SIRT1 regulates the function of the Nijmegen breakage syndrome protein Zhigang Yuan, Xiaohong Zhang, Nilanjan Sengupta, William S. Lane, and Edward Seto

Supplementary Experimental Procedures

Plasmids, Antibodies, and Viruses

The following expression plasmids used in these experiments have been described previously: pcDNA3-Myc-NBS1 (Maser et al., 2001), HA-NBS1 (Lim et al., 2000), Flag-ATM (Lim et al., 2000), Flag-PCAF (Yang et al., 1996), HA-p300 (Aizawa et al., 2004), pRc/RSV-HA-CBP (Zhang et al., 2000), Flag-SIRT1-7 (Michishita et al., 2005; North et al., 2003), Myc-SIRT1 (Langley et al., 2002), GST-SIRT1 (Langley et al., 2002), and Myc-SIRT1(H363Y) (Langley et al., 2002), and Myc-SIRT1(H36Y), and Myc-SIRT1(H36Y), and Myc-SIR al., 2002). The plasmid encoding Myc-NBS1mt was generated using the QuickChange Site-Directed Mutagenesis kit following the manufacturer's protocol (Stratagene). Plasmids encoding GST-NBS1 deletion mutants were created by inserting PCR products of NBS1 fragments into Bam H1/Not 1 digested pGEX-5X-1 vectors (Amersham). pBS/U6-SIRT1 was constructed by inserting oligodeoxynucleotides, which targeted the sequence 5'GAAGTTGACCTCCTCATTGT3' into the pBS/U6 vector (Sui et al., 2002). SIRT1 siRNA and control siRNA adenoviruses were described previously (Rodgers et al., 2005). Plasmids that Myc-tagged glutamine express NBS1 lysine to mutants (5KQ: K544Q/K665Q/K690Q/K698Q/K715Q; 7KQ:

K441Q/K504Q/K544Q/K665Q/K690Q/K698Q/K715Q; 9KQ: K233Q/K334Q/K441Q/K504Q/K544Q/K665Q/K690Q/K698Q/K715Q; 10KQ: K208Q/K233Q/K334Q/K441Q/K504Q/K544Q/K665Q/K690Q/K698Q/K715Q) were generated by standard PCR and subcloning. 0

Mouse affinity purified monoclonal anti-Flag M2, rabbit affinity purified polyclonal anti-HA, and mouse monoclonal anti-acetylated-tubulin (clone 6-11B-1) antibodies were purchased from Sigma. Mouse monoclonal anti-c-Myc (clone 9E10) and mouse monoclonal anti-p53 (clone DO-1) antibodies were purchased from Santa Cruz Biotechnology. Rabbit polyclonal anti-hNBS1, rabbit polyclonal anti-phosphorylated-Ser343-hNBS1, rabbit polyclonal antiphosphorylated-Ser343-mNbs1, and rabbit polyclonal anti-ATM were purchased from Novus Biologicals. Mouse monoclonal anti-hNBS1 (clone 34) was purchased from BD Biosciences. Protein A purified mouse monoclonal anti-phosphorylated-Ser1981-ATM (clone 10H11.E12) was purchased from Rockland Immunochemicals. Mouse monoclonal anti-hNBS1 (clone 1C3), mouse monoclonal anti-MRE11 (clone 12D7), and mouse monoclonal anti-RAD50 (clone 13B3) were purchased from GeneTex. Rabbit polyclonal anti-acetyl-lysine, rabbit polyclonal anti-SIRT1, and mouse monoclonal anti-GST (clone DG122-2A7) antibodies were purchased from Upstate (Millipore). Mouse monoclonal anti-BrdU (clone BMC9318) was purchased from Rabbit polyclonal anti-acetylated-Lys382-p53 was purchased from Cell Signaling Roche. Technology.

References

Aizawa, H., Hu, S.C., Bobb, K., Balakrishnan, K., Ince, G., Gurevich, I., Cowan, M., and Ghosh, A. (2004). Dendrite development regulated by CREST, a calcium-regulated transcriptional activator. Science *303*, 197-202.

Langley, E., Pearson, M., Faretta, M., Bauer, U.M., Frye, R.A., Minucci, S., Pelicci, P.G., and Kouzarides, T. (2002). Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J. *21*, 2383-2396.

Lim, D.S., Kim, S.T., Xu, B., Maser, R.S., Lin, J., Petrini, J.H., and Kastan, M.B. (2000). ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature *404*, 613-617.

Maser, R.S., Zinkel, R., and Petrini, J.H. (2001). An alternative mode of translation permits production of a variant NBS1 protein from the common Nijmegen breakage syndrome allele. Nat. Genet. *27*, 417-421.

Michishita, E., Park, J.Y., Burneskis, J.M., Barrett, J.C., and Horikawa, I. (2005). Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol. Biol. Cell *16*, 4623-4635.

North, B.J., Marshall, B.L., Borra, M.T., Denu, J.M., and Verdin, E. (2003). The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol. Cell *11*, 437-444.

Rodgers, J.T., Lerin, C., Haas, W., Gygi, S.P., Spiegelman, B.M., and Puigserver, P. (2005). Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature *434*, 113-118.

Sui, G., Soohoo, C., Affar el, B., Gay, F., Shi, Y., Forrester, W.C., and Shi, Y. (2002). A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl. Acad. Sci. USA *99*, 5515-5520.

Yang, X.J., Ogryzko, V.V., Nishikawa, J., Howard, B.H., and Nakatani, Y. (1996). A p300/CBPassociated factor that competes with the adenoviral oncoprotein E1A. Nature *382*, 319-324.

Zhang, Q., Yao, H., Vo, N., and Goodman, R.H. (2000). Acetylation of adenovirus E1A regulates binding of the transcriptional corepressor CtBP. Proc. Natl. Acad. Sci. USA *97*, 14323-14328.

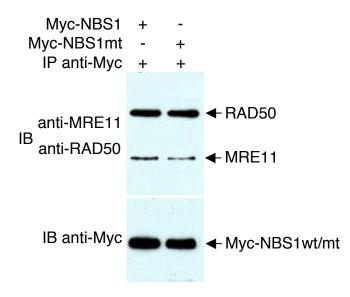


Figure S1. NBS1 acetylation does not affect its association with MRE11 and RAD50