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Supplementary Figure 1: Sequences of automatically detected aggressive actions, courtship
actions, and chasing. (a) Lunging, tussling and wing threat. Only a selection of frames is shown.
Time index in seconds is relative to the first frame in each action movie clip. A black dot is placed

near the fly that is performing an action. Frames are shown at half of the original resolution. Bars,
1 mm.
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Supplementary Figure 1: Sequences of automatically detected aggressive actions, courtship
actions, and chasing. (b) Wing extension, circling and copulation (start and end phase). Time
index is relative to the first frame in each action movie clip. For copulation the time index is absolute,
starting with the beginning of the assay [MM:SS] (minutes, seconds). As illustrated by the example,
wing extension can occur in combination with circling. Copulation usually lasts for 16-18 minutes.
(c) Chasing is common to both aggression and courtship. Only a selection of frames is shown. Time
index in seconds is relative to the first frame in the movie clip. A black dot is placed near the fly that
is performing an action. Frames are shown at half of the original resolution. Bars, 1 mm.
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Supplementary Figure 2: Frequency and time spent performing actions. (a-c) Octopamine
control (tdc2/+, n = 20) and mutant (tdc2/kir, n = 20). (d-i) CS male-male (n = 20), male-female (n=
24), and Cha-Gal4;UAS-tra (“Cha-Tra”, n=10). (a,g) Total time spent in aggressive activity. (b,e)
Number of chases. (c,f) Total distance traveled per fly. (d) Total time spent in courtship. (h) Total
time spent chasing. The octopamine mutant (tdc2/kir) shows a lower level of aggressiveness com-
pared to the control line (a). The octopamine mutant shows no statistical significant difference in
locomotor activity, in comparison to controls (b,c). CS and Cha-Tra male-male pairs differ by their
level of locomotion (e,f). Cha-Tra males are significantly more active than CS males (h). (i) Copula-
tion beginning and end time points. 21 out of 24 CS male-female pairs successfully copulated. Data
represent mean +s.e.m. *P<0.05, **P< 0.01, ***P < 0.001.
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Supplementary Figure 3. Distribution of lunges over time. (a,b) Octopamine control (tdc2/+, n =
20) and mutant (tdc2/kir, n = 20). (c,d) CS male-male (n = 20) and Cha-Gal4;UAS-tra (“Cha-Tra”,
n = 10) pairs. Each spike in the upper part of the panels represents one lunge, and each row of
spikes one fly pair. The histogram integrates the number of lunges over the fly pairs in one minute
bins. The octopamine mutant (tdc2/kir) (b) shows a lower level of aggressiveness compared to the
control line (a). Cha Tra males (d) are significantly more aggressive than CS males (c).
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Supplementary Figure 4. Frequency and time spent performing actions for fru”. (a) Number of
lunges, (b) tussling, (¢) lunges per meter, and (d) wing threats. fru” shows a significantly lower level
of aggressiveness compared to the control line. Data represent mean = s.e.m. (CS: n = 16, fru":
n=22). ***P<0.001.
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Supplementary Figure 5. Frequency of fly positions for aggressive actions, chasing and
courtship actions. (a) Lunges (top), tussling (center row), and wing threat (bottom), for wild-type
(CS) male-male (left, n = 20), male-female (center column, n = 24), and Cha-Gal4,UAS-tra
(“Cha-Tra”) male-male (right, n = 10) fly pairs. The color codes correspond to the cumulative sum of
episodes of an action over all fly pairs. CS males perform neither lunging nor tussling, towards
females and exhibit rare wing threats. The Cha-Tra males exhibit increased lunging and tussling.
Additionally, Cha-Tra males perform a greater proportion of lunging and tussling on the food patch.
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Supplementary Figure 5. Frequency of fly positions for aggressive actions, chasing and
courtship actions. (b) Chasing, for wild-type (CS) male-male (left, n = 20), male-female (center
column, n = 24), and Cha-Gal4;,UAS-tra (“Cha-Tra”) male-male (right, n = 10) fly pairs. The color
codes correspond to the cumulative sum of episodes of an action over all fly pairs. Cha-Tra males
have a highly increased locomotor activity. (c¢) Circling (top) and wing extension (bottom).
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Supplementary Figure 6. Software modules of the "Caltech Automated Drosophila
Aggression-Courtship Behavioral Repertoire Analysis (CADABRA)". (a) Graphical user inter-
face of our system for automated tracking and feature extraction ("QTrak”, Windows version). The
software is shown while processing a movie. Both flies are labeled by the program, providing infor-
mation on the identity, center of ellipse, head direction and previous positions of each fly. The right-
hand side shows the actual frame number and time point. (b) Graphical User interface for post-
processing the tracking information ("ANALYSIS”, Windows version). This software allows the user
to select the tracking data, assign them to different genotypes, edit the genotype information, detect
actions, plot 2D action histograms, statistics, ethograms, as well as produce movie clips for all
actions detected.



