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1 Mathematical Model. Analysis

The simple version of the model is described by the following set of equations

Ṙ = ω(C −R)−Ψ(R)eB (1)
Ḃ = Ψ(R)B − ωB − xBT (2)
Ṫ = yBT − ωT − dT (3)

where, Ψ(R) = νR/(K + R)

These equations can be rewritten in dimensionless form by rescaling the resource (R),
bacterium (B), and toxin (T) variables as:

R′ = R/C, B′ = yB/fω, T ′ = xT/ω (4)

This gives:

Ṙ′ = 1−R′ − aB′ψ(R′) (5)
Ḃ′ = B′(bψ(R′)− 1− T ) (6)
Ṫ ′ = fT ′(B′ − 1) (7)

with ψ(R′) defined as ψ(R′) = R′/(R′ + κ)

Here we have also rescaled the time variable as t′ = ωt. The dimensionless combinations
of parameters which determine the system’s dynamical behavior are:

f = (ω + d)/ω, κ = K/C, a = efν/yC, b = ν/ω. (8)

The possible stationary points (equilibrium points*) of this system, R∗, B∗, and T ∗, are
found by putting Ṙ = Ḃ = Ṫ = 0, and solving the ensuing algebraic equations. There are
three such stationary points.

From this point we dropped the superscript prime (’) on each variable. B′ → B, R′ → R,
T ′ → T .

S- 2



The first –“resource only”– such point has:

B∗ = T ∗ = 0, and R∗ = 1 (9)

A linearized stability analysis shows this point is stable if, and only if,

κ/(b− 1) > 1 (10)

Failing this, an arbitrary small introduction of bacterium will grow (Ḃ > 0).

The second –“plant-hervibore”– point has

R∗ = κ/(b− 1), B∗ = (1−R∗)b/a, T ∗ = 0 (11)

This equilibrium is stable if, and only if,

(a/b) + κ/(b− 1) > 1 > κ/(b− 1) (12)

Within this domain, any introduction of T decays to zero, and the system returns to the
R∗, B∗ equilibrium with damped oscillations if κ > (b − 1)2/(2b − 1), or via exponential
damping otherwise.

Third, and the most interesting, is a “3 species” (a “plant-hervibore-predator”) equilib-
rium solution with

B∗ = 1, R∗ = −D + (D2 + κ)1/2, T ∗ = (b/a)(1−R∗)− 1. (13)

Here, D is defined for notational convenience as D = (a + κ − 1)/2. This equilibrium
solution is stable with all the three components persisting together, if and only if

1 > (a/b) + κ/(b− 1) (14)
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For the experimental system, representative values of the parameters are ω = 0.1 ml
hour−1, x = 5 × 10−6 ml cells−1 a.u.t.−1, e = 10−7 µg, y = 4 × 10−10 ml cells−1 a.u.t.−1,
K = 0.25 µg ml−1, ν = 1 cells hour−1, d = 0.1 hour−1 (the a.u.t are defined as “arbitrary
units of toxin”). The parameter characterizing the resource/chemostat concentration, C,
take various values, but always C >> K . Given that C is the control variable and κ rep-
resents it, the definition of a can be changed to a = ακ with α defined below. For the
dimensionless parameters of Eq.(8) we thus have f = 2, b = 10, a = ακ (with α = 2000),
and κ = 0.25/C, with C having values from a few tens to a few thousands. That is,
κ << 1, whereas a can be less or greater than 1, and the defintion of α is as follows:

α =
efν

yK
, (15)

and it is important to remember that according to our definitions K = κC.

The dynamics of this 3-species system (represented in Figure S1), as κ varies (correspond-
ing to the chemostat resource concentration C varying), are interesting, with a rather
sharp transition in dynamical behavior at the point where a = 1 − κ ≈ 1. For the il-
lustrative parameters above, this corresponds to C = 500. For a smaller than this (a < 1),
and remembering κ � 1, for all C-values of interest, we have D = (a + κ − 1)/2 < 0,
resulting in R∗ ≈ 1−a, B∗ = 1, T ≈ (b−1). In this region the system approaches its stable
equilibrium point via very weakly damped oscillations. The oscillations have a period, P ,
approximatelly given by

P ≈ 2π[f(b− 1)]−1/2/ω (16)

whilst the damping time, τ , is very long of the order

τ ∼ 2[1 + f(b− 1)][1− a]2/[abωκ] (17)

Here, these expressions are given in absolute time (not rescaled), hence the factor ω.
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The dynamical behavior changes abruptly when κ —- although still much less than 1 —-
approaches the value such that a = ακ (with α� 1) is essentially one: a = 1+ (a few mul-
tiples of)κ. In this tiny window, D ∼ K and R∗ ≈ κ1/2, while still B∗ = 1 and T ∗ = b− 1.
The system still approaches equilibrium via damped oscillations, but now with the period
(P ) and the damping time (τ ) are of comparable magnitude: P is much as above, but now
τ ∼ [4 + f(b− 1)]/bω.

