Supplementary Information:

Ebbie-(mis)match Algorithm Description

Design and function of the Ebbie-(mis)match (Ebbie-MM) algorithm is shown as flow chart in Supplementary Figure 1. Ebbie-MM is a software application written in Java 1.6.0, with the pseudo-code describing the algorithm listed in **Supplementary Table 1**. A list of small RNA sequences in FASTA format is prepared as the input to the algorithm. Sequences containing non-ACGUT symbol will also be filtered out and duplicate small RNA sequences will be removed before proceeding. Following the initial screen, BlastN aligns each sequence to its original genome. If a perfect match is found, the event is being counted (fullMatchEvent) and the next sequence will be loaded. In the event where more than one mismatch is found, the algorithm will record the event (othersEvent) and proceed to analyze the next sequence. However, if a single mismatch is found after performing BlastN, a mutation operator will attempt to mutate the small RNA sequence: the mutation operator takes the form of changing the nucleotide where the single mismatch occurred to the other three nucleotides. After a perfect match is successfully found in the same genomic loci as the initial 1-nt-mismatch, the algorithm will record the event (oneMismatchEvent) that lead to a perfect match and continue to the next sequence. *Ebbie-MM* is configured to output a variety of statistics per run. Information such as number of perfect match found, number of one mismatch, and various mutation statistics are reported. While parsing BlastN output, Ebbie-MM also removes alignments containing non-ACGUT symbols (including blanks and gap symbol). To speed up Ebbie-MM, the BlastN program is continuously kept in memory, reducing redundancy in calling BlastN each time a new sequence is analyzed. We also implemented the -q option as input parameter for BlastN. When aligning the Arabidopsis dataset to its respective micro RNAs, Ebbie-MMv4.1 aligned 536 1-ntmismatched sequences with a default value of -q -3, while Ebbie-MMv4.2 using -q -1 aligned 793 1-nt-mismatched sequences in the same experiment. Also, for alignment of the Arabidopsis dataset to all predicted Arabidopsis thaliana tRNAs, Ebbie-MMv4.2 (-q -1) outperforms Ebbie-MMv4.1 (-q -3) with 1,000 and 798 1-nt-mismatch sequences aligned, respectively.

All analysis runs were performed on a 158 node Linux cluster or a numerical server hosted as research support by the Academic Information and Communication Technologies at the University of Alberta. For benchmarking, an SGI Altix XE250 (3 GHz quad core Xeon processor with 64 GB RAM) was used. As benchmark dataset, we used the Arabidopsis dataset as input and all predicted *Arabidopsis thaliana* tRNAs or all recorded micro RNAs in the MirBase v.12 as reference database (**Supplementary Table 2**).

Supplementary Figure 1: Flowchart of *Ebbie-(mis)match (Ebbie-MM)*. RNA sequences in FASTA format are the input to *Ebbie-MM*. Using BlastN, each sequence is aligned to the genome of origin. For all perfect matches or mismatches greater than 1 nt, *Ebbie-MM* will count these events and go to the next sequence. If a 1-nt-mismatch is found, a mutational operator is activated which alters the mismatched nucleotide position until a perfect match to the same genome location is obtained. *Ebbie-MM* counts all substitutions and reports them at the end of the analysis.

Supplementary Table 1: Structure of the *Ebbie-(mis)match* algorithm in small RNA sequence analysis.

1	sRNA = a collection of small RNA sequences
2	For (i=1 to NumberOfSmallRNA) do
3	alignmentsList = BlastN (sRNA(i))
4	If (FullMatchFound(alignmentList))
5	Record fullMatchEvent
6	Elseif OneMismatchFound(alignmentList)) then
7	Do
8	<pre>mutateRNA = Mutate (sRNA(i))</pre>
9	alignmentList = BlastN(mutateRNA)
10	While (! FullMatchFound(alignmentList) &
ΞŪ	mutationAvailable)
11	If (FullMatchFound(alignmentList))
12	Record mutationEvent & oneMismatchEvent
13	End If
14	Else
15	Record othersEvent
16	End If
17	End For
18	Output application statistics

Supplementary Table 2: Benchmark analysis of *Ebbie-MM*.

Input: 193024 sequences
database: predicted ath-tRNAs
resources_used.cput=12:35:18
resources_used.mem=2221380kb
resources used.vmem=4196428kb
Input: 193024 sequences
Input: 193024 sequences database: ath mature micro RNAs
Input: 193024 sequences database: ath mature micro RNAs resources_used.cput=11:26:55
Input: 193024 sequences database: ath mature micro RNAs resources_used.cput=11:26:55 resources_used.mem=724200kb

Supplementary Table 3: 3,852 non-match from *Oryza sativa* and 193,024 from *Arabidopsis thaliana* were aligned to their respectively genomes, analyzed, and their substitution matrix as determined by *Ebbie-MM* is shown. The fourth column indicates substitutions observed due to reverse transcriptase Superscript II in a *lacZ* forward mutation frequency assay.