Supplementary Table 1: Features, extracted by the tracking module
per frame and fly.

feature

description

]
2-3
4-5

6

7-11

12-13
14-15
16
17
18-19

20

21-24

25

x and y position at time t (center of ellipse)

fly length (major axis of ellipse) and fly area

position of head and abdomen

orientation © (direction from center of ellipse to the head)
moving direction Omove, Wing length /., lrand wing angle -
left @, and right side ®r

velocity vx, vy and acceleration ax, ay

position and orientation change from t- 1 to t

difference between orientation © and moving direction Omove
distance to chamber’s center (food-defending)

distance Ac and change of distance é6An.cfromt-11tot
between center of ellipses

angle @iz between center of ellipse and head-direction of
one fly and position of the other fly (lunging)

head-head An-n, abdomen-abdomen A:t, and head-
abdomen An distance and change of distance

angle Oy12 walking direction difference between both flies




Supplementary Table 2: Lunging feature ranges for pre-selection of
possible lunges. fly 1 or 2’ denotes the fly (1-2: measured between fly 1
and 2) and ‘time’ gives the time point t of feature extraction.

feature fly 1 or2

time range unit

min max

velocity

velocity

acceleration

fly length +1 < fly length
length

Oi2

position change

O0Anc

Ac

OAc

_L_L_LI'\J_L

1-2
1-2
1-2
1-2

t 0.5 200 mm/s

t 0 20 mm/s
t 15 2000 mm/s2
mm

Lt-2 08 25 mm

t-1 0 45 ©
t 0.05 5 mm

t-1,t O 1 mm
t 0.9 4 mm
t -2.1 -0.15 mm




Supplementary Table 3: Features, used for final decision (lunge or no
lunge) based on pre-selected frames (Supplementary Table 2). fly 1 or 2’
denotes the fly (1, 2: measured for fly 1 and 2; 1-2: measured between fly 1
and 2) and ‘time’ gives the time point t of feature extraction.

feature fly 1 or2

time

velocity
acceleration

fly length

Oi2

Ac

O0A¢

position change

1,2
1,2
1
1-2
1-2
1-2
1

t
t-1
t-2,t-1
t-1
t
t-2-t-1
t-1-t




Supplementary Table 4: Tussling feature ranges and maintenance
period. fly 1 or 2’ denotes the fly (1, 2: measured for fly 1 and 2; 1-2:
measured between fly 1 and 2) and ‘time’ gives the time point t of feature
extraction. ,Body alignment’ is the orientation (with 180° ambiguity)
difference between both flies.

feature fly 1or2 time range unit maintenance
period
“min max
velocity 1,2 t 10 o mm/s
acceleration 1,2 t 80 ©  mm/s2

change of pos. change  1-2 t-1,t 0 1 mm >03s
Ac 12 t 0O 1.7 mm
body alignment  1-2 t -30 30 °




Supplementary Table 5: Wing threat feature ranges and maintenance
period. ‘fly 1 or 2’ denotes the fly (1-2: measured between fly 1 and 2) and
‘time’ gives the time point t of feature extraction.

feature fly1or2 time range unit maintenance
period
“min max
angle of both wings 1 t-1,t 30 80 °
length of both wings 1 t-1,t 11 19 mm
velocity 1 t-1,t 0.01 5 mm/s >0.3s
Ac  1-2 t 2 30 mm

O12 1-2 t 0O 100 °




Supplementary Table 6: Wing extension feature ranges and
maintenance period. ‘fly 1 or 2’ denotes the fly and ‘time’ gives the time

point t of feature extraction.

feature fly 1 or2 range unit maintenance
period
“min max
wing angle @ or ®r 1 60 90 °
wing length /. or Ir 1 1.1 25 mm >1s

fly length 1

1.2 ©  mm/s




Supplementary Table 7: Circling feature ranges and maintenance
period. ‘fly 1 or 2’ denotes the fly (1-2: measured between fly 1 and 2) and
‘time’ gives the time point t of feature extraction.

feature fly 1 or2 time range unit maintenance
period

min max

Ac 12 t 1 5 mm
O0Ane 1-2 t-1,t O 5 mm
Oi2 1-2 t 0 20 °

t 025 o mm/s >0.7S
t 0 5 mm/s
t 0.25 oo mm/s

velocity

velocity 2
azimuthal velocity va
wing not extended
or:

azimuthal velocity vaz 1 t 0.05 o mm/s

wing extended 20.7s




Supplementary Table 8: Copulation feature ranges. ‘fly 1 or 2’ denotes
the fly (1-2: measured between fly 1 and 2) and ‘time’ gives the time point t
of feature extraction.

