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1 The idea of a loop design experiment

The idea of a loop design experiment can be traced to Sir Ronald Aylmer Fisher [1]—it is
exposed in detail in numerous recent books, for example, [2, 3].

2 Grouping evaluators

A loop design involves partitioning evaluators into several groups (in our case, with three
people each) and assigning them approximately equal numbers of sentences. In addition,
attributes of the sentences (as described below) should be randomly distributed across all
groups.

Eight different evaluators (numbered 1 to 8)
Three evaluators work on each sentence

Evaluators in the same group

—
(1 2 3

Groups
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3 Two generative models: A and B

For historical reasons, we explored in depth two probabilistic models which describe a single
annotation dimension.

Model A is slightly more complicated to describe, but has a smaller number of parameters
(one parameter per annotator per dimension) and allows for easy extension to joint analysis
of multiple dimensions.

Model B is simpler to describe and is somewhat more intuitive, but the number of parameters
associated with it grows quadratically with the number of admissible annotation values. For
example, with combined Polarity—Certainty dimensions (admissible values N3, N2, N1, NO or
PO, P1, P2, and P3), we need to estimate 8 parameters under model A and 342 parameters
under model B.

Furthermore, both models generate multiple solutions (modes along the likelihood surface).
With appropriately chosen priors, model A has two modes, only one of which is the global



maximum. Model B has multiple modes—the number of modes is growing with the number
of admissible values for annotation.

Below we describe in detail both models and illustrate them with numerical examples.

4 Model A: General framework of our analysis

While we develop a framework for describing multiple annotation dimensions jointly, for
compactness of presentation, we describe equations for a single dimension and a single anno-
tation instance (the same equations would work for a group of annotations after each triplet
of variables is substituted with the corresponding matrix).

To estimate parameters of the model with the maximum likelihood (ML) or the maximum
a posteriori probability (MAP) methods, we need to maximize the appropriate probability
functions. For example, the likelihood function in our case is defined in the following way:

P(Vijk|©) = Z Z P(Vijr|Aijr, ©) P(Aijk| Tiji, ©) P(Tijx|©), (2)
Tijr Aijk
Then we can compute

~

oML = arg max P(V,;k|©), (3)

or

P(Vi%|©)P(0)
P(Viji)

OMAP — arg max P(O|V;,) = arg max = arg max P(V,ix|®)P(©). (4)

The advantage of using Equation 4 instead of Equation 3 is that we can specify a non-uniform
prior distribution for ©. For example, we can assume that our accuracy parameters are more
likely to have high values (greater than 0.5) than smaller values. This can be expressed with
a beta-distribution:

et gy
N B(a,b) ’ (5)

where m refers to the m!* annotator, = refers to the z** dimension of annotation, a = 2,
b= 1, and B(a,b) is a beta-function with parameters a and b. This way we incorporate an
assumption that human evaluators are more frequently right than wrong in their assessments.

P02, = &la,b)

m

h

The main reason we want to estimate parameter values, é, is to find the most likely assign-
ment of correctness labels to observed annotations:
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Figure 1: Model A: Graphical-model-style outline of the correct-value-specific annotation
error model (one annotation dimension, three evaluators are annotating the same fragment
of text).

T,f\;[kAP = argmax P(T;;t| Vi, ©). (6)
ijk

The value of P(T;jx|Vijk, ©) is computed in the following way

P(Vijk, Tij1|©)

P(Tij|Vijr, ©) = PV ]0) (7)
ij

where
P(Vij, Tijel®) = Y P(Vijil Aijr, ©) P(Aji| Tiji, ©) P(Ty|0). (8)
Ak

In equations 2 and 8 we implicitly assume that V,;;, and T;;, are conditionally independent,
given the known value of A,jj.

Table 1: Model A: Parameters and notations.

Notation Ezplanation

T? — Correctness value (hidden variable) of annotation provided by
the i"" evaluator for z** dimension for a given text fragment.

7 =C — Correct annotation.

77 =1 — Incorrect annotation.

07 — P(T7 = C|0)

Z — 1— P(TF = C10) = P(T? = 1|6)



Wy

ﬁ(vi’vj ,’Uk;)
T

Qy

Tfjk = (Tf, szv Tkz)

Aj) = (aaa)
Af) = (aaA)
Ay = (aAa)
Afy = (Aaa)
Afy = (Aaa)
ijk = (va U;: Uli)
P+

©

Probability to encounter annotation value ¢ (assumed to be the
same for all evaluators).

Probability of a given triplet of annotations for three evalua-
tors ([v;,vj,vx])), given one of the agreement patterns. A more
precise definition of these parameters is given in Table 5.
Probability of an agreement pattern, given the correctness pat-
tern value. A more precise definition of these parameters is given
in Table 4.

State of correctness values for annotations for the z* dimension
and the same text fragment as provided by annotators i, 7, and
k.

A three-annotator agreement pattern for the z** dimension.
The three annotators agree on annotation (regardless the anno-
tation value).

Annotator k disagrees with other two annotators.

Annotator j disagrees with other two annotators.

Annotator i disagrees with other two annotators.

All three annotation values are different (regardless of the val-
ues).

The actual annotation values for the 2! dimension of a text
fragment assigned by evaluators ¢, 7, and k.

Correlation between annotations for dimensions x and y.

A shorthand for all model parameters.

5 Model A: Parameters

Evaluator- and dimension-specific success [= 1 — error| rates.

Annotation dimensions
N\

~ Y

61 62 ... o7

FEvaluators < ... ... ... ... (9)

oL 62 ... o

The second-order correlation matrix:

Annotation dimensions

Annotation dimensions
N

I pi2 ... pin
1,2 1 cee P2n (10)

Pin P2m  --- 1
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Figure 2: Model A: Outline of the generative model for one dimension of annotation: three

evaluators are annotating the same fragment of text (evaluators are indicated by subscripts

i, 7, and k).