Finally, for a > 1 (by a few multiples of κ), we move into a regime whereR∗ ≈ κ/(a−1) <<
1, B∗ = 1, T ∗ = (b− a)/a.

Perturbations to this equilibrium point decay back to it; the characteristic damping time
is τ ∼ 1/[(β − γ)ω], with the definitions β = b/2a and γ = (β2 − 2fβ + f)1/2.

As a increases, β and thence γ decrease, until we have γ = 0 when β = f − (f2 − f)1/2.
Beyond this point, the system returns to its equilibrium point via damped oscillations,
whose period (T ∼ 1/ | γ | ω) and damping time (τ ∼ 1/β) have comparable magni-
tudes. Eventually, once a becomes sufficiently large that a > b[1− κ/(b− 1)], the 3-species
equilibrium is no longer stable, and the toxin T can no longer be maintained in the system.

Figure ?? illustrates this range of behavior, and in particular the very abrupt transition
around the point a = 1 (which for the illustrative parameter values outlined above, corre-
sponds to C = 500): for C-values above this, there are very weakly damped oscillations;
below it, there is exponential damping if 341 < C < 500, and damped oscillations for
50 < C < 341. Once a > b[1− κ/(b− 1)], corresponding here to C < 50, the toxin can no
longer be maintained, and we have a stable “resource - bacterium” systemR∗-B∗. For im-
plausibly small C-values (C < 1/36), the only stable state is the “resource-only” system,
with neither bacterium nor toxin. Again, and at the risk of being repetitive, the composite
parameteres a, b, and f allows us to examine the transition between the different dynamic
behaviours that the system might experience as the result of changes in the resource con-
centration C.

It should be emphasized that the stability analysis presented above is, strictly speaking,
valid only for small perturbations (i.e. a linearized analysis). But – although we have
not found a Lyapunov function for the above system – previous experience suggests the
global dynamical properties march with the local ones. Extensive numerical simulations
support this suggestion.
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Dynamics:  Summary 
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Figure S1: Diagram of the Dynamics predicted by the model. The space of possible dynamics
is shown as a function of values the composite paramter a . It is shown in different boxes (from
the top to the bottom) the Predicted Dynamics, the predicted equilibrium state for each range of
a , The characteristic oscillation period (P ) and envelope decay rate (τ ) of the oscillations for the
differen behaviours
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2 Strain deficient in the production of Hydrogen peroxide oscil-
lates

Pneumococcus inhibits the replication or lyses Staphylococcus aureus by the release of H2O2

(Regev-Yochay et al. 2007). This raises the possibility that hydrogen peroxide could be the
toxin responsible for the observed oscillations of S. pneumoniae R6 chemostat culture. The
results of experiments with catalase reported in our article are inconsistent with this inter-
pretation. Also inconsistent are the experiments we performed with a strain deficient in
the production of pyruvate oxidase, an exzyme required for the production of hydrogen
peroxide. In chemostat culture this strain oscillates, Figure S2.
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Figure S2: Changes in density (CFU) of S. pneumoniae strain (TIGR4 background) deficient for the
production of pyruvate oxidase (∆-spxB) an enzyme required for the production of H2O2 (dark
green lines and triangles) and the spxB+ control (light green lines and spots).

3 Strains deficient in the induction of competence (comC and ComD
deficient) and bacteriocin like protein (blpR deficient) systems
oscillate

The competence peptide of S. pneumoniae, which appears to be produced in an autocat-
alytic manner similar to toxin postulated here, is a reasonable candidate for the agent
(toxin or regulatory factor involved in the production of the toxin) driving the oscillations.
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To test this hypothesis, we inoculated chemostats with mutants defective in the produc-
tion of the competence peptide (∆-ComC) or in the receptor of the competence peptide
(∆-ComD). These strains oscillate (Figure S3).

0 20 40 60 80 100

1e
+

01
1e

+
04

1e
+

07
1e

+
10

Time (hrs)

C
el

l_
D

en
si

ty
(L

og
C

F
U

/m
l)

Figure S3: Changes in density in chemostat culture of S. pneumoniae wild type R6 (dark blue) and
R6 deficient in the production of the competence peptide ∆-ComC (light green), and its receptor
∆-ComD) in light orange.