Substitution Matrix	Oryza sativa	A. thaliana	Superscript
(database: genome)	small RNAs	small RNAs	II errors
A-to-C	11	803	
A-to-G	56	5622	
A-to-U	28	1730	
C-to-A	19	1133	prevalent
C-to-G	9	697	
C-to-U	59	5237	
G-to-A	64	5997	rare
G-to-C	9	774	
G-to-U	26	1348	
T-to-A	20	1673	
T-to-C	52	5611	
T-to-G	11	666	prevalent

Substitution Matrix (database: tRNA)	Oryza sativa	A. thaliana
A-to-C	1	8
A-to-G	6	135
A-to-U	12	210
C-to-A	0	11
C-to-G	0	5
C-to-U	3	44
G-to-A	15	222
G-to-C	3	74
G-to-U	6	142
T-to-A	1	17
T-to-C	5	100
T-to-G	0	32

Supplementary Table 4: The rice and Arabidopsis datasets were aligned to their respectively predicted tRNAs, analyzed, and their substitution matrix as determined by *Ebbie-MM* is shown.

Supplementary Table 5: The rice and Arabidopsis datasets were aligned to their respective confirmed micro RNAs (MirBase v.12), analyzed, and their substitution matrix as determined by *Ebbie-MM* is shown.

Substitution Matrix (database: miRNA)	Oryza sativa	A. thaliana
A-to-C	0	22
A-to-G	1	130
A-to-U	0	56
C-to-A	0	34
C-to-G	0	24
C-to-U	3	77
G-to-A	4	192
G-to-C	0	47
G-to-U	1	57
T-to-A	0	37
T-to-C	2	100
T-to-G	0	17

Supplementary Table 6: Small RNAs from the Arabidopsis dataset were compared to published micro RNAs. Alignments of cloned small RNA (upper sequence) and mature micro RNA (lower sequence) are given in column 1. The first letter of the small RNA sequence name indicates the tissue of origin (F: flower; R: root; S: seed; Q: silique). The second column lists the frequency that the modified RNA identified with respect to the unmodified parental micro RNA. Only sequences present at >0.5% of the amount of the parental micro RNA are listed. Occurrences of cloning of the respective parental micro RNA in the tissue from which the small RNA was cloned is listed with the micro RNA name in the third column. The fourth column is the sum of all occurrences that the parental micro RNA was sequenced from all tissues.

Alignment of small RNAs to	o mature micro	Frequency of	MIR-name	MIR
RNAs		Cloning	and tissue	cloning
			specific	occurrence in
			occurrence of	all tissues.
>F6638110		21 250 0/	Cloning MID 200	70
UGUCAAAGGAGAUUUGCCCUG	(1 21)	51.250 70	MIK599a	19
	· · · · · · · · · · · · · · · · · · ·		32	
UGCCAAAGGAGAUUUGCCCUG	(1 21)			
>F303688 32		14.545 %	MIR156	6652
UGACAGAAGAGAGUGGGCAC	(1 20)		220	0002
			220	
UGACAGAAGAGAGUGAGCAC	(1 20)			
>F264708 31		14.091 %	MIR156	6652
UGACAGAAGAGAAUGAGCAC	(1 20)		220	
&			0	
UGACAGAAGAGAGUGAGCAC	(1 20)			
>R127189 24		10.909 %	MIR156	6652
UGACAGAGGAGAGUGAGCAC	(1 20)		220	
	(1 00)			
	(1 20)	10 455 0/		
	(1 20)	10.455 %	MIR156	6652
	(1 20)		220	
	(1 - 20)			
>F32312123	(1 20)	10 407 9/	MID150a	6621
UUUGGAUUGAAAGGAGCUCUA	(1 21)	10.407 /0	WIIK139a	0021
	. ,		221	
UUUGGAUUGAAGGGAGCUCUA	(1 21)			
>F59737 19		8.597 %	MIR159a	6621
UUUGGAUUGAAGGGAACUCUA	(1 21)		221	
&				
UUUGGAUUGAAGGGAGCUCUA	(1 21)			
>F130626 17		7.692 %	MIR159a	6621
UUUGGAUUGAAGAGAGCUCUA	(1 21)		221	
&				
UUUGGAUUGAAGGGAGCUCUA	(1 21)			