Additional set of parameters (wij) is associated with the expected frequencies of the observed
annotation values:

P(V, = 9|0) = ur. (11)

(We consider here two flavors of the model. In one of them wj, = wy, that is, the expected
frequencies are the same for all evaluators. In the more complicated model each evaluator is
provided with an individual set of wy, values, where x refers to the evaluator.)

6 Model A: Annotating a single dimension

Let us start with the simplest case: three evaluators (7, j, and k) are annotating a single

property (such as focus) of a sentence fragment (the dimension has more than three admis-
sible values).

P(Ty = {1,1,1}|0) = 0,0,0,. (13)

The complete listing of values for P(T;;x|©) is shown in Table 2.

8



1 75 =T;=T,=C,
P<A2jk = {CL,CL,CL}|':[‘Z‘J']€ = {E,E,Tk},@> = iy lf T'Z = T] = Tk = [, (14)
0 otherwise.

We provide the complete listing of non-zero values of P(A,j;|T;jk, ©) in Table 3; two alter-
native ways of defining parameters «,,s are shown in Table 4.

(W)
if v; =v; = v, =,
P( igk — {Uu Uy, Uk}|Aka {CL, a, a’}7 @) = { ﬁl 0 ’ OtthI'Wngi (15)

Our notations for P(V,;i|Ajjk, ©)’s are shown in Figure 1 (they have values £y, (2, (5, Ou,
and (35); two alternative ways of defining parameters 3,,s are shown in Table 5.

Therefore,
P(Vigy, = {,4,9}0) = [0:0,0) + 0,0;0,c4) 31" (16)

Similarly,
P(Vije = {1,0,9}0) = [0:6;6) + 0,0,03 + 0,0;0,05) 55", (17)
P(Vije = {1, U, 4}©) = [6:0,0), + 0:0,0k0 + 0,0;006) 35", (18)
P(Vije = {0, 4, 0}|0) = [6:0,0), + 6:0,0,01 + 0,0,0,0:) 8, (19)

and
e — 7 —_ =
P(Vije = {0, 9, 0}0) = [6:8;0:(1 =) ;) +0,0,0,(1 — )
=4

+ éﬂjék(l — CYQ) + éléﬂk(l — ag)]ﬁé‘y’w’@. (20)

A full listing of non-zero values for P(V;;;,|©) is shown in Table 7 for annotation dimensions
with more than three, exactly three, and exactly two admissible values.

Finally, we show values of P(T;;x| Vi, ©) in Table 8. Curiously, P(T;;x|Vijk, ©) does not
depend on 3,,’s.



Table 2: Model A: Probabilities of all possible triplets of
correctness values.

Tk
ccc ccr cic I1cc cili I1CI 11C II7

P(T;;x|©) 0:0;0r 00,0, 00,0, 0,0;0, 0,0,0, 00,0, 0,0;0y

~
.
Eal

Table 3: Model A: Conditional probabilities of three-
evaluator-agreement patterns, given correctness values.

P(A;jx| Ty, ©) A
aaa aaA aAa Aaa Aac
cec 1 0 0 0 0
cCcl 0 1 0 0 0
cIC 0 0 1 0 0
1cCC 0 0 0 1 0
Tijk CII 0 0 0 (0%} 1-— (0%}
1C1 0 0 (6%) 0 1— (6]
11C 0 Q3 0 0 1— (6%
II7 Qg (0731 (675 (074 1— ZZ:4 a;

Table 4: Model A: Defining a-parameters: evaluators
are assumed identical in terms of frequency of anno-
tation values. Note that these equations are applica-
ble for any number of admissible values for annota-
tions. For example, for only two admissible values we
have [wy,ws, ws,wy,...] = [wi,1 —wq,0,0,...], while for
only three admissible values we have [wy,ws, w3, wy, .. .| =
[wl,wg,l — W —CUQ,O,...].

Aijk’Tijk P(Aijk‘Tijka@)

Aaa|CII

aAa|ICT > o P(V is correct)P(A; = Ay # A;, A; = V|V is correct)
a; =ay =az | adA|IIC => 0 Wy 5= ngzzwzwy

aaa|ll 11 > ¢ P(¥ is correct)P(A; = A; = A # V|V is correct)

_ Z W Zr;ﬁ\l/“’?
v ‘I’Zz \I/Zu W Dty WaWyWs

as =ag = ay | adA|lIl :Z\pw‘l/z

Aaal|Ill
aAa|llll | >, P(V is correct)P(A; = A; # Ay, A; # ¥, A, # V|V is correct)

2
D TS Bk B’
v ZU W Dty WaWyWse

10



Table 5: Model A: Defining 3’s.
gi’vj’vk) Viie|Aiji | P(Vijk|Asj, ©)
5" pevlaan | =t
’\Il wa
CAMRN V¥llaad | s 00
AN PUlada |
w2w
oY £ v Uyl daa | =T
BT AU 6,0 # V| Ug|Aaa | e

Table 6: Model A: Joint probabilities of three-evaluator cor-
rectness values and the observed values of evaluations.