feature fly1or2 time range unit

min max

mean Ac 1-2 t+41s O 2 mm
standard deviation A¢ 1-2 t+41s O 0.3 mm




Supplementary Table 9: Chasing feature ranges and maintenance
period. fly 1 or 2’ denotes the fly (1, 2: measured for fly 1 and 2; 1-2:
measured between fly 1 and 2) and ‘time’ gives the time point t of feature

extraction.
feature fly1or2 time range unit maintenance
period
“min max
Ah1-t2 < Apz-t1 mm
Ac 1-2 t 3 10 mm
O0Ah-c 1-2 t 0 2 mm
Oi2 1-2 t 0 45 ° >1s
Owiz 1-2 t 0 45 °
velocity 1,2 t 5 c©  mm/s
position change 1,2 t 05 o mm




- Supplementary Methods -
Automated Monitoring and Analysis of Social Behavior in
Drosophila

Heiko Dankert?, Liming Wang, Eric D. Hoopfet, David J. Andersoh) and Pietro Perona

! Division of Engineering and Applied Science, Californiatitute of Technology, 1200 E Califor-
nia Blvd., Pasadena, CA 91125, USA.
2Division of Biology, Howard Hughes Medical Institute, (falinia Institute of Technology, 1200

E California Blvd., Pasadena, CA 91125, USA.

1 Arena

Our standard setup, as showrFigure 1 (main paper), consists of four double arenas, each with
two arenas. An arena is made of teflon and has a rectangulantessuring 50 mm x 40 mm. A
square food patch with a side length of 10 mm is placed withéndenter of the arena. The food
patch is surrounded by 1% agar. Plexiglass walls, 115 mrandllcoated with Fluon, surround the
arena. This chemical has properties similar to teflon andgmts flies from climbing the walls. A
plexiglass lid covers the arena. The prototype of the areamarecently developédThe food is a

mixture of apple juice, sugar, and 1% agar. The recipe wasrithes! ir?.

The resolution bottleneck of our system is measuring wingitmm: to do this we need
a resolution of at least 20 pixels per fly length (i.e., 10 [@xger mm assuming a fly length of
2 mm). Since our cameras have 640 x 480 pixel sensors, we @geim64 mm x 48 mm area.

1



Allowing for some space lost to dividing walls, this allows to image an array of 3 x 4 arenas
that have 16 mm diameter as showrFigure SM-1. This array follows a recently suggested and
used desigh®. We found that this arena size is sufficient for measuringeggive and courtship

behaviors in pairs of flies. This set-up is suitable for laggeetic screens with high-throughput.

2 lllumination and camera

A fluorescent ring-shaped light bulb (here: 22 W, 4100 K, 1i6fen, “Circline T9", outside-
diameter = 8 in., white reflector) with white, visible lightirsounds the arenas to produce ho-
mogenous and bright illumination conditionsig. 1, main paper). These light sources have the
additional advantage of being power efficient, which avdidating the arenas and further con-
densation of water at the arenas walls and ceiling. The ithlation has to be bright enough to
provide sufficient contrast between background, fly bodywaimgjs. We measured a luminance of
850 cd/m for our double-arena set-up with a neon-ring light. Howetlee tracking software is
robust to changes in the overall level of illumination, whimay be observed from experiment to
experiment and are due to changes in ambient illuminatiehsamall adjustment in the position
of the light source. A commercial color video CCD camera (R24/pixel, 640 x 480 pixel/frame,
30 frames/s, here: Sony DCR-HC 38) is placed vertically aswdrivard-pointing above arena and
light source. We prefer a longer distance in order to obtagoed approximation of a parallel
projection; the distance is chosen first and the focal leisgdldjusted to fill the frame. This results
in a resolution of=10 pixel/mm and=20 pixel/fly, given a length o2 mm for a fly body.Figure

SM-2 shows a fly as seen by our current system.