SE7991316		7 407 0/	MIDOOO	1062
	(1 21)	7.407 %	WIIK822	1005
			81	
	/ 1 01 \			
	(1 21)			
>F120551 16		7.273 %	MIR156	6652
UGACAGAAGAGAGCGAGCAC	(1 20)		220	
&				
UGACAGAAGAGAGUGAGCAC	(1 20)			
>F62062 7		6.931 %	MIR169h	648
UAGCCAAGGAUGACUUACCUG	(1 21)		101	
&			101	
UAGCCAAGGAUGACUUGCCUG	(1 21)			
>Q191982 5		6.757 %	MIR397a	110
UCAUUGAGUGCAGCGCUGAUG	(1 21)	0.707 /0	71	LIV
	. – ,		/4	
UCAUUGAGUGCAGCGUUGAUG	(1 21)			
>F58199113	、 ,	5 882 0/	MIR 150a	6621
UUUGAAUUGAAGGGAGCUCUA	(1 - 21)	5.002 %	WIIK139a	0021
	(- 2-)		221	
	(1 21)			
VT929291110		4 700 0/	MID 1 CT	25 (9 1
	(1 01)	4./98 %	MIR16/a	33681
	(I 2I)		2480	
UGAAGCUGCCAGCAUGAUCUA	(1 21)			
>Q215750 5		4.545 %	MIR397b	251
UCAUUGAGUGCGUCGUUGAUG	(1 21)		110	
&				
UCAUUGAGUGCAUCGUUGAUG	(1 21)			
>R13207 10		4.545 %	MIR156	6652
UGACGGAAGAGAGUGAGCAC	(1 20)		220	
&			220	
UGACAGAAGAGAGUGAGCAC	(1 20)			
>F74265 10		4.525 %	MIR159a	6621
UUUGGAUUAAAGGGAGCUCUA	(1 21)		221	0021
			221	
UUUGGAUUGAAGGGAGCUCUA	(1 21)			
>F5985 108		4 355%	MIR167a	35681
UGAAGCUGCCAACAUGAUCUA	(1 21)	т.33370	0400	55001
	、 /		2480	
UGAAGCUGCCAGCAUGAUCUA	(1 21)			
>F61291102	· · · · /	1 1 1 2 0/	MID 167	25691
	(1 - 21)	4.115 %	MIK10/a	53081
	(1 21)		2480	
	(1 01)			
	(1 21)			<0 5 -
>F.T5TT / 122		3.967 %	MIR164a	6857
UGGAGAAGCAGGACACGUGCA	(1 21)		1336	
UGGAGAAGCAGGGCACGUGCA	(1 21)			
>F25190 33		3.952 %	MIR161	10573
UGAAAGUGGCUACAUCGGGGU	(1 21)		835	
&			055	
UGAAAGUGACUACAUCGGGGU	(1 21)			
>F84238 32		3.832 %	MIR161	10573
UGAAAAUGACUACAUCGGGGU	(1 21)		835	
&			055	

(1 -- 21)