P(Viji, Tyjk|O) Vijk
Do YOU P Ty T
ccc | gYe0.60,6, 0 0 0 0
ccr oo (090,0.0, 0 0 0
cic | o 0 g 0.60.60, 0 0
cc | o 0 0 (0¥ )9 0 0 O
Ty, CII |0 0 0 a1 80,0,0, (1 - a1)B"90,0,6,
cr |o 0 axB0,6,6, 0 (1 — )8 "6,0,6
1ICc |0 a 5;“ ééak 0 0 (1 - as)B""6,0,0
11 | a\V0:0,0,  asB0,0,0, 068 00,00 arpVV 06,6, (1 -7, 00860,
Table 7: Model A: P(V;;;]©).
Vijk | P(Vijk|©)
bty | [6:0,05 + 06,004 81
b0 | [0:0;0), + 0:0,0p03 + 0:0,0,05

Wipep
U

[

[ ]
w\I/@/) [0 9 Qk + 9 0; Gkag + 9 9 Gkaﬁ]

6 ]

[

0,0,0,(1

By
By
10;0% + 0:0;0001 + 0,0,0,07] 8"

23:4 Ozi) + Qléjgk( — 041) + @iejék(l — 012) + éiéjek(l — a3)]ﬂ§¢7‘1‘,¢)

11



Table 8: Model A: P(Tjx|Vijk, ©).

TirlVie | P(Ty|Viji, ©)
COCWYY | ot —
Iy | ot
COIHM/J\I’ 9i9j9k+9i9iigzgz+9i9j9ka5
IHClpy v ei9j9k+«9§9jzjf£;9i9j9ka5
HIWUY | G
CICHD\I”/} aiej0k+0ieii5522j919j9ka6
ICIWJ‘I”b 9i9j9k+9jgj‘;f;f;9i0j9kae
III|¢\I”/} 9i0j0k+092;2226;29i9i9j9ka6
ICC[Wyp e’iejekwiéiig:;ijr@@éka?
CHOYY | g
IS | gy o
RV
CII|Yo 0:0,0,(1-51_, ai)"'eie_jé(’“(I_L)lejéé;Zjék(1_a2)+§i§j0k(1_a3)
1—a2)0,0;
ICI[Wg 00,00 (1->_, anwioﬁ}l(l—a)l(;feézj0k<1—a2>+9i9f9k<1—a3>
Y 3
IIC| 2720 00,00 (1->_, ai)+eiéj0_k(lZ)l)ZJrJéiI;JéH_Z(éa2)+0_i9_j9k(1Ocs)
1—ou—as—ag—ar)0ib;
]I]|\I’77/)¢ 8.0,00(1-5_, ai)s_gigjgk(15_a16)+§:6)j§k](1]ia2)+§¢§j0k(1—&3)
All other values | 0

7 Model A: Annotating multiple dimensions, introduc-
ing dependence among dimensions

Using the p-dimensional multivariate binary distribution form described by Cox [4]:

p
P(Y = Y|@) = HP(Y; = yi|®) {1 + Zpijuiuj -+ Z pijkuiujuk + .. } ,

1=1 1>7 1>5>k

(21)

we will model joint distribution of non-independent annotations for multiple dimensions.

def Y- P(Y;=1)

VP =1)[1 - P(Y; =1)]

(22)

%

12



In this formulation, Y; is a binary (0 or 1 valued) variable for all i = 1,2,

Y2 and Pijs
Piji, and p;ji; are the second-, third-, and fourth-way correlations

Pt Y puuu,. ), (23)

correspondingly. If we map the correct (C) and incorrect (I) values of our “correctness”

variables to integers 1 and 0, respectively, we can write a joint likelihood function for truth
values of multiple annotations by the same triplet of evaluators.

In our modeling, we define the following shorthand notation (a variance-normalized variable

representing annotations for dimensions x and y for the same sentence as provided by the
[ evaluator) by analogy with Equation 22:

1
ear | y
0707
_ -1
2
nrnY
y - % iff t7 = O At =1,
e oro
&Y =80T, T = = (24)
x Y
— |25 i =TAY =,
o767
T -1
xnY 2
WO i =TI AE =1,
\ o707

where [ € {i,7,k}.

Given a set of three annotators (i, j, and k) and N distinct annotation dimensions pro-
vided for the same sentence by these annotators, we can write the likelihood of a complex
annotation set in the following way (by analogy with Equation 21):

13



P(Amk = {al, CL2,

where

,a" }|0)

E( zyk:

> P(Ayi|Tiji, ©) x P(T3/0) (25)

Tijk

TZ H {P(AL,, = a*|TE, = 17,0)}

P( Jk ={Tijk---» T3 }|O)] (26)
> H{P Le = a"|TE, =1",0)P(T, = t*]0)}
;(T]k)] (27)

=11+ > puy : (28)

x>y lefi,j,k}

Here, departing from our earlier definition of A;;, as a 1 x 3 vector, A;;;, is an N X 3 matrix.

If all p,, are zero, A(T;j;) = 1; this case corresponds to the assumption of complete inde-
pendence between annotations of different dimensions.

Put differently, if

and

zdef
R :P( zgk"Tuk? )’ (29)

def
RS P(AY,|TY,. 0), (30)
RV pAr T?,, TV, © 31
- ( ijk> zykl ik “ijk ) ( )

14



we have
R =R*® RY, (32)

where ® is the Kronecker matrix product (A ® Bdéf(aijB); see Figure 3 for a visual expla-

nation and p. 29 in [5]).

Rx Ry Rx
H N m =
W

- ‘=

0 O

B m

S P
L _ '

Figure 3: Model A: Matrices, dimension = has three annotation values, while dimension y
has four. All probability values are scaled by 100. In this example 67 = 0.95,67 = 0.4,0; =
0.6,0] = 0.6,07 = 0.9,0; = 0.7,p,y = 0.1,01 = 03,090 = 0.5,a3 = 0.6,4 = 0.1,05 =
0.2,a6 = 0.3, and a7 = 0.4.

15



8 Model A: Numerical data simulation

Let us consider annotations for a single dimension with just three annotation values (M = 3:
expected frequencies of three-evaluator patterns. w; = 0.1, wy = 0.3, w3 = 0.6, §; = 0.6,
0y = 0.8, and 63 = 0.5. Estimates: w; = 0.0792, &y = 0.2966, and w3 = 0.6242.). Here are
the data:

Table 9: Model A simulation: M = 3: expected fre-
quencies of three-evaluator patterns. w; = 0.1, wy = 0.3,
w3z = 0.6, 6 = 0.6, #, = 0.8, and A3 = 0.5. Estimates:
w1 = 0.0792, Wy = 0.2966, and w3 = 0.6242.