3 Computer

Two color video CCD cameras (each 24 bits/pixel, 640 x 48@lifvame, 30 frames/s), and there-
fore four arenas, are connected in parallel via IEEE 139¢aface (400 MBIt/s) to a personal
computer, which allows digitization of the two video streanfror our experiments we used Intel
dual-core CPUs with=3 GHz clock rate and at least 2 GB of memory. The video streaensamp-
tured and stored onto a hard disk using common video captsoftware (here: Windows Movie
Maker or Windows Media Encoder). Color movies are recoraelath setups at a frame rate of

30 Hz. In our experiments each movie was 20 minutes long (B&@mes).

In order to reduce file size, while maintaining an image dydhat was sufficient for our
automatic analysis, we experimented with video compredgsichniqueskFigure SM-3 presents a
magnified part of a frame using no compression as well as tne gartion of frame compressed
using different video codecs. The uncompressed imagempessthe object details with an under-
lying evenly distributed noise. MPEG-4 V2 shows slight coegsion artifacts around the detailed
objects and at edges. Windows Media Video 9 (WMV9) removessamount of detail, as well as
noise, without producing visible artifacts. DivX showseeycompression artifacts around the flies
and produces spurious edges within the background. We ¢hes®&MV codec giving sufficient
guality and compressing 20 minute movies to sizes®0 MB, as opposed to an uncompressed
movie size of 33 GB. All data analysis and verifications weeefgrmed on compressed videos

(WMVO).



4 Software

The software of our behavioral screening method consisssxahodules: video import, ground-
truthing, calibration, fly detection and tracking (pre-pessing), action detection (post-processing;
cf. main paper) and graphical user interface. The Video mnpaitine was implemented in C, all
other routines in Matlab. Operation of the software is catgll automated: all the user has to do

is specify which files have to be analyzed.

Video Import Our video import routine allows loading movies in any kindaafmpressed or
uncompressed format assuming the appropriate video catecmstalled on the system. For

speed optimization the routine decodes images in stack30frames.

Ground-Truthing For measuring the performance of our system, it is essdatiave validation
data, where the occurrence of any event of a particularrabs been independently labeled. This
is the so-called ground-truth information and obtainedftavo experts: one manually annotating
a number of recorded movies, and another expert manuallgtatmg the same movies. The
second expert makes the final decision to accept or rejeettirds in the union of first and second
expert’s annotations. In addition, to identify any actimerts that were possibly missed by both
human observers, the automated system is run at a low thdeshaentify all possible action
events. The second expert validates post-hoc any evemifiele by the automatic system, that
were initially missed by the human observers. The grounti iethen defined as the union of the
events identified and agreed on by the two human observgsthter with any additional events

detected by the automatic system that could be validatethmesby a human observer. This

4



procedure is designed to take advantage of both the lowfaiskive rate of humans and the low
false-negative rate of our system. Labeling software waldped and used for this purpose.
Figure SM-4 gives a screenshot of the graphical user interface of thaitapsoftware module.
The software allows a biologist to scan a movie looking fatamces of a given action, and to
mark the first and last frame of each video sequence whereasticim is observed. All collected

information is saved into a text file.

Calibration The tracking software (see below) needs to know the boueslafieach arena. We
call ‘calibration’ the process of obtaining such boundsri@he calibration process is fully au-
tomatic for the arena as shownkigure 1 (main paper). The software detects the edges of the
food area using the Canny edge detector and morphologiesbtgrs, and measures the length
and width of the food area in pixels. Once the pixel positiod size of the food patch are known,
the position and size of the arena in the image are computtdsed as the ROI. The ratio of the
arena and food patch sizes, and mutual positions of eachpisrkfrom the design specifications
of the arena. The calibration is automated in order to accodate variations in the pixel size of

the arena due to (small) variations in camera placemerd| fength of the lens, and arena size.

At times, a new type of arena will be introduced. We develogedArena surveying GUI”
in order to allow the user to measure the arena boundariesu3ér draws the boundaries for each
arena within the first video frame. The number of arenas isnitdd. For the conversion from
pixel to millimeter, the user is asked to mark two points witthe frame and provide their distance

in millimeters.



Fly Detection & Tracking Here we give additional details on fly detection and trackimfgich
are illustrated irFigure SM-5. Before tracking the flies each 24 bit color frame is conweiteo

a 8 bit brightness image We used a mixture of two channels, 40% red and 60% green.

We start our analysis by detecting the flies in each framed€&tgction is accomplished by a
sequence of five steps. In a first step the meaand standard deviation image are determined
by averaging over 4000 randomly selected frames. The abgetseparated from the background
by computing a ‘foreground imagé€;:

I
Fr=1———. 1
I P (1)

It is more common to computé — ), but we found that our ratio provides a better signal-tcsaoi
(fly-to-background) separation than background subtsactéind corrects for non-homogeneous
illuminatior®. It requires a background, which is brighter than the fli€s.; is added to the

background to consider cases where flies do not move oveiplerngds.