UGAAAGUGACUACAUCGGGGU

UGAAGCCGCCAGCAUGAUCUA

||||||&||||||||||||||||

>F21516|95

3.831 %	MIR167a 2480	35681
3.226 %	MIR167a 2480	35681

UGAAGCUGCCAGCAUGAUCUA	(1 21)			
>F66516 80		3.226 %	MIR167a	35681
UGAAGCUGCCAGCAUGGUCUA	(1 21)	0.220 /0	2480	22001
			2400	
UGAAGCUGCCAGCAUGAUCUA	(1 21)			
>R305334 7		3 182 %	MIR156	6652
UGACAGAAGAGGGUGAGCAC	(1 20)	5.102 /0	220	0032
			220	
UGACAGAAGAGAGUGAGCAC	(1 20)			
>F40228176	· /	3 065 %	MIR167a	35681
UGAAGCUGCCAGCAUAAUCUA	(1 21)	5.005 /0	MIR 107a	55001
	(/		2480	
UGAAGCUGCCAGCAUGAUCUA	(1 21)			
>F23089153	· · · · · · · · · · · · · · · · · · ·	2 023 %	$MID171_{2}$	7571
UGAUUGAGCCGCACCAAUAUC	(1 21)	2.923 70	1012	/3/1
	· · · · · · · · · · · · · · · · · · ·		1813	
UGAUUGAGCCGCGCCAAUAUC	(1 21)			
>F13604165	(/	2 621 0/	MID 167	25691
UGAAGCUGCCAGCACGAUCUA	(1 21)	2.021 70	MIK107a	55081
	(/		2480	
IIGAACCIICCCACCAIICAIICIIA	(1 21)			
>F131735119	(1 21)	2 275 0/	MID161	10572
IIGAAAGIIAACIIACAUCGGGGU	(1 21)	2.273 %	MIK101	10375
	(/		835	
IIGAAACIIGACIIACAIICGGGGU	(1 21)			
>F235549119		2 275 0/	MID161	10572
IIGAAAGCGACIIACAUCGGGGU	(1 21)	2.273 %	MIK101	10375
	(= _ = /		835	
IIGAAAGIIGACIIACAIICGGGGII	(1 21)			
>86776316	(1 21)	2 151 04	MID 170	1279
UGAUCGAGCCGUGUCAAUAUC	(1 21)	2.131 70	MIK170	1370
	(/		279	
UGAUUGAGCCGUGUCAAUAUC	(1 21)			
>F6836124	(/	2 0 2 0 %	MIR160	5801
UGCCUGGCUCCCUAUAUGCCA	(1 21)	2.020 70	1100	3071
	(/		1188	
UGCCUGGCUCCCUGUAUGCCA	(1 21)			
>\$12867715	(= == /	1 880 04	MID 177	/180
AGAAUCUUGAUGAUGUUGCAU	(1 21)	1.000 70	MIR172	4107
	(/		266	
AGAAUCUUGAUGAUGCUGCAU	(1 21)			
>R120994112	(/	1 875 04	MID 150b	082
UUUGGAUUGAAGAGAGCUCUU	(1 21)	1.675 70	WIIK1390	982
	· /		640	
UUUGGAUUGAAGGGAGCUCUU	(1 21)			
>F8018121	· · · · · · · · · · · · · · · · · · ·	1 777 %	MID 166	3300
UCGGACCAAGCUUCAUUCCCC	(1 - 21)	1.727 70	1016	5500
			1210	
UCGGACCAGGCUUCAUUCCCC	(1 - 21)			
>F19104 22	, /	1 647 %	MIR 16/19	6857
UGGAGAAGCAGGGCACAUGCA	(1 21)	1.07//0	1996	0037
	,		1330	
UGGAGAAGCAGGGCACGUGCA	(1 21)			
	, = == /			

(1 -- 21)

>F13950 29 UGAUUAAGCCGCGCCAAUAUC	(1 21)	1.600 %	MIR171a	7571
	(1 21)		1813	
NE20312128		1 5 4 4 0/	MID 171	7571
	(1 21)	1.344 %	MIR1/1a	/3/1
			1813	
	(1 21)			
>F2423120		1 407 0/	MID 1640	6957
	(1 21)	1.497 %	MIK104a	0057
	(/		1336	
UGGAGAAGCAGGGCACGUGCA	(1 21)			
>F201853135	· · · · · · · ·	1 /11 %	MIR167a	35681
UGAAGCUGCUAGCAUGAUCUA	(1 21)	1.411 /0	2490	55001
	· /		2480	
UGAAGCUGCCAGCAUGAUCUA	(1 21)			
>F102678 17		1 272 %	MIR 164a	6857
UGGAGAAGCAGGGCGCGUGCA	(1 21)	1.272 70	1226	0057
			1550	
UGGAGAAGCAGGGCACGUGCA	(1 21)			
>F296568 17		1.272 %	MIR164a	6857
UGGAGAAGCGGGGCACGUGCA	(1 21)	112/2/0	1336	0007
&			1550	
UGGAGAAGCAGGGCACGUGCA	(1 21)			
>F31816 15		1.263 %	MIR160	
UGCCCGGCUCCCUGUAUGCCA	(1 21)		1188	
&			1100	
UGCCUGGCUCCCUGUAUGCCA	(1 21)			
>F11872 15		1.234 %	MIR166	3300
UCGGACCAGACUUCAUUCCCC	(1 21)		1216	
&			1210	
UCGGACCAGGCUUCAUUCCCC	(1 21)			
>F199187 29		1.169 %	MIR167a	35681
UGAAGCUGUCAGCAUGAUCUA	(1 21)		2480	
&				
UGAAGCUGCCAGCAUGAUCUA	(1 21)			
>F60317 25		1.008 %	MIR167a	35681
UGAAGUUGCCAGCAUGAUCUA	(1 21)		2480	
	(1 O1)			
	(1 21)	0.000 0/	1 (17) (7)	
	(1 01)	0.993 %	MIR1/1a	/5/1
UGAUUGGGCCGCGCCCAAUAUC	(1 21)		1813	
	(1 21)			
VE35404111	(1 21)	0.005.0/	MID166	2200
	(1 21)	0.905 %	MIR100	3300
	(1 21)		1216	
UCGGACCAGGCUUCAUUCCCC	(1 21)			
>F77837112		0 808 %	MID1640	6857
UGGAGAAGCAGAGCACGUGCA	(1 - 21)	0.090 %	1226	0057
	· /		1336	
UGGAGAAGCAGGGCACGUGCA	(1 - 21)			
>F239860 10	, /	0 842 %	MIR 160	5891
UGCCUGGCCCCCUGUAUGCCA	(1 21)	0.072 /0	1100	5671
&			1100	

