Supporting information

Gene ID	Homolog	Putative function	Operon structure ^a	Regulation by HapR (from this study)	Reference
Motif 1				U /	
VC0166	transcriptional regulator, TetR family	Regulation of multidrug efflux pump	VC0166- VC0164	Repressed	(Bina et al. 2008)
VC0432	malate dehydrogenase	Energy metabolism:TCA cycle	-	Repressed	(Byun et al. 1999)
VC0900	GGDEF family protein	Regulation of biofilm formation	-		(Waters et al. 2008)
VC1000	acetyl-CoA carboxylase	Fatty acid and phospholipid metabolism	-	Repressed	(Liu et al. 2008)
VC1181	ATP-binding protein	cytochrome assembly	VC1181-VC1180	Repressed	(Cruz-Ramos et al. 2004)
VC1222	integration host factor, alpha subunit	Regulation of virulence genes	VC1221-VC1222	Repressed	(Stonehouse et al. 2008)
VC1415	hcp protein	Type VI secreted protein	-	Repressed	(Pukatzki et al. 2006)
VC2370	sensory box/GGDEF family protein	Regulation of biofilm formation	VC2372-VC2369		(Waters et al. 2008)
VC2635	Penicillin-binding protein	peptidoglycan biosynthetic process	-	Repressed	(Sengupta et al. 1990)
VC2762	UDP-N-acetylglucosamine pyrophosphorylase	Cell envelope Biosynthesis	-	Activated	(Mengin-Lecreulx and van Heijenoort 1994)
VCA0017	hcp protein	Type VI secreted protein	-	Repressed	(Pukatzki et al. 2006)
VCA0080	GGDEF family protein	Regulation of biofilm formation	-		(Waters et al. 2008)
VCA0182	sigma-54 dependent transcriptional regulator	Regulation of NO reduction	-	Repressed	(Rodionov et al. 2005)
VCA0183	ferrisiderophore reductase/Flavohaemoglobin	NO reduction	-	Repressed	(Rodionov et al. 2005)
VCA0246	Protein-N(pi)-phosphohistidine sugar phosphotransferase	Sugar transport	VCA0246-VCA0244	Repressed	(Beutler et al. 2000)
VCA0247	DeoR family transcriptional regulator	Sugar transport	VCA0247-VCA0248	Repressed	(Beutler et al. 2000)
Motif 2 VC0089	Cytochrome c peroxidase	Energy metabolism: Electron transport	-	Activated	(Partridge et al. 2007)
VC0583	transcriptional regulator HapR	Quorum sensing master regulator			(Zhu et al. 2002)
VC0934	capsular polysaccharide biosynthesis glycosyltransferase	Biofilm formation	_b	Repressed	(Yildiz and Schoolnik 1999)
VC1213	Response regulator VarA	Regulating quorum sensing	VC1213-VC1215	Repressed	(Lenz et al. 2005)
VC2035	conserved hypothetical protein	Multiple antibiotic resistance		Repressed	(Sulavik et al. 1994)
VC2647	Virulence regulator AphA	Virulence activation		Repressed	(Skorupski and Taylor 1999)
VCA0148	TagA-related protein	unknown		Activated	
VCA0684	Sugar phosphate permease	Sugar transport	VCA0682-VCA0684	Activated	(Verhamme et al. 2001)
VCA0865	hemagglutinin/protease HapA	proteolysis		Activated	(Jobling and Holmes 1997)
VCA0880	Hypothetic protein	unknown	VCA0880-VCA0883	Activated	(Zhu and Mekalanos 2003)

Table S1. Function and operon prediction of HapR regulated genes.

a. Operon structure prediction is based on VIMSS operon prediction from http://www.microbesonline.org. b. located between two large vps operons.

Figure Legends

Fig. S1. Alignment highlighting similarity between proposed 16 bp HapR binding sites in *hapR* **and** *aphA* **promoters.** Note that the binding sites appear weakly conserved when the direct strands are compared but show strong similarity when the proposed binding site on the direct strand for *aphA* is aligned with the corresponding binding site on the complementary strand upstream of *hapR*.

Fig. S2. Schematic representation of procedure for identification of novel targets of HapR in *V. cholerae*. Note that while experimental validation can be used to iteratively alter the binding motif definitions for both motifs, Motif 1 was not modified based on experimental feedback in the present study since all the predictions were validated.

Fig. S3. Sequence logos corresponding to alignments of 22 bp binding regions for Motif 1 and Motif 2 sites. Since Motif 1 is variable in length, it shows minimal conservation beyond the initial sequence even though almost all the sites have the concluding sequence AATAG. The logo also highlights the lack of conservation for Motif 2 binding sites beyond 16 bp.