In a second step the fly bodies without the wings are segmémterithe foreground image
F; as shown irFigure 2a(main paper) by fitting a Gaussian mixture model (GMN) the image
brightness of the foreground imadgéd. 2b, main paper). The GMM consistsof = 3 components
and associates each component to either background (Jastesr image parts and body (solid
curves). Each component approximates the class-conditpabability density density function
(pdf) that the value of a pixel ifr; belongs to either background, other image parts, or bodyy(gr

curve):
3

p(Fr) = >_ p(Fr|0m)p(0:) (2)

m=1



where the mixing paramete(d,,) is optimized online and measures the fraction of pixels@sso
ated to component m and wheye, p(6,,) = 1. Each mixture componemt is a Gaussian with

meany and covariance matrix:

The GMM is optimized by the Expectation Maximization (EM) timec®. The EM is initialized
with p, > of the previous frame. It should be noted that the EM requaresa priori selection of
the model order, namely, the number of components be incorporated into the model. In order
to assign pixels to the fly body, the second and third pdf foplaets and body) are divided by the
sum of all pdfs. All pixels, whose foreground value is higttean a threshold are selected as body

pixels. The threshold is defined to be the intersection ost#wnd and third pdiFg. 2b, main

paper).

In a third step the fly body pixels obtained in the second stegeouped into connected sets

by using nearest-neighbor connectivity

In a fourth step an ellipse is fit to each connected compomanthoose the smallest ellipse
containing all the pixels of the connected componéig.(2b, bottom-right, main paper). The
length of the major axis of this ellipse provides an estinadtéhe length of the body of the fly,
the orientation of the major axis an estimate of the fly’smtiaéion and the center of the ellipse an

estimate of the fly’s position.

The fifth step in fly detection is to extract the wings. Our agh is to first segment each



fly (body, wings) from the background, and then subtract thaykpixels, obtained in step two
above, in order to reveal the wings. This is not easy to actismpdeally background, body and
wings have differenk; pixel values due to the transparency of the wings. Howemanany cases

background noise, video compression artifacts, as wellaagng background patterns (border,
agar, food) make it hard to clearly distinguish between wiagd background. We explored two

methods for overcoming this difficulty.

The first method fits a GMM taking into account the location andhtness of each pixel

(X, Fy) to segment the full fly from the background:

wherep(X, F;|0,,) is a Gaussian probability density function, and we assuraeXhand F are
independent. The second way applies a fast, honparametiigresupervised method of automatic
multi-threshold selection for image segmentation (optitmasholds), whereas the optimal thresh-
olds are derived from the viewpoint of discriminant anaf§;siBoth methods may be applied to

those regions of a frame where fly bodies were detected.

After extensive testing the first method (GMM) was found totbe slow due to the two
extra degrees of freedom and the numerous iterations reagessfit the model. The method of
optimal thresholds is 5-10x faster than the first method.tHemmore, it is better in segmenting

non-Gaussian shapes.

To quantify the performance of both methods for wing seget@r we developed a GUI



which picked~15,000 foreground images, segmented them by applying bethads. The GUI
presented foreground image, optimal thresholds and the Gd@yinentation side-by-side to an
expert, who was asked to evaluate whether none, one, or bgthentations had properly iden-
tified the pixels belonging to the body and to the wings. 30@as were randomly chosen for
evaluation. Good segmentation was delivered in 96.3% aitimages using optimal thresholds,
and in 59.0% using GMMrigure SM-6 shows the performance of both methods on a selection of

problematic, non-standard situations.

Based on these results, we utilized the method of optimestiolds Figure 2c (main paper)
shows a resulting segmentation where the body, wings arkdjb@end are highlighted by different

colors.

The orientation®© of a fly is computed as the orientation of the major axis of thipse
fitting and has a 180ambiguity Fig. 2e main paper). To remove this ambiguity the location of
head and abdomen have to be determined. To do so, we make trse admbination of three
sources of information: (1) the different visual appeaeantthe head and tail segment of each
fly, (2) fly motion (when flies walk, they tend to move forwardnd (3) consistency with pre-
vious frames. (1) Head-tail appearance is computed by idiyithe fly along the minor axib
(dashed line) and comparing the brightness-value digtobwf the two partsKig. 2¢, bottom,
main paper). Transparent wings and abdomen have a differgfttness-value distribution than
the head region and allow to distinguish between head andnadxa. We label ‘head’ the end of

the fly whose brightness histogram of the foreground imagebhighter values. (2) Retrieving the



head-abdomen position only by analyzing the fly's movementsoblematic, because often flies
do not move (feeding, grooming, or sleeping) and sometitneg may slowly move backwards.
In situations where the wings are not visible or poorly inthgéthe fly velocity is above an em-
pirical threshold (unambiguous forward fly motion), theta@fre uses the fly’s moving-direction
to decide for head-abdomen position. (3) When brightndssriration is ambiguous and the fly is
not moving, moving slowly, or when two flies are in close proiy (<1.5 fly body lengths) the

fly tracking information of the previous frame is used to gasiead-abdomen orientation.