Pattern: | Probability | Simulated data:
[Vi, 5, U] counts
111 0.0011298 4
112 0.0038489 32
113 0.0076978 83
121 0.0028356 26
122 0.0089567 99
123 0.00468 48
131 0.0056711 51
132 0.00468 38
133 0.035827 375
211 0.0029856 37
212 0.0085067 80
213 0.00468 57
221 0.011547 143
222 0.030506 309
223 0.06928 690
231 0.00468 62
232 0.05104 521
233 0.10748 1,090
311 0.0059711 52
312 0.00468 53
313 0.034027 353
321 0.00468 42
322 0.05374 530
323 0.10208 1,035
331 0.046187 453
332 0.13856 1,325
333 0.24404 2,412
Total 1 10,000

16



Table 10: Model A simulation / model A estimation:
Maximum likelihood parameter estimates for simulated
data with “true” parameter values 6; = 0.6, 6, = 0.8,
and 6, = 0.5, obtained in 1,000 independent runs of
simulated annealing.

log Laz 0; 0; 0 Times Comment

[0.6] [0.8] [0.5] visited

—25527.871689 0.668050 0.728766 0.564728 396  «— Global
—25879.609684 0.157385 0.132595 0.239020 562  « Local

—25536.806999 0.545150 1.000000 0.490790 20 «— Local
—25536.828815 0.545262 0.999999 0.489812 4 «— Local
—25571.781813 1.000000 0.545119 0.479177 9 «— Local
—25536.842161 0.546401 0.999999 0.490438 1 «— Local
—25537.202882  0.545510 1.000000 0.495285 1 «— Local
—25571.793123  1.000000 0.545764 0.478727 2 «— Local
—25571.860053 0.998901 0.545367 0.479291 2 «— Local
—25805.836830 0.479160 0.490854 0.999999 2 «— Local
—25537.521125 0.547845 0.999995 0.485529 1 «— Local
—25536.997176 0.547409 0.999999 0.488768 1 «— Local
—25805.885787 0.477935 0.491827 0.999995 1 «— Local

Apparently, like in our earlier analysis [6], the likelihood surface has multiple modes.

Now let us use the same “data” for estimating parameters with the second model.

Table 11: Model A simulation / model B estimation:
Maximum likelihood parameter estimates (under model
B) for simulated data with “true” parameter values (gen-
erated under model A) 6, = 0.6, §; = 0.8, and 6, = 0.5,
obtained in 300 independent runs of simulated annealing.
We show here only three results because only two esti-
mates out of 300 ended in the same local optimum. It
appears that model B generates a large number of local

extrema.
#  Parameters Estimates
1: 108 Lmas — —25510.168554  (Mode #1)
91, %2] 0.072429 0.091682
S AS ALl Al AUL ASH] 0.643967 0.181024 0.069346 0.860127 0.070614 0.291446
S AT AT, AT AL AT 0.563529 0.228430 0.037449 0.928269 0.066827 0.296033
A S AL, ASs ALl AS] 0.317300 0.254958 0.543633 0.000000 0.006615 0.279374
2. 108 Lymas — —25513.788112  (Mode #2)
91, 4] 0.052294 0.048655
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Table 11: Model A simulation / model B estimation:
Maximum likelihood parameter estimates (under model
B) for simulated data with “true” parameter values (gen-
erated under model A) 6, = 0.6, 6; = 0.8, and 6, = 0.5,
obtained in 300 independent runs of simulated annealing.
We show here only three results because only two esti-
mates out of 300 ended in the same local optimum. It
appears that model B generates a large number of local

extrema.
#  Parameters Estimates
NS Aspi Aﬁ;, A ALy sy 0.000012 0.136700 0.227834 0.068975 0.022146 0.294202
A, Agﬁ AL AT AT ASA] 0.058033 0.613684 0.097179 0.044550 0.062505 0.277868
A A Ag’;, A A, AS)] 0.041889 0.848665 0.333664 0.131729 0.073904 0.299874
3: log Lyar =—25733.589116 (Mode #3)
[%, %] 0.017506 0.000000
Al 2‘1, A 1|>2, A ALy AS] 0.217812 0.062223 0.334380 0.009519 0.067055 0.295998
A, :fﬁ» A, A?,';, AL AT 0.000000 0.000012 0.132163 0.279946 0.034066 0.303387
[Ag;l, A A(l"‘;, A AL AL 0239152 0.559573 0.114760 0.028080 0.086721 0.291228
9 Model B: Description
Let us introduce a random variable, C¢, to define the correct value of an instance of anno-
tation for the ¢* dimension. In this section we will be considering only one dimension at a
time, so we will drop the superscript £ in the equations to follow. We also introduce random
variables V;, V;, and V}, to denote annotation values provided for the same fragment of text
by evaluators ¢, j, and k, respectively.
Table 12: Model B: Parameters and notations.
Notation Ezxplanation
C — A random variable representing the correct value of annotation
for the 2" dimension for a given text fragment.
C=q — A specific value (¢) of the correct annotation variable.
Vo — P(C =1[0)
vy | — P(V, = v,|C =1,0).
e —— A shorthand for all model parameters.

To make the resulting equations more compact, we introduce the following model param-
eters. Let 7, be the probability that the correct annotation for a fragment has value 1.
Further, let )\ix‘ , be the probability that evaluator x assigns annotation value v, to a text
fragment, given that the correct annotation for this text fragment is 1.
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The joint distribution of the correct annotation value (C') and three annotations provided
by evaluators i, j, and k are defined as follows—we explicitly assume that, given the true
value of annotation, evaluators are independent in their choice of annotations.

annotation
value

Evaluator-
specific
observed
annotation
value

Figure 4: Model B: Graphical-model-style outline (one annotation dimension, three evalua-
tors are annotating the same fragment of text).