References

- Beutler R, Kaufmann M, Ruggiero F, Erni B (2000) The glucose transporter of the Escherichia coli phosphotransferase system: linker insertion mutants and split variants. Biochemistry 39(13): 3745-3750.
- Bina XR, Provenzano D, Nguyen N, Bina JE (2008) Vibrio cholerae RND family efflux systems are required for antimicrobial resistance, optimal virulence factor production, and colonization of the infant mouse small intestine. Infection and immunity 76(8): 3595-3605.
- Byun R, Elbourne LD, Lan R, Reeves PR (1999) Evolutionary relationships of pathogenic clones of Vibrio cholerae by sequence analysis of four housekeeping genes. Infection and immunity 67(3): 1116-1124.
- Cruz-Ramos H, Cook GM, Wu G, Cleeter MW, Poole RK (2004) Membrane topology and mutational analysis of Escherichia coli CydDC, an ABC-type cysteine exporter required for cytochrome assembly. Microbiology (Reading, England) 150(Pt 10): 3415-3427.
- Jobling MG, Holmes RK (1997) Characterization of hapR, a positive regulator of the Vibrio cholerae HA/protease gene hap, and its identification as a functional homologue of the Vibrio harveyi luxR gene. Mol Microbiol 26(5): 1023-1034.
- Lenz DH, Miller MB, Zhu J, Kulkarni RV, Bassler BL (2005) CsrA and three redundant small RNAs regulate quorum sensing in Vibrio cholerae. Mol Microbiol 58(4): 1186-1202.
- Liu X, Fortin PD, Walsh CT (2008) Andrimid producers encode an acetyl-CoA carboxyltransferase subunit resistant to the action of the antibiotic. Proceedings of the National Academy of Sciences of the United States of America 105(36): 13321-13326.
- Mengin-Lecreulx D, van Heijenoort J (1994) Copurification of glucosamine-1-phosphate acetyltransferase and N-acetylglucosamine-1-phosphate uridyltransferase activities of Escherichia coli: characterization of the glmU gene product as a bifunctional enzyme catalyzing two subsequent steps in the pathway for UDP-N-acetylglucosamine synthesis. J Bacteriol 176(18): 5788-5795.
- Partridge JD, Poole RK, Green J (2007) The Escherichia coli yhjA gene, encoding a predicted cytochrome c peroxidase, is regulated by FNR and OxyR. Microbiology (Reading, England) 153(Pt 5): 1499-1507.
- Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D et al. (2006) Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proceedings of the National Academy of Sciences of the United States of America 103(5): 1528-1533.
- Rodionov DA, Dubchak IL, Arkin AP, Alm EJ, Gelfand MS (2005) Dissimilatory metabolism of nitrogen oxides in bacteria: comparative reconstruction of transcriptional networks. PLoS computational biology 1(5): e55.
- Sengupta TK, Chatterjee AN, Das J (1990) Penicillin binding proteins of Vibrio cholerae. Biochemical and biophysical research communications 171(3): 1175-1181.
- Skorupski K, Taylor RK (1999) A new level in the Vibrio cholerae ToxR virulence cascade: AphA is required for transcriptional activation of the tcpPH operon. Mol Microbiol 31(3): 763-771.
- Stonehouse E, Kovacikova G, Taylor RK, Skorupski K (2008) Integration host factor positively regulates virulence gene expression in Vibrio cholerae. J Bacteriol 190(13): 4736-4748.
- Sulavik MC, Gambino LF, Miller PF (1994) Analysis of the genetic requirements for inducible multipleantibiotic resistance associated with the mar locus in Escherichia coli. J Bacteriol 176(24): 7754-7756.
- Verhamme DT, Arents JC, Postma PW, Crielaard W, Hellingwerf KJ (2001) Glucose-6-phosphatedependent phosphoryl flow through the Uhp two-component regulatory system. Microbiology (Reading, England) 147(Pt 12): 3345-3352.
- Waters CM, Lu W, Rabinowitz JD, Bassler BL (2008) Quorum sensing controls biofilm formation in Vibrio cholerae through modulation of cyclic di-GMP levels and repression of vpsT. J Bacteriol 190(7): 2527-2536.
- Yildiz FH, Schoolnik GK (1999) Vibrio cholerae O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. Proceedings of the National Academy of Sciences of the United States of America 96(7): 4028-4033.

- Zhu J, Mekalanos JJ (2003) Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae. Dev Cell 5(4): 647-656.
- Zhu J, Miller MB, Vance RE, Dziejman M, Bassler BL et al. (2002) Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proceedings of the National Academy of Sciences of the United States of America 99(5): 3129-3134.

Fig. S1. Tsou, et al.

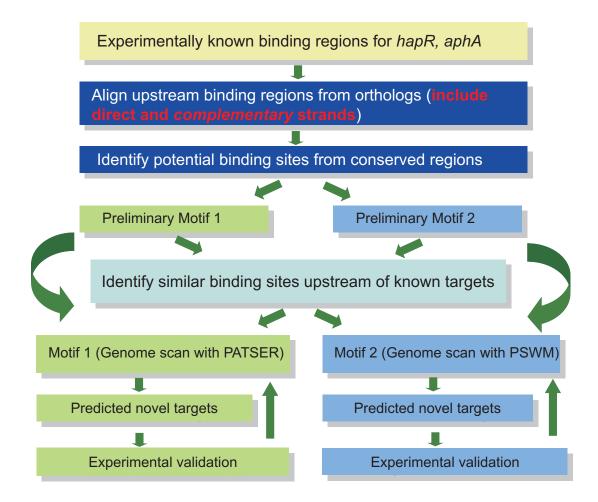


Fig. S2. Tsou, et. al.

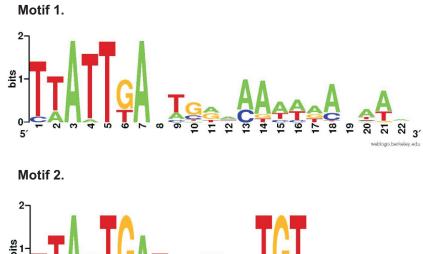


Fig. S3. Tsou, et al.