After determining the position of the fly’s head and abdontenwings are measured in each
frame. Figure 2c¢, bottom andrigure 2d (both main paper) illustrate the measurement of wing

length and wing angle.

The formerly discussed GUI for verification of the full fly segntation was used to retrieve
ground truth on wing angles. In addition to voting for the rsegtation completeness, the expert
was asked to click on the head, abdomen, and the tip of leftrighd wings in the foreground
image for the same 300 random samplEgyure SM-7 compares automatically measured wing
angles, using optimal thresholds segmentation resultglidfies, with ground truth data provided
by the human expert. The correlation coefficient is 0.94 witstandard deviation of 7.9bias
= 0.4 towards automated measurements), including 4 head-taps\Eriangles) and 11 segmen-
tations that were voted as not complete (crosses). The ipledensegmentations led, however,
to reasonable wing angles in most cases. The post-progessitware Supplementary Fig. 6b

online) resolves problematic issues by analyzing past aneict fly orientations as well as wing
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angles. The software assigns both fly orientations and wig¢ea to the most likely value.

The fly detector will detect a single object when the two flies\aery close. This anomalous
situation is flagged automatically by applying a threshaidhe area of the detected object. In this
case the system applies a GMM with m = 2 Gaussians using jpigatibnX and pixel brightness-
valueF; (cf. eq. 4) to resolve the bodies of the two flies. Each Gangsiaupposed to fit one fly.
The optimal parameters of the model are found by maximizkegihood using the EM algorithm.
Figure 2f (main paper) shows two examples of how pairs of touching #iressegmented using

this technique.

Fly discrimination The resolution at which our system operates (10 pix/mm) doe¢sllow us
to resolve any other feature on a fruit fly besides the heathralen and wings. In particular, it is
impossible to discriminate individuals of the same sex. Wihgs is needed a white dot is painted
on the back of one fly. The dot appears as a dark spot in therfared imagd-;, and as a peak
in the brightness histogram of the fly’s body. This peak iduseidentify the labeled fly. Since
the dot is small and placed in the center of the thorax it dogaffect the ellipse fitting (step four,
“Fly Detection & Tracking”). However, to compute the cortdly area and to make sure the dot
does not cause the image of the fly body to be split into twootisected components, it is erased
by performing morphological operations on the binary imafjine segmented flies. For unlabeled
male-male pairs our software analyzes the past and curyepbgitions, along with the direction
of movement. The software assigns both objects to the nmi@dy liocation producing continuous

fly-specific trajectories. Therefore, in principle, one nabtain individual-specific trajectories.
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We have not tested how frequently the identity of the two isesxchanged. If one fly is a female
and the other one is a male, then identity may be determimedttyi and reliably from the apparent

size of each flyDrosophila females being larger than the males.

Feature extraction The tracking module extracts 25 primary and derived featpes frame de-
scribing the position, velocity, and shape of each fly (teatufees per fly), as well as the mutual
position and velocity of the two flies (5 additional featyrégy. 2d,e,gand Supplementary Ta-

ble 1 online).

Velocitiesv,, v, at time t are computed by convolving fly position differenoé$our con-

secutive frames at timeés- 2...t + 1 with a Gaussian filter kernel of size three:

Vg|t 1 (xt—l - xt—2) (xt - xt—l) (xt 1= xt)
= ’ -[0.25 0.5 0.25]" (5)

Vylt (yt—l - yt—z) (yt - yt—l) (yt+1 - yt)

The convolution smoothes the estimate of fly velocity andiced the noiseAt denotes the time
difference between two consecutive frames. The accedesii,, a, at time t are computed as
follows:

Vg|t+1 — Vzlt—1 Uylt+1 — Uylt—1
| | a _ Yl Y| ) (6)

At ylt At

Qg)t =

Example-based ClassificationAn example-based classifier was designed to detect lunging (
main paper). Lunging is the concatenation of three phaseso-aising, thrusting torso towards
and collapsing onto the opponent, and pulling the oppongath one of these phases is highly
variable in velocity and duration. The first two phases tgfljctake only 46 msand a single
lunging episode often happens in 2-3 frames when imagedH#.30
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The three phases are detected in a two steps. First, a singblaexpensive criterion is used
to select frames that are likely to contain lunges. Durirgyftist phase, a lunging fly will raise its
torso. Thus, its length will appear to become smaller andigisance from the other fly will appear
to increase. We flag all frames where this happens as ‘prethabges’ by using the features listed
in Supplementary Table 2online and detecting frames when these features take valusile

defined ranges.