P(C:w,‘/i:'l)i,‘/j:'l}j,vk:'UH@) = P(C:d}‘@)
X P(‘/Z—UZ’C:’QD,@)
x P(V;=v|C=1¢,0)
X P(Vk—vk|C:’l/J,@>
— (@) () ()
= oA o e (33)

The likelihood of a triplet of annotations for evaluators i, j and k is as follows:
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P(Vi=v,V;=v;,Vi=u[®) = Y P(C=10)
P

X X
ol
SN
o
S &
o Q
@?

= ZPO O, Vi =0, V; = v, Vi = 0]©)  (34)

_ i J) (k)
= ZV mw Aus 1o oy (35)

To analyze the real data, we will also need to be able to compute the posterior probability
that annotation value 9 is correct, given the observed annotation values for three annotators
and known values of model parameters.

P(C:w7‘/i:vi7‘/}zvj7vk:/uk’@)

P(C=y|Vi=v,V,=v;, Vi = 1,0 36
(¢ =7l 5= 03, Vi =0, ©) P(V; = 5, V; = v}, Vi = 04/0) (36)
(k)
— T >\ W’)\UJW’)\UHT/J (37)
GG

ZM T Ui|N)\Uj|N cAar

To make a comparison with model A easier, we can also define the probability of success
(correct annotation) for the 2! evaluator:

6. = Y P(C=v[0)P(V, =¢|C=1,0) (38)
P

= WA (39)
Y

If we have N distinct annotations that were generated by the triplet of evaluators (7, 7, and
k), we can compute the joint likelihood for all these data points:

PVt v10) = H(Zw o <{1>|¢Af,’gi)w), (40)

and estimate the model parameters by maximizing the likelihood function with respect to
parameter values.
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10 Model B: Counting parameters and observations

For a dimension with M admissible values, we can observe M? distinct three-evaluator an-
notations and therefore we can have up to M3 — 1 independent observation classes. For the
same dimension (with M admissible values) we have to estimate M — 1 parameters related
to P(C =1|©), and 3 x [M x (M — 1)] parameters related to P(V, = v,|C = ¢, 0).

This brings us to 7 observation classes and 7 parameters for a dimension with exactly 2
admissible values, 26 observation classes vs. 18 parameters for a dimension with three ad-
missible values, and 63 vs. 36 for a dimension with four admissible values.

Therefore, in this model, the observation-to-parameter ratio grows with dimensions and ob-
servation classes enabling estimation for a sufficiently large data set.

11 Model B: Numerical data simulation

In our numerical example, the “true” parameter values are as follows (where M is the num-
ber the admissible annotation values, and I' and A, represent a vector of +,’s and a matrix

of )\ij) 'S, respectively).

M = 2:
I' =10.7,0.3].
06 04 0.5 0.5 09 0.1
A = {0.2 0.8 ]’ Aj = {0.45 0.55 }’ Ay = {0.1 0.9 ]

The expected frequencies of all possible annotation patterns are shown in Table 13.

Table 13: Model B simulation: M = 2: expected fre-
quencies of three-evaluator patterns.

Pattern | Probability
111 0.1917
112 0.0453
121 0.1923
122 0.0507
211 0.1368
212 0.1112
221 0.1392
222 0.1328
Total 1
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10,000 “data points”:

N = [1882,443, 1863, 506, 1376, 1152, 1412, 1366,

Table 14: Model B simulation / model B estimation:
Example 1, M = 2, 40 independent runs of simulated
annealing estimation (same data, different starting values
of parameters). The “true” value for each parameter is
shown in brackets. To perform the estimation, we first
generated 10,000 “data points”: N =[1882, 443, 1863,
506, 1376, 1152, 1412, 1366] for annotation patterns [111,
112, 121, 122, 211, 212, 221, 222], respectively. We can
clearly see that the likelihood surface has two modes of
exactly the same height (the less frequent mode is shown

in bold).

log Lmaa M i Aiif2 A2 Aja)2 k2|1 Ak1)2

[0.7] [0.4] [0.2] [0.5] [0.45] [0.1] [0.1]
-19866.653175 0.605930 | 0.376678  0.232727 | 0.494839  0.454762 | 0.060055  0.212549
-19866.653175 0.605901 | 0.376667  0.232741 | 0.494837  0.454763 | 0.060038  0.212577
-19866.653175 0.605933 | 0.376683  0.232732 | 0.494840  0.454763 | 0.060049  0.212535
-19866.653175 | 0.394075 | 0.767266 0.623320 | 0.545237 0.505161 | 0.787455 0.939954
-19866.653175 0.605942 | 0.376688  0.232728 | 0.494840  0.454764 | 0.060054  0.212525
-19866.653175 0.605930 | 0.376682  0.232732 | 0.494839  0.454763 | 0.060050  0.212539
-19866.653175 0.605935 | 0.376684  0.232731 | 0.494840  0.454762 | 0.060051  0.212535
-19866.653175 0.605934 | 0.376685  0.232733 | 0.494840  0.454763 | 0.060049  0.212532
-19866.653176 0.605929 | 0.376678  0.232733 | 0.494838  0.454760 | 0.060045  0.212541
-19866.653175 | 0.394075 | 0.767261 0.623317 | 0.545237 0.505160 | 0.787462 0.939958

