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Appendix:

Proof of Lemmas
Consider the maternal ancestry Ak ∈ {Ag−1, · · · , A1, A0}, where for j > 0, Aj is

the mother of Aj−1. Suppose Ag−1 inherits a mitochondrial site heteroplasmy, with
1 genome having nucleotide Y and Nx − 1 genomes having nucleotide X at that site.
Let nk be the number of founding genomes of Ak with nucleotide Y at that site.
Lemma 1
For 1 ≤ i < Nx, the probability that nk = i, given that ng−1 = 1, is

Pr(nk = i|ng−1 = 1) = (PNx)
(g−k−1)
i,1 ,

the i−th entry of the leading column of P
(g−k−1)
Nx

.
Proof
We have assumed ng−1 = 1.
If nk = 0, the mutation is lost, so n0 = · · · = nk = 0, and if nk = Nx, the
mutation is fixed, so, n0 = · · · = nk = Nx. Otherwise, for k < g − 1, suppose
1 ≤ nk+1 = j < Nx (ie Ak+1 had inherited j founding genomes with nucleotide
Y, and Nx − j with nucleotide X, at that site), then the probability that nk = i,
(1 ≤ i < Nx) is

Pr(nk = i|nk+1 = j) = pNx(i, j).

For 1 ≤ i < Nx, let
πNx(i, k, g) = Pr(nk = i|ng−1 = 1)
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and let

ΠNx(k, g) =


πNx(1, k, g)
πNx(2, k, g)

...
πNx(Nx − 1, k, g)

 .
Then we see for all k > 1

ΠNx(k, g) = PNxΠNx(k + 1, g)

= (PNx)(g−k−1)ΠNx(g − 1, g) = (PNx)(g−k−1)


1
0
...
0

 ,
which is the leading column of (PNx)(g−k−1). Hence

πNx(i, k, g) = (PNx)
(g−k−1)
i,1 .

Lemma 2
Assuming the approximation perNx

(i) ≈ 2
i

in the observable region, we find the prob-
ability that a site has an observable heteroplasmy is approximately

β ≈ 2α ln(θ−1 − 1).

Proof

β = α obsNx = α
∑

θ≤i/Nx≤1−θ

perNx
(i)

≈ α

 ∑
θ≤i/Nx≤1−θ

2

i


= 2α(H[Nx(1−θ)] −H[Nxθ]), (1)

where Hm is the m−th harmonic number. Now Hm converges to, and is well approx-
imated by ln(m) + γ (γ is Euler’s constant), so Equation 1 implies

β ≈ 2α [ln(Nx(1− θ))− ln(Nxθ)] = 2α ln(θ−1 − 1), (2)

which is independent of Nx.
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Estimating Nx from mother–chick comparisons. A confounding factor in the
data of Millar et al (2008) is the measurement error. This increases the perceived
difference between the observed levels of site heteroplasmy. We estimated relative site
heteroplasmy levels from the relative peak heights of the electropherograms using the
methodology reported in Millar et al (2008) for the penguin data, where the accuracy
was tested using mixtures of known site heteroplasmies. We found that the standard
error in the relative site heteroplasmy measurement was well approximated by the
formula

σ(x) = 0.06(1− |0.5− x|),

where x is the relative site heteroplasmy level, so σ(x) varies from 0.03 to 0.06.
Suppose a chick A0 inherits i mutant genomes from her mother A1 who had j

copies. As we do not know N = Nx, we can only measure their relative levels of site
heteroplasmy r(A0) = i/N and r(A1) = j/N , from blood samples taken from mother
and chick. Suppose we have measured the relative levels of site heteroplasmies to be
rm(A0) and rm(A1), with each including an independent random measurement error,
which we model as Gaussian. Each data point (rm(A0), rm(A1)), where rm(A1) is
within the detection threshold

θ ≤ r(A1) ≤ 1− θ,

is included in our analysis. From the analysis of each of these pairs, we estimate N
using likelihood maximisation.