(1 -- 21)

UGCCUGGCUCCCUGUAUGCCA

AGAAUCUUGAUGAUGCUGCAU

>F226618 7		0.838 %	MIR161	10573
UGAAAGUGACUAUAUCGGGGU	(1 21)		835	
			055	
UGAAAGUGACUACAUCGGGGU	(1 21)			
>B10554316	. ,	0 838 %	MIP 150h	082
	(1 21)	0.030 /0	MIK1370	762
	(1 21)		640	
	(1 01)			
	(1 21)	0.000.01		40
>F13301 11		0.823 %	MIR164a	6857
UGGAAAAGCAGGGCACGUGCA	(1 21)		1336	
&				
UGGAGAAGCAGGGCACGUGCA	(1 21)			
>F42449 10		0.749 %	MIR164a	6857
UGGAGAAGUAGGGCACGUGCA	(1 21)		1336	
&			1550	
UGGAGAAGCAGGGCACGUGCA	(1 21)			
>F106104 9		0 740 %	MIR166	3300
UCGGACCAGGCUUCGUUCCCC	(1 21)	0.740 /0	1016	5500
	· /		1216	
	(1 21)			
>F23216113		0 717 0/	MID 171	7571
	(1 21)	0.717%	MIR1/1a	/5/1
	(1 21)		1813	
	<i>(</i> 1 01)			
UGAUUGAGCCGCGCCAAUAUC	(1 21)			
>F269395 6		0.713 %	MIR172	4189
AGAAUCUUGGUGAUGCUGCAU	(1 21)		841	
&				
AGAAUCUUGAUGAUGCUGCAU	(1 21)			
>R8810 32		0.697 %	MIR161	10573
UGAAAGUGACUACGUCGGGGU	(1 21)		1503	
			т375	
UGAAAGUGACUACAUCGGGGU	(1 21)			
		0 672 0/	MIR160	5891
>F61240 8				
>F61240 8 UGCCUGGCUUCCUGUAUGCCA	(1 21)	0.075 %	1100	5071
>F61240 8 UGCCUGGCUUCCUGUAUGCCA	(1 21)	0.073 %	1188	5071
>F61240 8 UGCCUGGCUUCCUGUAUGCCA	(1 21)	0.073 %	1188	5071
>F61240 8 UGCCUGGCUUCCUGUAUGCCA 	(1 21) (1 21)	0.673 %	1188 MID 171	7571
>F61240 8 UGCCUGGCUUCCUGUAUGCCA 	(1 21) (1 21)	0.662 %	MIR100 1188 MIR171a	7571
>F61240 8 UGCCUGGCUUCCUGUAUGCCA 	(1 21) (1 21) (1 21)	0.662 %	MIR100 1188 MIR171a 1813	7571
<pre>>F61240 8 UGCCUGGCUUCCUGUAUGCCA </pre>	(1 21) (1 21) (1 21)	0.662 %	MIR100 1188 MIR171a 1813	7571
<pre>>F61240 8 UGCCUGGCUUCCUGUAUGCCA </pre>	(1 21) (1 21) (1 21) (1 21)	0.662 %	MIR171a 1813	7571
<pre>>F61240 8 UGCCUGGCUUCCUGUAUGCCA </pre>	<pre>(1 21) (1 21) (1 21) (1 21) (1 21)</pre>	0.662 %	MIR100 1188 MIR171a 1813 MIR168	7571
<pre>>F61240 8 UGCCUGGCUUCCUGUAUGCCA </pre>	<pre>(1 21) (1 21) (1 21) (1 21) (1 21) (1 21)</pre>	0.673 % 0.662 % 0.654 %	MIR100 1188 MIR171a 1813 MIR168 3364	7571 5039
<pre>>F61240 8 UGCCUGGCUUCCUGUAUGCCA </pre>	<pre>(1 21) (1 21) (1 21) (1 21) (1 21) (1 21)</pre>	0.673 % 0.662 % 0.654 %	MIR100 1188 MIR171a 1813 MIR168 3364	7571 5039