Not all ‘probable lunges’ are actual lunges and we found fassible to define feature ranges
that would uniquely detect lunges. Thus, one more step idatetor lunge detection. It is based
on supervised classification: given a number of trainingvgfas, i.e. instances of lunging that
were selected by an expert, we trained a classifier to dedmg¢h&r a ‘probable lunge’ is actually
a lunge or not. We experimented with several classificatiethods and found that the k-Nearest
Neighbor (kNN) algorithm works best for our purpdséit each frame of a movie our tracking
algorithm computes 10 features per fly: position, veloatyentation etc. (seSupplementary
Table 3online for the complete list). Thus, each positive (lunge) aegative (non-lunge) training
example is associated to a corresponding 10-dimensioaairtevector at each frame. As positive
training examples we select feature vectors of flies anddgathat are labelled as lunges in our
training database. A similar number of negative traininggies is randomly chosen from frames
where we detected no lunge. Since the metric of the diffdeattire-space dimensions varies, the
data need to be first ‘centered’ and then ‘sphered’; this atimation step is common practice in
pattern recognition and typically improves the perforneaata classifier. Centering and sphering

consist of finding a new coordinate system where the set dfifeaectorss has zero mean and
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its covariance is the identity. In order to sphere them,uiestv are linearly transformed to a
variablev’ such that the covariance matag) equals unitye{v’v’*} = I. To do so, we perform

an eigenvalue decompositionoby factorizing via singular value decomposition:
c=USV. @)

We then transform the features so the covariance matrixeotrimsformed data is equal to the
identity:

Vv =vuUs~2, (8)

The covariance of v’ is now the identity.

Implementing a k-nearest neighbor classifier is simpleegian example to be classified,
we compute its k nearest neighbors in the training set. Thenple is classified as a lunge if the
majority of its k-nearest neighbors are also lunges, as alunoye otherwise. This idea may be

generalized by using a fractienof the neighbors as the decision threshdliy( 4a main paper).

Graphical User Interface We developed graphical user interfaces for hand-labehegiata to
estimate the ground truth, as well as for running the tragkind feature extraction software
(“QTrak”) as shown inFigure SM-4 and Supplementary Figure 6aonline. The two user in-
terfaces are similar: both allow importing movies in anyckiof compressed or uncompressed
format assuming the appropriate video codecs are installétle computer. The user selects one
movie, or a set of movies, and for calibration purposes withe tracking software also draws the
boundaries around each arena for arrays with more than tmaar(cf. ‘Calibration’). No fur-
ther manual adjustments are necessary. The import routiee gequentially through the movies,
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frame by frame, and passes each frame into the labelingakitighand feature extraction module

for processing. The information computed by both modulesaeed into text files.

The labeling module allows the user to play a movie, stop abaile events, step forward
and backward in time, frame by frame, mark visible evener{sand end frame), and classify the

action regarding a set of given choices.

The tracking software is able to detect and track pairs ofingpflies in parallel within mul-
tiple arenas. Its output is the trajectory (position, véigairection, head and abdomen position,
wings) for each fly in each arena as a function of time. Thekirmcmodule currently runs:2.5x

slower than real-time, speeding it up to real-time appeassiple.

The analysis module of our software system (“ANALYSIS”),sk@wn inSupplementary
Figure 6b online, is responsible for the detection and analysis abastout of the trajectories,
provided by the tracking module. The analysis includesoueriaction statistics, comparisons, and

ethograms.

Besides detecting and classifying actions, our softwaleowiput all detected actions in the
form of short video-clips, one per action, which allows ar@tor to quickly verify the quality
of the output by eyeSupplementary Figure 1online shows movie-clip examples of aggressive
and courtship actions that were detected automaticallysandd at 50% of the original spatial

resolution.
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5 Sources of Error