-19866.653175 | 0.605966 | 0.376699  0.232723 | 0.494842  0.454762 | 0.060061  0.212490
-19866.653175 | 0.605923 | 0.376680  0.232739 | 0.494840  0.454764 | 0.060042  0.212545
-19866.653175 | 0.605931 | 0.376684  0.232734 | 0.494841  0.454763 | 0.060047  0.212535
-19866.653175 | 0.605933 | 0.376685  0.232733 | 0.494840  0.454763 | 0.060048  0.212532
-19866.653175 | 0.605935 | 0.376684  0.232731 | 0.494840  0.454763 | 0.060050  0.212533
-19866.653175 | 0.605941 | 0.376687  0.232731 | 0.494840  0.454762 | 0.060052  0.212525
-19866.653175 | 0.605911 | 0.376670  0.232733 | 0.494839  0.454763 | 0.060049  0.212575
-19866.653175 | 0.605931 | 0.376683  0.232734 | 0.494840  0.454763 | 0.060048  0.212535
-19866.653175 | 0.605929 | 0.376682  0.232734 | 0.494840  0.454763 | 0.060047  0.212539
-19866.653175 | 0.605932 | 0.376683  0.232732 | 0.494840  0.454763 | 0.060049  0.212535
-19866.653175 | 0.605934 | 0.376684  0.232732 | 0.494840  0.454763 | 0.060050  0.212534
-19866.653175 | 0.605936 | 0.376685  0.232731 | 0.494840  0.454763 | 0.060051  0.212532
-19866.653175 | 0.605934 | 0.376684  0.232732 | 0.494840  0.454763 | 0.060050  0.212534
-19866.653175 | 0.605934 | 0.376684  0.232732 | 0.494840  0.454763 | 0.060050  0.212534
-19866.653175 | 0.605933 | 0.376684  0.232732 | 0.494840  0.454763 | 0.060050  0.212535
-19866.653175 | 0.605934 | 0.376684  0.232731 | 0.494840  0.454763 | 0.060050  0.212533
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-19866.653175
-19866.653175
-19866.653175
-19866.653175
-19866.653175
-19866.653175
-19866.653175
-19866.653175
-19866.653175
-19866.653175
-19866.653175
-19866.653175
-19866.653175
-19866.653175

0.605934
0.394066
0.605934
0.605934
0.605934
0.605934
0.605934
0.605936
0.605934
0.605935
0.605935
0.605934
0.605934
0.605934

0.376684  0.232731
0.767269 0.623316
0.376684  0.232732
0.376684  0.232731
0.376684  0.232731
0.376684  0.232732
0.376684  0.232732
0.376685  0.232731
0.376684  0.232731
0.376684  0.232731
0.376684  0.232731
0.376684  0.232731
0.376684  0.232732
0.376684  0.232732

0.494840  0.454763
0.545237 0.505160
0.494840  0.454763
0.494840  0.454763
0.494840  0.454763
0.494840  0.454763
0.494840  0.454763
0.494840  0.454763
0.494840  0.454763
0.494840  0.454763
0.494840  0.454763
0.494840  0.454763
0.494840  0.454763
0.494840  0.454763

0.060050  0.212533
0.787466 0.939950
0.060050  0.212534
0.060050  0.212534
0.060050  0.212534
0.060050  0.212534
0.060050  0.212534
0.060051  0.212532
0.060050  0.212534
0.060050  0.212532
0.060051  0.212534
0.060050  0.212534
0.060050  0.212534
0.060050  0.212535

10,000 “data points”:

N = [564,338,1752,867,681, 342, 3730, 1726],

Table 15: Model B simulation / model B estimation:
Example 2, M = 2, 20 independent runs of simulated
annealing estimation (same data, different starting values
of parameters). The “true” value for each parameter is
shown in brackets. To perform the estimation, we first
generated 10,000 “data points”: N =[564, 338, 1752, 867,
681, 342, 3730, 1726] for annotation patterns [111, 112,
121, 122, 211, 212, 221, 222], respectively. We can clearly
see that the likelihood surface has two modes of exactly
the same height (the less frequent mode is shown in bold).