A similar behaviour is found in strains in which the regulatory gene of the blp system,
also known to operate autocatalitically, has been knocked out. That is, it shows oscillatory
dynamics similar to the parental strain (Figure S4)

4 Strains deficient in the production of murein hydrolase, CbpD,
oscillate

As estated in the previous section the competence peptide of S. pneumoniae, which ap-
pears to be produced in an autocatalytic manner, does not oscillate. Additional evidence
is found in a strain that lacks the production o the general response regulator ComE of
the competence system (see Figure S5). Moreover, the lysing protein murein hydrolase,
produced by CbpD, and seemingly regulated by the competence system, does not seem to
prevent the strains from oscillating (see Figure S5), and we consider it can be ruled out as
a potential oscillation driving agent in this system.

S- 8



0 20 40 60 80

1e
+

01
1e

+
04

1e
+

07
1e

+
10

Times (hours)

C
el

l_
de

ns
ity

 (
Lo

g 
C

F
U

/m
l)

Figure S4: Chemostat dynamics of the S. pneumoniae 6A strain (serotype 23) deficient in the pro-
duction of the regulatory peptide of the blp regulon (∆-blpR Light Blue ). The wild type is shown
in Dark Blue.
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Figure S5: Changes in density in chemostat culture: S. pneumoniae RH1 wild type (blue). RH17
a derivative of RH1 deficient in the production of the murein hydrolase protein, ∆-CbpD, (dark
green), RH3 a derivative of RH1 deficient in the production of the cognate response regulator of
the competence system, ∆-ComE, (green) (Johnsborg et al. 2008)
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5 Assisted suicide protects established populations for invasion
of higher fitness clones or species. Model and analysis.

In our report, we postulate that despite the killing of members of the same clone, assisted
suicide could have evolved and be maintained as a mechanism to prevent established
populations from invasion by bacteria of different clones or species with greater intrinsic
fitness. The necessary condition for this is the invading clone is sufficiently sensitive to
the toxin at its concentration in an established population of Streptococcus pneumoniae to
have a net disadvantage relative to members of the established clone.

To begin exploring these invasion prevention conditions quantitative way, we expanded
our model (equations 1-3) to include a second population of bacteria, B2 and add a sub-
script 1 to the variable designating the toxin-producing species, B1. We assume both
species are limited by the same resource which they consume in a Monod-like fashion
with for simplicity the same values of k and e. These two populations can have different
maximum growth rates, V1 and V2, and different sensitivities to the toxin. With these def-
initions and assumptions, the rates of change in the densities of the different populations
are given by,

Ṙ = (C −R)ω − eΨ(R)(B1V1 +B2V2) (18)
Ḃ1 = Ψ(R)V1B1 − ωB1 − x1B1T (19)
Ḃ2 = Ψ(R)V2B2 − ωB2 − x2B2T (20)
Ṫ = yB1T − ωT − dT (21)

where, Ψ(R) = νR/(K +R) as in the previous model. V1 and V2 are the maximum growth
rates of these bacteria, and x1 and x2 are the killing rates of the producing and invading
bacteria respectively. For convenience we assume that the efficiency of conversion of re-
source into bacteria biomass, e, and the Monod constant, k, are identical forB1 andB2. As
in the previous model y is the rate constant of production of the toxin and d is the inverse
of the half-life of the toxin.

For analytical tractability in the above model we are assuming that B2 does not produce
the toxin. This assumption can be justified by our concern with the conditions for invasion
of established populations of the toxin-producing strain B1 by B2 when it is rare. Even if
the per-capita rate of production of the B2 toxin was great and the established population
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highly sensitive to it, as long as the density of the invading population is low, the concen-
tration of the toxin produced by it would be too low to cause a perceptible effect on the
much more numerous established population.

Suppose B2 tries to invade the R − B1 − T system. That is, for entry/growth of a tiny
amount of B2, we have:

Ḃ2 = B2(ψ(R∗)ν2 − ω − x2T
∗) (22)

where, R∗, T ∗ are given by the (equilibrium) solutions of the R − B1 − T system being
invaded.
Clearly, invasion is possible if, and only if,

ν2ψ
∗ > ω + x2T

∗ (23)

But ψ∗ is given by ν1ψ
∗ = ω + x1T , so Eq.(23) becomes

ν2

ν1
(ω + x1T ) > ω + x2T (24)

i.e (
ν2 − ν1

ν1

)
>

(
x2 −

ν2x1

ν1

)
T ∗

ω
(25)

with T ∗ from our earlier analysis of R−B1 − T system.

Clearly, if ν2 ≈ ν1 and x2 > x1, this Eq.(25) can not be satisfied, and cannot invade. But, if
ν2 is sufficiently larger than ν1, then the right hand side (RHS) of Eq.(25) gets bigger AND(
x2 − ν2

ν1
x1

)
gets smaller — can even be negative if ν2

ν1 >
x2
x1

— and B2 CAN invade.

To be more explicit, we need to put in the value of T ∗ (which, remember, is related to our
earlier, RESCALED, T ∗ by T ∗ = ω

y T
′∗) for the R−B1 − T system with “a > 1” (smaller C

values), we have the system stable at T ′∗ ≈ b
a − 1, whence T ′ ≈ (ν1/y − ω)/y.

