGCCCTCTCCCGGACCCGCCGCCCATGTGCG
	ACAGGGGCAGTGTGCCG

Lin28 cloning

Lin28	U1	CGGGATCCACCATGGGCTCGGTGTCCAACCAGCAG
	L1	GGAATTCTCAATTCTGGGCTTCTGGGAGCAG

Linking Lin28 to the 4-factor cassette

MtL	U1 TCTAACATGCGGTGACGTGGAGGAGAATCCTGGCCCAATGGGCTCGGTGTCCAAC
	L1 ACTGATCGATCTCGAGTCAATTCTGGGCTTCTGGGAG

pCAG-EBNXN construction

EBNXNlinker	U	AATTCAGATCTGCGGCCGCCGAGATGCA
	L	TCTCGAGGCGGCCGCAGATCTG

pPB-UbC construction

UbC	U	CTAGCTAGCCTCGAGGGCCTCCGCGCGGGTTTTGGCGCC
	L	GGAATTCATGGATCCGTCTAACAAAAAGCCAAAAACGGC
bpA	υ	GGAATTCCGACTGTGCCTTCTAGTTGCCAG
	L	GCGTCGACCCATAGAGCCCACCGCATCCCCAGC

Sex typing

Sry	F	TGGTGTGGTCCCGTGGTGAGAGGCACAAG
	R	TAGCCCTCCGATGAGGCTGATATTTATAG

Splinkerrette-PCR

Spl-top ¹	CGAATCGTAACCGTTCGTACGAGAATTCGTACGAGAATCGCTGTCCTCTCCAACGAG CCAAGG
Spl-sau ¹	GATCCCTTGGCTCGTTTTTTTGCAAAAA
Spl-blunt	CCTTGGCTCGTTTTTTTGCAAAAA
Spl-CG	CGCCTTGGCTCGTTTTTTTTGCAAAAA

Supplementary Table 2. (continued)

r	
Spl-P1 ¹	CGAATCGTAACCGTTCGTACGAGAA
SpI-P2 ¹	TCGTACGAGAATCGCTGTCCTCTC
PB5-P1	AAGCGGCGACTGAGATGTCCTAAATG
PB5-P2	GCGACGGATTCGCGCTATTTAGAAAG
PB3-P1	AAACCTCGATATACAGACCGATAAAACAC
PB3-P2	CGTCAATTTTACGCATGATTATCTTTAAC

Detection of transposon removal

Transposon 1	F	GCAACGGCAGCTACAGCATGATGCAG
(Sox2-Klf4 junction)	R	CAGGAGGTCGTTGAACTCCTCGGTCTC
Transposon 2	F	GCGTCGACCGACTGTGCCTTCTAGTTGCCAGCC
(PGK promoter)	R	GTTGGCGCCTACCGGTGGATGTGGAATGTG
Endogenous	F	GGGGCCTTCTGGGGGTAAAGTTCAGAACAC
control	R	TGGCTGCCTGAGGGCAAGAGGGAAAGAATC

Southern blot probes to detect vector integration

Oct4	F	AAGGAGCTAGAACAGTTTGCCAAGC	
	R	GGAAAAGGGACTGAGTAGAGTGTGG	
Sox2	F	GCGACCGGCGGCAACCAGAAGAACA	
	R	GGGTGCCCTGCTGCGAGTAGGACAT	
Klf4	F	CCGTCTGGGCTTCCTTTGCTAACAC	
	R	ACGGTGGCCACAGACCTGGAGAGTG	
сМус	F	GACGATGACGGCGGCGGTGGCAACT	
	R	GTCGCTGCTGGTGGGCGGTGTC	

Detection of random integration of the plasmids

1	F	ACGACGTTGTAAAACGACGGCCAGT
	R	GCGACGGATTCGCGCTATTTAGAAAG
2 ²	F	TATCATATGCCAAGTACGC
-	R	TAGATGTACTGCCAAGTAGGAA
3	F	AGAGCCTCTGCTAACCATGTTCATGCCTTC
	R	GAAGTCTGAAGCCAGGTGTCCAGCC
4	F	CCCTCTGTTCCCGTCACTGCTCTG
	R	GCTTCAGCTCCGTCTCCATCATGT
5	F	CCATTAACGGCACACTGCCCCTGT
	R	AGGACGGGAGCAGAGCGTCGCTGA
6	F	CCACCTTGCCTTACACATGAAGAG
	R	GAGTCGTAGTCGAGGTCATAGTTC
7	F	TGCCACTCCCACTGTCCTTTCCTA
	R	CCAATCCTCCCCTTGCTGTCCTG
8	F	CGTCTGCCGCGCTGTTCTCCTCTT
	R	GTGGCGAGGCGCACCGTGGGCTTG
9	F	CAGGTGCTGGGGGCTTCCGAGACA
	R	TATCTGGGCGCTTGTCATTACCAC
10	F	CGTCAATTTTACGCATGATTATCTTTAAC
	R	ACACAGGAAACAGCTATGACCATGATTACG
11 ²	F	GCCTTATCCGGTAACTATCGT
	R	GCACCGCCTACATACCTC
12 ²	F	CCGATCGTTGTCAGAAGTAAGTTG
· -	R	TCACAGAAAAGCATCTTACGGA
13	F	GACGACGTGCAGTCCGACACCGAG
	R	CTGCCGGGCTGCTCGATCACGTTC
14	F	ACAGCCACAACGTGAGCAGCAAGG
	R	GGGGGCCTCCAGCCTCTCCTCAT
15	F	TTCTGTGGAATGTGTGTCAGTTAG
	R	GGGGACTTTCCACACCTGGTTGCT

