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 SI Appendix

I. Electrostatic Calculations

              In order to simulate the translocation process we have to address two challenges. The

first is the evaluation of the effective free energy surface and the other is simulating the

dynamics on this surface. Obviously a full macroscopic evaluation of the relevant free energy

surface is to challenging in part in view of the absence of the full structure of the complex and in

part because of expected extreme convergence problems.  At present we believe that the most

effective strategy is to focus on the electrostatic free energy of the model system and this is done

here with the PDLD/S-LRA approach(1).

The PDLD/S-LRA method evaluates the change in electrostatic free energies upon transfer of a

given ligand (l) from water to the protein by starting with the effective PDLD potentials;
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 where ΔGsol denotes the electrostatic contribution to the solvation free energy of the indicated

group in water (e.g., pl
solG +Δ  denotes the solvation of the protein-ligand complex in water). To be

more precise, ΔGsol should be scaled by 1 / (1 – 1/εw) but this small correction is neglected here.

The values of the ΔGsol’s are evaluated by the Langevin dipole solvent model. l
qU μ  is the

electrostatic interaction between the charges of the ligand and the protein dipoles in vacuum (this
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is a standard PDLD notation). In the present case l
qU ′

μ  = 0. l
intraU  is the intramolecular

electrostatic interaction of the ligand. Now the PDLD/S results obtained with a single protein-

ligand configuration cannot capture properly the effect of the protein reorganization (see

discussion in ref (1)) and a more consistent treatment should involve the use of the LRA or

related approaches (e.g., ref. (1) and (2)). This approach provides a reasonable approximation for

the corresponding electrostatic free energies:
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where the effective potential U is defined in Eq. 1 and 
l
 and 

l′
 designate an MD average

over the coordinates of the ligand-complex in their polar and nonpolar forms. It is important to

realize that the average of Eq. 2 is always done where both contributions to the relevant elecU  are

evaluated at the same configurations. That is, the PDLD/S energies of the polar and nonpolar

states are evaluated at each averaging step by using the same structure. However, we generate

two set of structures one from MD runs on the polar state and one from MD runs on the nonpolar

state. This is basically the same approach used in the microscopic LRA but now with the

effective potential elecU .

Our initial screening is based on evaluation of electrostatic group contributions. This

contribution are defined here as the effect of “mutating” all the residual charges of the given

group to zero. In principle, we can perform such mutations and evaluate the PDLD/S-LRA

binding energy for the given native and mutant. However, when we are dealing with charged and
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polar residues, it is reasonable to start with the faster screening approximation introduced by

Muegge et al. (3) This approach evaluates the electrostatic group contributions to the binding

energy by looking at the term in Eq.1. This leads to
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where εx is taken as εx ≈ 4 for polar residues and εx = εeff ≈ 40 for ionized residues. This approach

was examined in several test cases (e.g. ref  (3)) and apparently provide a reasonable result for an

initial screening.    

The effective electrostatic free energy surface is given in SI-Fig. 1 (A) where we focus on the

DNA protein interaction. SI-Figure 1 (B) presents the adjusted surface after taking into account

the protein internal energy (see main text).

II. Group contributions to the translocation process

   At this stage we may ask what is the basis for the shape of the translocation surface. This is

done by evaluating the electrostatic group contribution for the interaction of the DNA with the

protein, and taking the corresponding difference between the potential at D and T  at R” = 2.4

and the difference between the potential at D and T at R” = 2. Residues that decrease the first

difference and increase the second create the special pattern of Fig. 4 of the main text.  Similarly

we calculated the differences between the potential at R”=2.4 and R”=2.0 at T and at D. Where

residues that decrease the first difference and increase the second generate the pattern of Fig 3 of

the main text. The calculated results are depicted in SI-Fig. 2, which shows that the overall

residue contributions help in establishing the translocation pattern. Mutating residues according

to this pattern and examining the resulting translocation will be extremely instructive.