<pre>>F61240 8 UGCCUGGCUUCCUGUAUGCCA </pre>	<pre>(1 21) (1 21) (1 21) (1 21) (1 21) (1 21) (1 21)</pre>	0.662 %	MIR100 1188 MIR171a 1813 MIR168 3364	7571 5039
<pre>>F61240 8 UGCCUGGCUUCCUGUAUGCCA </pre>	<pre>(1 21) (1 21) (1 21) (1 21) (1 21) (1 21) (1 21)</pre>	0.673 % 0.662 % 0.654 % 0.599 %	MIR100 1188 MIR171a 1813 MIR168 3364 MIR164a	7571 5039 6857
<pre>>F61240 8 UGCCUGGCUUCCUGUAUGCCA </pre>	<pre>(1 21) (1 21) (1 21) (1 21) (1 21) (1 21) (1 21) (1 21) (1 21)</pre>	0.673 % 0.662 % 0.654 % 0.599 %	MIR160 1188 MIR171a 1813 MIR168 3364 MIR164a 1336	7571 5039 6857
<pre>>F61240 8 UGCCUGGCUUCCUGUAUGCCA </pre>	<pre>(1 21) (1 21) (1 21) (1 21) (1 21) (1 21) (1 21) (1 21) (1 21)</pre>	0.673 % 0.662 % 0.654 % 0.599 %	MIR160 1188 MIR171a 1813 MIR168 3364 MIR164a 1336	7571 5039 6857
<pre>>F61240 8 UGCCUGGCUUCCUGUAUGCCA </pre>	<pre>(1 21) (1 21)</pre>	0.673 % 0.662 % 0.654 % 0.599 %	MIR100 1188 MIR171a 1813 MIR168 3364 MIR164a 1336	7571 5039 6857
<pre>>F61240 8 UGCCUGGCUUCCUGUAUGCCA </pre>	<pre>(1 21) (1 21) (1 21) (1 21) (1 21) (1 21) (1 21) (1 21) (1 21) (1 21)</pre>	0.673 % 0.662 % 0.654 % 0.599 %	MIR100 1188 MIR171a 1813 MIR168 3364 MIR164a 1336 MIR172a	7571 5039 6857 4189
<pre>>F61240 8 UGCCUGGCUUCCUGUAUGCCA </pre>	<pre>(1 21) (1 21)</pre>	0.673 % 0.662 % 0.654 % 0.599 %	MIR100 1188 MIR171a 1813 MIR168 3364 MIR164a 1336 MIR172a	7571 5039 6857 4189
<pre>>F61240 8 UGCCUGGCUUCCUGUAUGCCA </pre>	<pre>(1 21) (1 21)</pre>	0.673 % 0.662 % 0.654 % 0.599 %	MIR100 1188 MIR171a 1813 MIR168 3364 MIR164a 1336 MIR172a 835	7571 5039 6857 4189
<pre>>F61240 8 UGCCUGGCUUCCUGUAUGCCA </pre>	<pre>(1 21) (1 21)</pre>	0.673 % 0.662 % 0.654 % 0.599 %	MIR100 1188 MIR171a 1813 MIR168 3364 MIR164a 1336 MIR172a 835	7571 5039 6857 4189
<pre>>F61240 8 UGCCUGGCUUCCUGUAUGCCA </pre>	<pre>(1 21) (1 21)</pre>	0.673 % 0.662 % 0.654 % 0.599 % 0.599 %	MIR100 1188 MIR171a 1813 MIR168 3364 MIR164a 1336 MIR172a 835	7571 5039 6857 4189
<pre>>F61240 8 UGCCUGGCUUCCUGUAUGCCA </pre>	(1 21) (1 21)	0.673 % 0.662 % 0.654 % 0.599 % 0.599 %	MIR100 1188 MIR171a 1813 MIR168 3364 MIR164a 1336 MIR172a 835 MIR172	7571 5039 6857 4189 4189