[6:,6;, 6] = [0.68,0.83,0.36], where 6, = >~ Yy Ao,pju-

log Lmaax M /\1,2\1 )\i,1|2 )\j,2|1 >\j,1|2 >\k,2\1 /\k,1|2

[0.2] [0.4] [0.3] [0.45] [0.45] (0.1] [0.7]
-17633.090670 | 0.850300 | 0.712360 0.718234 | 0.868736 0.540325 | 0.312940 0.591135
-17633.090670 | 0.850300 | 0.712360 0.718234 | 0.868736 0.540325 | 0.312940 0.591135
—17633.090670 | 0.149700 | 0.281766  0.287640 | 0.459675 0.131264 | 0.408865 0.687060
-17633.090670 | 0.850300 | 0.712360 0.718234 | 0.868736 0.540325 | 0.312940 0.591135
—17633.090670 | 0.149700 | 0.281766  0.287640 | 0.459675 0.131264 | 0.408865 0.687060
—17633.090670 | 0.149700 | 0.281766  0.287640 | 0.459675 0.131264 | 0.408865 0.687060
—17633.090670 | 0.149700 | 0.281766  0.287640 | 0.459675 0.131263 | 0.408865 0.687060
—17633.090670 | 0.149700 | 0.281766  0.287640 | 0.459675 0.131264 | 0.408865 0.687060
—17633.090670 | 0.149700 | 0.281766  0.287640 | 0.459676  0.131264 | 0.408865 0.687060
—17633.090670 | 0.149700 | 0.281766  0.287640 | 0.459675 0.131264 | 0.408865 0.687060
—17633.090670 | 0.149700 | 0.281766  0.287640 | 0.459676  0.131264 | 0.408865 0.687060
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—17633.090670 | 0.149700 | 0.281766  0.287640 | 0.459676  0.131264 | 0.408865  0.687060
—17633.090670 | 0.149700 | 0.281766  0.287640 | 0.459675  0.131264 | 0.408865  0.687060
—17633.090670 | 0.149700 | 0.281766  0.287640 | 0.459675  0.131264 | 0.408865  0.687060
—17633.090670 | 0.149700 | 0.281766  0.287640 | 0.459675  0.131264 | 0.408865  0.687060
—17633.090670 | 0.149700 | 0.281766  0.287640 | 0.459675  0.131264 | 0.408865  0.687060
—17633.090670 | 0.149700 | 0.281766  0.287640 | 0.459676  0.131263 | 0.408865  0.687060
—17633.090670 | 0.149700 | 0.281766  0.287640 | 0.459676  0.131263 | 0.408865  0.687060
—17633.090670 | 0.149700 | 0.281766  0.287640 | 0.459675  0.131264 | 0.408865  0.687060
—17633.090670 | 0.149700 | 0.281766  0.287640 | 0.459675  0.131264 | 0.408865  0.687060
Table 16: Model B simulation / model A estimation:
Example 2, M = 2, 50 independent runs of simulated
annealing estimation (same data, different starting values
of parameters). The “true” value for each parameter is
shown in brackets. To perform the estimation, we first
generated 10,000 “data points”: N =[564, 338, 1752,
867, 681, 342, 3730, 1726] for annotation patterns [111,
112, 121, 122, 211, 212, 221, 222], respectively. We can
clearly see that the likelihood surface has two modes.
[tgi, 9]', Hk] = {068083036], where 990 = Z"/) 71/1/\33»@%[)' .
Simulated Annealing run log Lyax 0; 0; 0 Comment
[0.68] [0.83] [0.36]  about the extremum
—13199.377582 0.309318 0.144775 0.663192 <« Local
—13194.999964 0.689629 0.858267 0.337781
—13194.999964 0.689629 0.858267 0.337781
—13199.377582 0.309318 0.144775 0.663192 <« Local
—13199.377582 0.309318 0.144775 0.663192 <« Local
—13194.999964 0.689629 0.858267 0.337781
—13194.999964 0.689629 0.858267 0.337781
—13194.999964 0.689629 0.858267 0.337781
—13194.999964 0.689629 0.858267 0.337781
—13194.999964 0.689629 0.858267 0.337781
—13194.999964 0.689629 0.858267 0.337781
—13194.999964 0.689629 0.858267 0.337781
—13199.377582 0.309318 0.144775 0.663192 « Local
—13194.999964 0.689629 0.858267 0.337781
—13194.999964 0.689629 0.858267 0.337781
—13194.999964 0.689629 0.858267 0.337781
—13194.999964 0.689629 0.858267 0.337781
—13194.999964 0.689629 0.858267 0.337781
—13199.377582 0.309318 0.144775 0.663192 <« Local
—13194.999964 0.689629 0.858267 0.337781
—13194.999964 0.689629 0.858267 0.337781
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Table 16: Model B simulation / model A estimation:
Example 2, M = 2, 50 independent runs of simulated
annealing estimation (same data, different starting values
of parameters). The “true” value for each parameter is
shown in brackets. To perform the estimation, we first
generated 10,000 “data points”: N =[564, 338, 1752,
867, 681, 342, 3730, 1726] for annotation patterns [111,
112, 121, 122, 211, 212, 221, 222], respectively. We can
clearly see that the likelihood surface has two modes.
[0:,0;, 0x] = [0.680.830.36], where 0, = >/ Yy Az yjp- -

Simulated Annealing run log Lyna 0; 0, 0 Comment
[0.68] [0.83] [0.36]  about the extremum

—13194.999964 0.689629 0.858267 0.337781
—13194.999964 0.689629 0.858267 0.337781
—13194.999964 0.689629 0.858267 0.337781
—13194.999964 0.689629 0.858267 0.337781
—13194.999964 0.689629 0.858267 0.337781

12 Model B and the Expectation-Maximization algo-
rithm

We explain below how to implement the Expectation-Maximization algorithm for the sim-
plest case in which a group of 3 evaluators annotates a text fragment with 2 admissible
values of annotation. It is straightforward to generalize this approach to a larger number of
evaluators and allowed annotations.

Let us denote all model parameters of model B with vector ©.

We assume there are three annotators working independently, numbered 1, 2, and 3 and that
each fragment was annotated with one of two possible annotations, which again we denote
by 1 and 2.

Let there be N data points represented by {(a;1, a;o, Gig)}f\il where a;; represents annotator
1’s annotation of the #*" fragment, etc.

We have missing data in this problem which is the correct annotation for each data point.
We will use a double to represent the missing data for each data point: {(z;1, 3322)}2]11 Here
the z;, are each either zero or one and the constraint x;; + x;0 = 1 is obeyed for each data
point i. If z;; = 1 that means that value k is the correct annotation for the i** data point
and all other values are incorrect. Using the variables representing the missing data we can
write an expression for the probability of seeing the complete data for a data point.
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Pllair, a, i), e, 22]0) = (AL A2 A 7)”
« (/\(1) /\(2) /\(3) >xi2' (41)

@127 ai212 ay 3\2,)/2

Based on this the log probability of the complete data for the point can be written as

log P([ai1, @iz, ais), [vi1, 2:2]|©) = x4 log <)\f(ll‘3|1>\f(12ii‘1)\‘(’2‘1%>
+ walog (\AZ A ) 2

We assume that data for different data points are independent of each other. Then based
on equation 42 we can write the log probability of the complete data (missing included) as

log P(complete data|®) =

N
Z [.ﬁlﬁil log ()\gliu)\a 2|1>\a illﬁyl) + x49 log <)‘213|2)‘222I2/\a32|272)] ) (43)

i=1
Now the expectation step in the EM algorithm requires that we compute the expectation of

the log likelihood of the data. To do this we note that the expectation of a variable that is
either zero or one is just the probability that the variable takes the value one.