Supplementary Table 2. (continued)

16	F	CGGGGAGAGGCGGTTTGCGTATTG
	R	GTATTACCGCCTTTGAGTGAGCTG
Endogenous	F	GGGGCCTTCTGGGGGTAAAGTTCAGAACAC
control	R	TGGCTGCCTGAGGGCAAGAGGGAAAGAATC

Transposon excision analysis

iPS25-site 1	L	TCTGGCCTATTTTAGAGCATAATAC
	R	AAGAAAGCATGGCCTTCATGGAGCTG
iPS25-site 2	L	AGGAAGCCGCAGTTACACGCCACAG
	R	CCAAGGAAGGAGACCACCTCATCAC
iPS28-site 1	L	ATAGAATAGAGGGACACTGAATATC
	R	CAGGCCAGTGGATCACTGTAACCTAC
iPS28-site 2	L	TGCCAGCCTCCAGCGAGTGTTGTTG
	R	TGCCATCAATCGTGGGATCTCCAAG
iPS216-site 1	L	ATGCTGGCTGTGCTTGTTCTATGTC
	R	TGAGTAACCCCAGGTAATTCTGATTC
iPS216-site 2	L	AAGAATTCATTTGCTTGGGACTCTG
	R	ACTGCACAGAAGTTCCCCTACTGGT

RT-PCR analysis

Oct4	F	CCTGGAATCGGACCAGGCTCAGAGGTATTG
	R	ATTGTTGTCGGCTTCCTCCACCCACTTCTC
Sox2	F	AGCTACGCGCACATGAACGGCTGGAGCAAC
	R	TGGAGCTGGCCTCGGACTTGACCACAGAGC
Nanog	F	CCACAGTTTGCCTAGTTCTGAGGAAGCATC
	R	TACTCCACTGGTGCTGAGCCCTTCTGAATC
Ecat1	F	CGTGGAACCTCGGCTACTGGAAATC
	R	GCCGCCATACGACGACGCTCAACTC
Esrrb	F	AACCTGCCGATTTCCCCACCTGCTA
	R	GGCTCATCTGGTCCCCAAGTGTCAG
Dppa3	F	GAGGACGCTTTGGATGATACAGACG
	R	CAACAAAGTGCGGACCCTTCTCTTG
Dnmt3l	F	CCCTCTTCCTGTATGATGATGATGG
	R	CCTCTGCAGCAGTCCACTCCGTGAG
сМус	F	GCCGCGTCCGAGTGCATTGACCCCTCAGTG
	R	TTGGCCCTCTTGGCAGCTGGATAGTCCTTC
Actb	F	CAGGGTGTGATGGTGGGAATGGGTCAGAAG
	R	TACGTACATGGCTGGGGGTGTTGAAGGTCTC
Gapdh	F	CCTTCCGTGTTCCTACCCCCAATG
	R	GGAGACAACCTGGTCCTCAGTGTA

Bisulphite sequencing

Oct4 ³	F	GGTTTTTTAGAGGATGGTTGAGTG
	R	TCCAACCCTACTAACCCATCACC
Nanog ³	F	GATTTTGTAGGTGGGATTAATTGTGAATTT
	R	ACCAAAAAAACCCACACTCATATCAATATA

Detection for Nanog-puro-IRES-GFP targeting

Nanog-puro	F	TAAACAGTGGGTCTGAAGCCTTCGAGGGAG
	R	GCGAGGCGCACCGTGGGCTTGTACTCGGTC
Nanog 3' probe	F	CCCCAGCTGCAGCTTTCAGAGGCTTT
	R	TGTTTTACTCATGTGCATGGGCTGG

Chimera genotyping

GFP ⁴	F	CTTGATGCCGTTCTTCTGCTTGTCG
	R	CACCCTCGTGACCACCCTGACCTAC

Supplementary Table 2. (continued)

References

- 1, Devon, R.S. et al. Nucleic Acid Res 23, 1644-1645 (1995)
- 2, Okita et al. Scinece 322, 949-953 (2008)
- 3, Takahashi, K. & Yamanaka, S. Cell 126, 663-676 (2006)
- 4, Horie *et al*. PNAS 98, 9191-9196 (2001)