III. Effective free energy surface and Langevin dynamics simulations
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The next challenge is to simulate the dynamics in the space defined by the effective coordinates

of the system. To address this challenging problem we introduced a Langevin dynamics

approach similar to the one used in our studies of proton translocation processes (4).  That is, in

order to explore the time dependence that coupled protein-DNA motions we approximate the

effective surface obtained by the PDLD/S-LRA approach by a multi minima empirical valence

bond (EVB)-type potential surface.

In this way the system is represented by mixing potential of the form (see ref. (4) for more

details)
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where Q and R are the effective dimensionless coordinates of the protein (solvent) and the DNA,

respectively R is related to the dimensional coordinate, R’, by   R = ′ R (ωR MR /=)1/ 2 , whereas Q is

defined by QQelm1m2Q δωεε =)( ,, −−= . Here l=1, 2, 3 for the ATP, ADP and empty forms,

respectively, while m=0,1,2,3,..  for different positions of the DNA. Finally iα is the difference

between the minimums of the diagonal energies. We also use the general index i = l+3(m-1).

The effective frequency is evaluated by ∫= ωωωω dP )( , in which )(ωP is the normalized power

spectrum of the corresponding contribution to ( m1m2 ,, εε − ). We also define reorganization

energies
2
RRR 2 δωλ )/(==    ,                                                                                            (5)

  λQ = (= /2)ωQδQ
2

in addition to the εi, we also have off-diagonal element, whose value are chosen to force the

barriers between different minima to agree with estimates of the barriers for the chemically

driven conformational changes. The actual potential surface is obtained by diagonalizing the

system Hamiltonian

HCg = EgCg                                                                                                                 (6)

The surface of Eq. 3 was fitted to the full surface using the proper α l,m , with λQ =40 kcal/mol

and Hij =4 kcal/mol. (although equal fitting could have obtained with larger λQ   and larger Hij )

to reproduce the chemical barrier. The fitted surface is given in SI-Figure 3.
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With the above effective surface it is possible to run Langevin dynamics (LD) simulations and to

explore the time dependence of the translocation process.

The corresponding LD equation for the solvent coordinate is now expressed as (4)

( ) )t(A))((CMQMQM Q
')(2i

g
2

QQ Q

′+⎥
⎦

⎤
⎢
⎣

⎡
−′−′−=′ ∑ il

Q
i

QQ Q δωγ ��� (7)

where   Q = MQωQ =( )1/ 2
′ Q , ( ) '2/1

QQQ M Qδωω == , while Qγ  and MQ are the effective friction
and effective mass of the solvent and effective friction of the protein coordinate. AQ(t) here is a
random force that satisfies the fluctuation dissipation relationship. The friction term is evaluated
(see ref. (5)) from the relationship Qγ  = QQ τω2 , where
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The effective mass was estimated by using the relationship ( )2
BQ QTkM � ′= .

The equation of motion for the R coordinate is given by
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 Following ref  (4) we selected for Qγ , ωQ  and MQ the values 280 ps-1, 40 cm-1 and 20 ,

respectively. A more rigorous treatment can be obtained by evaluating these parameters for the

ATP bound system but the results are not expected to be very different. In the present case we

estimated using the  Einstein formula ( Rγ  = kBT/MRD). The diffusion constant (D) of a 10-base

pair single strand DNA was estimated based on the experimental relationship(6) of DNA

molecular length and diffusion constant. Here we obtained that D=9.7 μm2/s  for 10 base pairs

with m= 3400 amu. Rω  was estimated from the shape of surface and found to be 20cm-1 for

mR=3400 amu. Thus we used Rγ =75 ps-1 .

 As clarified in the text, our simulations were done for different activation barriers in order to

allow for interpolation to the actual barrier. The results of this study are summarized in SI-Figure

5. Using the figure to interpolate to a barrier of 18 kcal/mol, gave a translocation time of around

0.004s per nt in a qualitative agreement with the observed trend (0.007 s). Note that the value of
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the interpolation curve at zero barriers for the protein conformational transition, still reflects the

effect of the barrier for the motion of the DNA in the R direction.
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