E(zij) = P(x; = 1]©). (44)

For convenience we define the following notation

iy € P(zy; = 1]©). (45)

Then we have

E [log P(complete data|©)]

N
1) (2 2) \(3

=D [‘”“ 10g< oo Ve )|171> iz log <>‘a 3I2A§wzil2)‘;§|ﬂ?>]

=1

N 3
= > [ T {Zlogkal,l +log’h} + Fin {Zlogkfl’gp +10g72}] - (46)

=1 m=1
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Initially we begin with a guess for the numbers z;;. Shortly we will show how they are

estimated. The next step in the EM algorithm is the M step. Here we need to maximize
equation 46 based on the choice of the A njﬁg’s. Note that the lambdas are probabilities whose

only constraint is that for each k£ and j

2

S =1 (47)
n=1

Using Lagrange multipliers we can estimate 5\,(3& in terms of a;;’s and Zy’s.

Zi:aij:m jlk

5\(1‘) _ ‘ . 48
ik Zi:aijzl Ty + Zi:aijzg Ti2 (48)
Similarly, for v.’s we have the restriction
2
Do w=1 (49)
n=1

Again Lagrange multipliers can be used to show that

~ i jz
S DL . (50)
Zj:l > i Ty

This completes the maximization step of the EM algorithm and defines a set of parameters
© from the set of Z;.

Once O is obtained from the maximization, new probabilities are defined by

Ty = Py = 1[an, aio, as], ©)

P(lai, a2, az)|zi; = 1,0);
P(lai1, a2, a:3)|0©)
1) y(2) 3
_ )\ai1|j)\ai2|j)\ai3‘j7j (51)

22 )\(1) /\(2) )\(3)

n=1

ai1|n ai2|n a1-3|n/7”
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using Bayes Theorem. The resulting 7;; are used to seed the next round of expectation—
maximization. This process is repeated until some convergence criterion is met.

Effective Optimization. The EM algorithm as described works well to achieve a local
maximum of the objective function (log likelihood of the data). There are many local max-
ima for this function, however, and so the results are not very satisfactory. To overcome
this problem in part we take the following approach. We introduce a smoothing factor into
equation 51. The result can be written

(1) (2) )
T = )\aillj)\azzlj)\aw\j%+60¢j (52)

2 A0 A A ] + e

n=1 ""a;1|n""a;2|n

Here for each example the number V; is the number of annotators and Cj; is the number of
annotators that annotated with the j** annotation. Thus the smoothing is a bias that tends
to move the 7j; toward higher probabilities for what the annotators actually annotated. If
we can move all of these probabilities toward agreement with what the actual annotations
then the model naturally predicts a much higher probability for the data. This roughly
corresponds to how one may believe a certain thing is true because a number of others state
that it is true. The bias in equation 52 has the result that the system of equations does
not exactly fulfill the conditions for the EM algorithm. Thus we are not guaranteed that
the likelihood will be nondecreasing as we iterate, but in the cases we have investigated this
is more than compensated for by the effect of shifting the }; toward agreement with the
annotators. The strategy we have found to work best is to begin with a fairly large €, say 0.1,
and then run till convergence. Subsequently, set ¢ = 0 and run to convergence again. In this
way, the final run is a pure EM implementation and produces a local optimum, but we have
moved things into a region so that this tends to be a much better optimum than it would
have been had we chosen a random starting point and run EM exclusively. We compared
this approach with running exclusively EM with 1 million distinct random starts and saving
the best. Actually the strictly EM approach generally gives a slightly better result, but it
may not correspond with what we think is the most reasonable solution. (One way to define
the most reasonable solution as the one with the highest sum of #’s if the likelihoods are
about the same.)

Figure 5 shows data from our calculations for a case of 3-evaluator annotations of a dimension

with 3 admissible values using the “exclusive” EM algorithm; our efficient implementation
of EM using equation 52 would generate values close to the global optimum.
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13 Symmetries within solutions for model B

Symmetries. Let us suppose that the number of possible annotations for a fragment is n.

Let S,, denote the symmetric group also known as the group of permutations on n objects.
n

Let m € S,, be a permutation belonging to the group. Let {/\EC)} and {vj}?_l constitute
j=1 =

a solution to the EM problem which maximizes the probability of the data given model pa-

rameters (likelihood) and also satisfies constraints that we impose on parameters (equations

49 and 47). Then using m we may define another solution:

AB k)
()
Vi = Vi) (53)

It is trivial to check that the new parameter set satisfies equations 47 and 49 and one can
readily see that by applying the new parameter set in equations 51 one obtains a new set

i‘;j = Tin(j), (54)

and with this new set {:Em(j)} and new parameters expression 46 achieves the same maxi-
mum. This new solution is of interest because the expression

O = WAy, (55)
=1

is generally not invariant under the permutation 7. Thus for a given 7 we can define

m n

F(m) =D Ay (56)

k=1 =1

Then we take that = which maximizes F'(7) as our preferred = and denote it with 7*. It is
natural to choose the solution corresponding to 7* if we use correctness as our best predictive
estimate for annotations. In the case where n is 2, there are two members of S,,, for 3 it is
6, for 4 it is 24, for 5 it is 120, and for 9 it is 362, 880. In general S,, has n! elements.
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Figure 5: Testing implementation of our EM algorithm. Figures A, B, and C reproduce our
earlier results represented in tables 9, 14, and 15, respectively. Note that likelihood values
listed in tables 14 and 15 were obtained with Simulated Annealing (SA) algorithm that can
jump among local optima, so that, in most SA runs, only the highest likelihood modes are
visible. The EM algorithm, in contrast, is a strict hill-climbing algorithm that cannot escape
from local optima even if there are other optima with better likelihood values. This explains
the abundance of recovered lower likelihood optima with EM compared to SA.
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