So, the condition for B2 to be UNABLE to invade is (for a > 1)
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x2 >
yω (ν2 − ν1)
ν1

(
ν1
a − ω

) +
ν2

ν1
x1 (26)

For R−B1 − T with “a < 1” let us first look at the corresponding criterion for B2 unable
to invade the stable equilibrium point R∗ −B∗1 − T ∗, and second consider the case when,
in practice, we have cycles of large amplitude, weakly damped.
First, for “a < 1”, T ′∗ ≈ b− 1 ≡ ν1−ω

ω
This gives the UNABLE to invade criterion as:

x2 >
yω (ν2 − ν1)
ν1 (ν1 − ω)

+
ν2

ν1
x1 (27)

Notice that Eq.(27) has the larger denominator, (ν1 − ω), than Eq.(26) when a > 1, where
the corresponding factor is

(
ν1
a − ω

)
, so it is easier to keep B2 out when a < 1.

It is also important to notice also that the long time in which the system is cycling will
create conditions in which T will be often (roughly half the time) less than T ∗. Even, so,
it is likely that Eq.(26) remains a good approximation to the “exclusion criterion” even
when we are in the very-weakly-damped cycle phase of the system.

To make things slightly more clear, if we put explicit parameter values into equations
Eq.(26) or Eq.(27):

ν2 ≡ δν1 with δ > 1, and x2 ≡ θx1, with θ > 1 (28)

And ν = 1; ω = 0.1, x1 = 5× 10−6; y = 4× 10−10, gives

for Eq.(25): a > 1 (small C)⇒ B2 cannot invade iff
θ > ψ +

(
4
5 × 10−5

) (
θ−1

1
a
−0.1

)
That is, θ > ψ to approximate neglect 10−5!

For Eq.(26): a < 1 (big C ↔most of the simulations)
(although complicated by oscillations)
cannot invade iff θ > ψ +

(
8
9 × 10−5

)
(ψ − 1)

That is, we can assume the term 10−5 as neglectable and the condition again reduces to
θ > ψ

S- 12



Even when more analysis can be done with this system our interest is to show that it is
possible to find a condition under which a second species can not invade an established
population that produces a self-killing toxin. The existance of such condition opens the
gates to additional interesting questions on the way such system works and the toxin is
maintained.

6 Toxin sensitivity of other species of Streptococcus

As noted in our report, the naturally occurring clinical isolates of S. pneumoniae we tested
oscillate when put into chemostat culture. Based on the spot assay on lawns, other species
of Streptococcus are also susceptible to this toxin. To ascertain the relationship between
this sensitivity and the genetic relationship of these assayed species we used a maximum
likelihood reconstruction protocol for the phylogenetic reconstruction and the parsimony
reconstruction of the sensitivity to the toxin overimposed to it.

To ascertain the relationship between toxin sensitivity and the genetic relationship of the
assayed Streptococci species, we performed a phylogenetic reconstruction of the relation-
ships among species using the small ribosomal sub-unit (16S) genes, available for these
species in GenBank. A Maximum likelihood (ML) reconstruction was performed as im-
plemented in PAML 4.0 [1] from a starting Neighbor Joining (NJ) tree obtained in Mega
4.0 [2]. Support for the nodes was inferred by two procedures: i) bootstrap support for
the nodes was estimated in multiple ML searches of the trees in PAML 4.0 and applied a
50% majority consensus rule to assign support to the nodes; ii) Bayesian posterior prob-
abilities as implemented in Mr. Bayes 3.4b [3, 4]. Both produced similar results and only
the boostrap support is shown in the results. We assayed toxin activity as explained in
the materials and methods section of the manuscript, and performed a parsimony recon-
struction of toxin sensitivity with Mesquite [5].

The relationships inferred show that S. mitis and S. oralis are the closest related species
to S. pneumoniae within the group of Streptococci species considered for the assays (see
Figure S6). The colors of the branches correspond to the activity of the supernatant on
each one of the terminal species as well as the Maximum parsimony reconstruction of the
activity in the deeper nodes (performed in Mesquite, Madison and Maddison 2007). In
red it is shown the branches on which activity was detected or inferred, and in black the
branches were no activivity was detected or inferred.
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Figure S6: Maximum Likelihood (ML) phylogenetic tree of the Streptococcal species tested for
sensitivity to the R6 toxin. Bootstrap support of the nodes for trees based upon 1000 pseudo-
replicates, are presented on the top of the nodes. The species in red text are sensitive to the S.
pneumoniae supernatant. Branches in light red are parsimonious reconstructions of expected activ-
ity of the toxin. Distances are measured in units of numbers of substitutions per site.
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