(1 -- 21)

Page 13

>R84800 12		0.529 %	MIR398b	3932
UGUGUCCUCAGGUCACCCCUG	(1 21)		2267	
&			2207	
UGUGUUCUCAGGUCACCCCUG	(1 21)			
>R9804 12		0.529 %	MIR398b	3932
UGUGUUCUCAGGCCACCCCUG	(1 21)		2267	
&			2201	
UGUGUUCUCAGGUCACCCCUG	(1 21)			

Supplementary Table 7: Output of *Ebbie-MM-ago*. The perl script is searching for small RNAs of a specific sequence in the Mi-dataset which contains cloning frequencies of small RNAs from their associated AGO complexes. Then *Ebbie-MM-ago* removes the 5' nucleotide and adds UU to the 3' terminus and searches again the Mi-dataset. As input, all *Arabidopsis thaliana* micro RNAs from MirBase v12 were used.

>ath-miR822 MIMAT0004239 TGCGGGAAGCATTTGCACATG

>ath-miR156g MIMAT0001012 CGACAGAAGAGAGTGAGCAC

>ath-miR158b MIMAT0001014 CCCCAAATGTAGACAAAGCA

CCCCAAATGTAGACAAAGCA* is found in AGO1 91 times CCCCAAATGTAGACAAAGCA* is found in AGO2 1 times CCCCAAATGTAGACAAAGCA* is found in AGO4 1 times CCCCAAATGTAGACAAAGCA* is found in AGO5 4 times minus 1 plus UU CCCAAATGTAGACAAAGCATT* is found in AGO1 52 times CCCAAATGTAGACAAAGCATT* is found in AGO2 0 times

>ath-miR157b MIMAT0000173

CCCAAATGTAGACAAAGCATT* is found in AGO5 0 times >ath-miR399f MIMAT0000956 TGCCAAAGGAGATTTGCCCGG TGCCAAAGGAGATTTGCCCGG* is found in AGO1 99 times TGCCAAAGGAGATTTGCCCGG* is found in AGO2 0 times TGCCAAAGGAGATTTGCCCGG* is found in AGO4 2 times TGCCAAAGGAGATTTGCCCGG* is found in AGO5 1 times minus 1 plus UU GCCAAAGGAGATTTGCCCGGTT* is found in AGO1 6 times GCCAAAGGAGATTTGCCCGGTT* is found in AGO2 0 times GCCAAAGGAGATTTGCCCGGTT* is found in AGO4 0 times GCCAAAGGAGATTTGCCCGGTT* is found in AGO5 0 times >ath-miR172b MIMAT0000205 AGAATCTTGATGATGCTGCAT AGAATCTTGATGATGCTGCAT* is found in AGO1 9796 times AGAATCTTGATGATGCTGCAT* is found in AGO2 470 times AGAATCTTGATGATGCTGCAT* is found in AGO4 1793 times AGAATCTTGATGATGCTGCAT* is found in AGO5 717 times minus 1 plus UU GAATCTTGATGATGCTGCATTT* is found in AGO1 2 times GAATCTTGATGATGCTGCATTT* is found in AGO2 5 times GAATCTTGATGATGCTGCATTT* is found in AGO4 14 times GAATCTTGATGATGCTGCATTT* is found in AGO5 9 times >ath-miR780.1 MIMAT0004218 TCTAGCAGCTGTTGAGCAGGT TCTAGCAGCTGTTGAGCAGGT* is found in AGO1 17 times TCTAGCAGCTGTTGAGCAGGT* is found in AGO2 0 times TCTAGCAGCTGTTGAGCAGGT* is found in AGO4 1 times TCTAGCAGCTGTTGAGCAGGT* is found in AG05 33 times minus 1 plus UU CTAGCAGCTGTTGAGCAGGTTT* is found in AGO1 1 times CTAGCAGCTGTTGAGCAGGTTT* is found in AGO2 0 times CTAGCAGCTGTTGAGCAGGTTT* is found in AGO4 0 times CTAGCAGCTGTTGAGCAGGTTT* is found in AGO5 4 times

CCCAAATGTAGACAAAGCATT* is found in AGO4 0 times

TTGACAGAAGATAGAGAGCAC

TTGACAGAAGATAGAGAGCAC* is found in AGO1 5104 times TTGACAGAAGATAGAGAGCAC* is found in AGO2 2 times TTGACAGAAGATAGAGAGCAC* is found in AGO4 1059 times TTGACAGAAGATAGAGAGCAC* is found in AGO5 86 times minus 1 plus UU TGACAGAAGATAGAGAGCACTT* is found in AGO1 104 times TGACAGAAGATAGAGAGCACTT* is found in AGO2 1 times TGACAGAAGATAGAGAGCACTT* is found in AGO4 5 times TGACAGAAGATAGAGAGCACTT* is found in AGO5 0 times >ath-miR157d MIMAT0000175 TGACAGAAGATAGAGAGCAC TGACAGAAGATAGAGAGCAC* is found in AGO1 325 times TGACAGAAGATAGAGAGCAC* is found in AGO2 1 times TGACAGAAGATAGAGAGCAC* is found in AGO4 9 times TGACAGAAGATAGAGAGCAC* is found in AGO5 4 times minus 1 plus UU GACAGAAGATAGAGAGCACTT* is found in AGO1 263 times GACAGAAGATAGAGAGCACTT* is found in AGO2 0 times GACAGAAGATAGAGAGCACTT* is found in AGO4 1 times GACAGAAGATAGAGAGCACTT* is found in AGO5 0 times >ath-miR157a MIMAT0000172 TTGACAGAAGATAGAGAGCAC TTGACAGAAGATAGAGAGCAC* is found in AGO1 5104 times TTGACAGAAGATAGAGAGCAC* is found in AGO2 2 times TTGACAGAAGATAGAGAGCAC* is found in AGO4 1059 times TTGACAGAAGATAGAGAGCAC* is found in AGO5 86 times minus 1 plus UU TGACAGAAGATAGAGAGCACTT* is found in AGO1 104 times TGACAGAAGATAGAGAGCACTT* is found in AGO2 1 times TGACAGAAGATAGAGAGCACTT* is found in AGO4 5 times TGACAGAAGATAGAGAGCACTT* is found in AGO5 0 times >ath-miR156a MIMAT0000166 TGACAGAAGAGAGTGAGCAC TGACAGAAGAGAGTGAGCAC* is found in AGO1 3007 times TGACAGAAGAGAGTGAGCAC* is found in AGO2 1 times