An essential step in this process is to be able to derive the likelihood of N ,

L(N |r(A0), r(A1)) = Pr(r(A0), r(A1)|N),

for each data point (r(A0), r(A1)). With G(µ, σ, x) as the Gaussian distribution
function, we see

Pr(j|N) ∝ perN(j), (3)

Pr(r(A1)|j,N) = G(j/N, σ(j/N), r(A1)),

Pr(r(A0)|i, N) = G(i/N, σ(i/N), r(A0)),

Pr(j|r(A1), N) ∝ Pr(j|N) Pr(r(A1)|j,N),

Pr(i|j,N) ∝ (PN)i,j,

Pr(i|r(A1), N) =
∑
j

Pr(i|j,N) Pr(j|r(A1), N),

Pr(r(A0)|r(A1), N) =
∑
i

Pr(r(A0)|i, N) Pr(i|r(A1), N),
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and for θ ≤ r(A1) ≤ 1− θ,
Pr(r(A1)|θ,N) ∝

∑
j

Pr(r(A1)|j,N) Pr(j|N),

L(N |r(A1), r(A0), θ) = Pr(r(A1), r(A0)|θ,N)

= Pr(r(A1)|θ,N) Pr(r(A0)|r(A1), N).

(Where there are proportionalities, the scaling is calculated by the requirement that
the probabilities sum to one. In the case of Pr(r(A1)|θ,N), the normalisation is∫ 1−θ
θ

Pr(x|θ,N) dx = 1.)
Equation 3 implicitly makes the assumption that we know which allele is the

original, and which is the mutation. In general we may not be able to determine
this, but we can make the calculation invariant under the transformation r(A1) →
1− r(A1), r(A0)→ 1− r(A0) by the expedient of replacing Equation 3 with

Pr(j|N) ∝ perN(j) + perN(N − j), (4)

for j ≤ N/2, as was done in Millar et al (2008). In that study, the overall likelihood
of N is found by multiplying the L(N |c,m) for each of the 123 heteroplasmic site
sites in the mother-chick pairs (Figure 1(a)).

By assuming a prior distribution on N , we can convert the calculation into a
probability distribution

Pr(N |data) ∝ Pr(N)L(N |data), (5)

and Pr(N |data) can be converted to Pr(µ|data) via Equation 5. The choice of a flat
prior on N implies a non-flat prior on µ, as Pr(µ) ∝ 1/µ, and vice-versa. We chose
the intermediate prior, Pr(N) ∝ 1/

√
N , (equivalently Pr(µ) ∝ 1/

√
µ).

In their analysis, Millar et al (2008), posterior probabilities were calculated for
each integer N with 10 ≤ N ≤ 130, and for each prior, and a smooth curve inter-
polated through the points (Figure 1(b)). For the intermediate prior, this analysis
yielded a maximum probability (mode) value of N = 36.48, and the confidence
interval (25.0− 66.9).

Given the posterior probability density function (PDF) pN(N), we can make a
change-of-variable to µ via 5,

µ̂ = f(N) =
β̂

aN obsN
,

p̄µ(µ) = pN(f−1(µ))/f ′(f−1(µ)).
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Figure 1: (a) Combined log likelihood for N from the 123 mother-chick
pair differences. (b) Posterior probability distributions on µ. The dark
line is from the intermediate prior Pr(µ) ∝ 1/

√
(µ), the long dashes is for

a flat prior on N , and the short dashes is for a flat prior on µ.
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Figure 2: The cumulative distribution of mother/chick site heteroplasmy
differences from Millar et al (2008) plotted against their expected distri-
bution (smooth curve) under the model using N = 36.
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Finally, we convolve the PDF p̄µ with the uncertainty in β̂ (as an estimator for β),
as the number of heteroplasmic site birds is sampled from a Poisson process. (We
do not account for uncertainty in the generation time t = 6.46, derived from a table
of the ages of nesting mothers in (Millar et al, 2008).)
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