We identify six failure modes: (1) incomplete action exémut (2) blurring, (3) sudden move-
ments, (4) identity swapping, (5) boxing, tussling and vedithbing attempts, (6) occlusion and
grouping and (7) imaging effectBigure SM-8 gives examples of frames with problematic track-
ing situations. (1) Behaviors such as lunges are sometimasual by missing one of the 3
steps (i.e., the lunging fly would not stand on his hind-legs ¢imply thrusts directly towards
the opponent). (2) Flies can reach velocities of up to 0.85'ndsiring flight phase$. This is
~28 mm/frame at our current system’s sampling rate of 30 Hzagk inoving fly does therefore
tend to be under-sampled and appears blurred (the objeiretsted over two or more frames).
As long as the blurred object is distinguishable from thekigamund (i.e., during the start and end
phases of a flight) the tracking module is able to track theathj However, the semi-transparent
wings can disappear in such cases, so that no informatiomt &ng position is available. Fast
moving flies are not analyzed and those frames with excegititigh velocities and accelerations
are discarded. Hence, no actions may be detected when #igsnaping or flying. (3, 4) Flies do
also perform sudden movements such as jumping, fallingeor fast lunges and tussling. There-
fore, they can appear at a very different location in theentrirame compared to the previous one.
The changes of movements are carried out within a few hutitsexf a second. This can cause
identity swapping between both opponents in case of urddlféés of the same sex. (5) Flies also
often try to climb the arena’s walls or occasionally standrneertically while boxing or tussling.
They are visible from different sides and angles. The systdhtrack the flies correctly in these

situations. Wing and dot detection as well as discrimimatietween head and abdomen are possi-
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ble as long as these parts stay visible. The moving direetiwhthe orientation information from
the last frame are used as an additional information to fiecctrrect orientation. For the detec-
tion of tussling the head and abdomen information are nassary (cf. 'Tussling’ in main paper
andSupplementary Table 4online). However, our analysis modul8ypplementary Figure 6b
online) allows the user to exclude the boundary zone (3 miamte from the boundary) from the
analysis. (6) Attimes, flies will come in contact and, pobsipartially occlude each other. In such
cases the tracking software separates the flies by fittingsugssians to the object as explained in
section 4 andrigure 2f (main paper). (7) Inhomogeneous and non-stationary ithatnon condi-
tions, noise due to image compression and the camera, asasvigle color and edges of the food
area can increase the complexity of pattern recognitiomgg@/for instance are not always clearly
imaged and separable from the background. These issuesleable by using a DC light (i.e.,
an LED array), low or no compression and an arena with a honmgepattern (i.e., without a
food patch). A camera with higher resolution and frame ratg, at 500 Hz, would dramatically
increase the amount of data and therefore necessary seordg@mputational power for analysis,

but it would only have minor effects on detection perfornasince the error rate is already low.
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Figure 1. 12-arena setup allowing to test one genotype per movie and camera (n = 12).
The arenas are drilled into plexiglass which lays on a 1% agar layer. A transparent and
slidable plexiglass lid with holes for fly introduction lays on top of the matrix. Food is
placed within the center of each arena. Alternatively the agar layer can be mixed with

food. All lengths in millimeter.
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Figure 2: Dimensions of a fly in pixel as seen by our system. A white dot is painted on its

back. 10 pixel ~1 mm.

20
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N
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Figure 3: Magnification of a video frame showing part of an arena with two flies. The
frame was coded as uncompressed AVI (top-left) and with three different compression
codecs (MPEG-4 V2, WMV9, DivX). WMV9 was chosen for best quality and low noise at
high compression rate. The arrows point at some of the compression artifacts that can
occur and can be problematic for wing detection. In the background the three different

patterns of the arena: food, agar, teflon.
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Figure 4: Labeling software for annotating movie sequences by hand and producing
ground truth. The user can load and play a movie at different speeds, stop at any frame,
go back and forward frame by frame, label start- and end-frame of an event, and chose

the event type from the list on the right-hand side.
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Figure 5: Fly detection and tracking scheme.
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Figure 6: Segmentation results for full fly detection in problematic, non-standard situations

with background noise and brightness-value close to the brightness-value of the wings.
(a) ‘Foreground’ image, (b) optimal thresholds segmentation with five components®, (c)
GMM segmentation with five components using brightness values and pixel locations.
Optimal thresholds performs 5-10x faster than GMM and is not dependent on the shape

of the object.
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Figure 7: Scatter diagram comparing automatic wing angle with ground truth data (right
and left wing). Good segmentations are indicated by dots. Segmentations that were eval-
uated as not complete are represented by crosses and head-tail swaps by triangles. The
automatically measured wing angle is defined to be the angle between the center of fly
body ellipse, the ellipse’ long axis, and wing tip as described in Figure 2d (main paper).
The ground truth wing angle is defined to be the angle between the head-abdomen center
point, the head-abdomen axis, and the wing tip. This definition difference and the free-
dom of choice for the expert’s clicks on head, abdomen, and wings causes a variation of
~5° between ground truth and automated measurements. The detectable minimum wing

angle is 20°.
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Figure 8: Examples for problematic tracking situations: flies can appear blurred due to

temporal under-sampling, stay at the border, appear as one object when they are in very

close proximity, and escape by flying towards the ceiling.
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