TGACAGAAGAGAGTGAGCAC* is found in AGO4 62 times

TGACAGAAGAGAGTGAGCAC* is found in AGO5 8 times minus 1 plus UU GACAGAAGAGAGTGAGCACTT* is found in AGO1 53 times GACAGAAGAGAGTGAGCACTT* is found in AGO2 0 times GACAGAAGAGAGTGAGCACTT* is found in AGO4 0 times GACAGAAGAGAGTGAGCACTT* is found in AGO5 0 times >ath-miR391 MIMAT0000933 TTCGCAGGAGAGATAGCGCCA TTCGCAGGAGAGATAGCGCCA* is found in AGO1 560 times TTCGCAGGAGAGATAGCGCCA* is found in AGO2 2 times TTCGCAGGAGAGATAGCGCCA* is found in AGO4 94 times TTCGCAGGAGAGATAGCGCCA* is found in AGO5 0 times minus 1 plus UU TCGCAGGAGAGATAGCGCCATT* is found in AGO1 0 times TCGCAGGAGAGATAGCGCCATT* is found in AGO2 0 times TCGCAGGAGAGATAGCGCCATT* is found in AGO4 27 times TCGCAGGAGAGATAGCGCCATT* is found in AGO5 0 times >ath-miR172e MIMAT0001019 GGAATCTTGATGATGCTGCAT GGAATCTTGATGATGCTGCAT* is found in AGO1 543 times GGAATCTTGATGATGCTGCAT* is found in AGO2 2 times GGAATCTTGATGATGCTGCAT* is found in AGO4 56 times GGAATCTTGATGATGCTGCAT* is found in AG05 16 times minus 1 plus UU GAATCTTGATGATGCTGCATTT* is found in AGO1 2 times GAATCTTGATGATGCTGCATTT* is found in AGO2 5 times GAATCTTGATGATGCTGCATTT* is found in AGO4 14 times GAATCTTGATGATGCTGCATTT* is found in AGO5 9 times >ath-miR156f MIMAT0000171 TGACAGAAGAGAGTGAGCAC

TGACAGAAGAGAGTGAGCAC* is found in AGO1 3007 times TGACAGAAGAGAGTGAGCAC* is found in AGO2 1 times TGACAGAAGAGAGTGAGCAC* is found in AGO4 62 times TGACAGAAGAGAGTGAGCAC* is found in AGO5 8 times minus 1 plus UU GACAGAAGAGAGTGAGCACTT* is found in AGO1 53 times GACAGAAGAGAGTGAGCACTT* is found in AGO2 0 times GACAGAAGAGAGTGAGCACTT* is found in AGO4 0 times

minus 1 plus UU

GACAGAAGAGAGTGAGCACTT* is found in AGO5 0 times >ath-MIR408 25 ATGCACTGCCTCTTCCCTGGC ATGCACTGCCTCTTCCCTGGC* is found in AGO1 6 times ATGCACTGCCTCTTCCCTGGC* is found in AGO2 549 times ATGCACTGCCTCTTCCCTGGC* is found in AGO4 0 times ATGCACTGCCTCTTCCCTGGC* is found in AG05 12 times minus 1 plus UU TGCACTGCCTCTTCCCTGGCTT* is found in AGO1 21 times TGCACTGCCTCTTCCCTGGCTT* is found in AGO2 1 times TGCACTGCCTCTTCCCTGGCTT* is found in AGO4 0 times TGCACTGCCTCTTCCCTGGCTT* is found in AG05 1 times >F42411 91 TGCACTGCCTCTTCCCTGGCTT TGCACTGCCTCTTCCCTGGCTT* is found in AGO1 21 times TGCACTGCCTCTTCCCTGGCTT* is found in AGO2 1 times TGCACTGCCTCTTCCCTGGCTT* is found in AGO4 0 times

TGCACTGCCTCTTCCCTGGCTT* is found in AGO5 1 times

GCACTGCCTCTTCCCTGGCTTTT* is found in AGO1 0 times GCACTGCCTCTTCCCTGGCTTTT* is found in AGO2 0 times GCACTGCCTCTTCCCTGGCTTTT* is found in AGO4 0 times GCACTGCCTCTTCCCTGGCTTTT* is found in AGO5 0 times