

Supporting Online Material for

Feedback Loops Shape Cellular Signals in Space and Time

Onn Brandman and Tobias Meyer

E-mail: Onn.Brandman@ucsf.edu; tobias1@stanford.edu

Published 17 October 2008, *Science* **322**, 390 (2008) DOI: 10.1126/science.1160617

This PDF file includes:

Table S1

Other Supporting Online Material for this manuscript includes the following: available at www.sciencemag.org/cgi/content/full/322/5900/390/DC1

Table S2 as zipped archive

Equations for "Feedback loops shape cellular signals in space and time"

Onn Brandman and Tobias Meyer

September 6, 2008

For all equations, in is the input and α is the output.

Figure 1A homeostat

$$\frac{d\alpha}{dt} = in - k_1 * \frac{\alpha^n}{\alpha^n + EC50^n} - \alpha$$

where $n = 6$, $EC50 = 0.1$, $k_1 = 0.2$

Figure 1A signal limiter

$$\frac{d\alpha}{dt} = in - k_2 * \alpha^n - \alpha$$

where
$$n = 5, k_2 = 0.8$$

Figure 1A adaptive system

$$\frac{\frac{d\alpha}{dt}}{\frac{d\beta}{dt}} = in * (1 - \beta) - \alpha$$
$$\frac{\frac{d\beta}{dt}}{\frac{d\beta}{dt}} = \tau_{\beta} * (\alpha - k_1 * \beta)$$

where $k_1 = 0.5, \tau_\beta = 0.01$

Figure 1A transient generator

$$\frac{d\alpha}{dt} = in - \alpha * \beta^n - \alpha$$
$$\frac{d\beta}{dt} = \tau_\beta * (\alpha - k_1 * \beta)$$

where $n = 5, k_1 = 0.05, \tau_\beta = 0.01$

Figure 1B amplifier

 $\frac{d\alpha}{dt} = in + k_1 * \frac{\alpha^n}{\alpha^n + EC50^n} - \alpha$

where $k_1 = 0$ (no feedback) or 1 (feedback), n = 1, EC50 = 2

Figure 1B accelerator or delay

$$\frac{d\alpha}{dt} = in + k_1 * \frac{\alpha^n}{\alpha^n + EC50^n} - \alpha - \alpha^n$$

where $k_1 = 0$ (no feedback) or 1 (delay) or 8 (accelerator), n = 5, EC50 = 0.56

Figure 1B bistable switch

 $\frac{d\alpha}{dt} = in + \frac{\alpha^n}{\alpha^n + EC50^n} - k_1 * \alpha$ where $n = 5, EC50 = 0.8, k_1 = 0.1$

Figure 1C bistable pulse generator

$$\frac{d\alpha}{dt} = in + \frac{\alpha^n}{\alpha^n + EC50^n} - \alpha - \alpha * \beta$$
$$\frac{d\beta}{dt} = \tau_\beta * (\alpha - k_1 * \beta)$$

where $n = 4, \tau_{\beta} = 0.01, k_1 = 0.01$

Figure 1C oscillator

$$\frac{d\alpha}{dt} = in + \frac{\alpha^n}{\alpha^n + EC50^n} - \alpha - k_1 * \alpha * \beta^n$$
$$\frac{d\beta}{dt} = \tau_\beta * (\alpha - \beta)$$

where $n = 4, k_1 = 10, \tau_\beta = 0.01$

Figure 2A combined limiter and homeostat

$$\frac{d\alpha}{dt} = in - k_1 * \frac{\alpha^{n1}}{\alpha^{n1} + EC50^{n1}} - k_2 * \alpha^{n2} - \alpha$$

where n1 = 6, EC50 = 0.1, $k_1 = 0.2$, $k_2 = 0.8$, n2 = 5

Figure 2B robust oscillator

$$\frac{d\alpha}{dt} = in * (1 - k_2 * \gamma) + \frac{\alpha^n}{EC50^n + \alpha^n} - \alpha - k_1 * \alpha * \beta^n$$
$$\frac{d\beta}{dt} = \tau_\beta * (\alpha - \beta)$$
$$\frac{d\gamma}{dt} = \tau_\gamma * (\alpha - \gamma)$$

where $n = 4, k_1 = 10, \tau_\beta = 0.01, k_2 = 0.6, \tau_\gamma = 0.005$

Figure 2C robust switch

$$\frac{d\alpha}{dt} = \frac{\beta + \gamma}{(\beta + \gamma) + 1} - \alpha$$

$$\frac{d\beta}{dt} = \tau_{\beta} * \left(\frac{(in + \alpha)^{n}}{EC50^{n} + (in + \alpha)^{n}} - \beta\right)$$

$$\frac{d\gamma}{dt} = \tau_{\gamma} * \left(\frac{\alpha^{n}}{\alpha^{n} + EC50^{n}} - \gamma\right)$$

where $n = 6, EC50 = 0.5, \tau_{\beta} = 1, \tau_{\gamma} = 0.05$

Figure 1C all spatial panels

We modeled arrays of pixels by using 2-dimensional convolution to simulate spatial spreading.

Figure 1C local pulse

For a single pixel:

$$\frac{d\alpha}{dt} = in + \frac{\alpha_{g\alpha}^n}{EC50^n + \alpha_{g\alpha}^n} - \beta * \alpha + k_1 * \alpha$$
$$\frac{d\beta}{dt} = \tau_\beta * (\alpha_{g\beta} - k_2 * \beta)$$

where $\alpha_{g\alpha}$ and $\alpha_{g\beta}$ are the values for the pixels after 2-dimensional convolution with a Gaussian filter with standard deviation of 2 and 4 pixels, repectively, $\tau_{\beta} = 5$, $k_1 = 0.1$, $k_2 = 0.01$, n = 4, EC50 = 0.2

Figure 1C traveling wave

For a single pixel:

$$\frac{d\alpha}{dt} = in + \frac{\alpha_g^n}{EC50^n + \alpha_g^n} - (\beta + k_{\alpha off}) * \alpha$$

$$\frac{d\beta}{dt} = \tau_\beta * (\alpha_g - k_{\beta off} * \beta)$$

where α_g is the value for the pixel after 2-dimensional convolution with a Gaussian filter with standard deviation of 2 pixels, $\tau_{\beta} = 0.8$, $k_{\alpha off} = 0.1$, $k_{\beta off} = 0.1$, n = 4, EC50 = 0.2

Figure 1C polarity

A membrane recruitment model was used, where the total amount of signaling component is fixed and α represents the amount of signaling component bound to a single pixel of membrane.

$$\frac{d\alpha}{dt} = (in + \frac{\alpha_g^n}{EC50^n + \alpha_g^n}) * (\alpha_{total} - \alpha_{bound}) - k_{off} * \alpha$$

where α_g is the value for the pixel after 2-dimensional convolution with a Gaussian filter with standard deviation of 2 pixels, $\alpha_{total} = 10$, $\alpha_{bound} = \sum_{allpixels} \alpha$, $k_{off} = 0.05$, n = 2, EC50 = 0.2