Cell, Volume 131

Supplemental Data

STIM2 Is a Feedback Regulator that

Stabilizes Basal Cytosolic and

Endoplasmic Reticulum Ca²⁺ Levels

Onn Brandman, Jen Liou, Wei Sun Park, and Tobias Meyer

Table S1.

Units are fold standard deviations from median Fura-2 ratio. Gene names are based on the NCBI nomenclature.

	low Ca ²⁺ ext	high Ca ²⁺ ext
gene	condition	condition
ATP2A1	-0.39289	-0.9418
ATP2A2	11.3003	0.142401
ATP2A3	-0.35855	1.1669
ATP2B1	1.641	33.0733
ATP2B2	-0.57369	-2.2089
ATP2B3	-0.12276	-0.035867
ATP2B4	0.33795	-1.5009
CACNA1A	-0.58811	0.79601
CACNA1B	0.17067	0.36025
CACNA1C	-0.65638	0.73057
CACNA1D	-0.17218	0.2902
CACNA1E	-1.8773	1.03
CACNA1F	0.088143	2.1226
CACNA1G	0.086275	-0.19972
CACNA1H	1.3862	1.4276
CACNA1I	-0.9814	-0.79492
CACNA1S	-2.4325	-1.098
ΙΤΡΚΑ	1.7505	-0.64677
ΙΤΡΚΒ	1.5912	1.0806
ITPR1	1.6406	-0.12037
ITPR2	1.2437	0.9335
ITPR3	0.51593	-2.2621
PSEN1	-2.2494	0.18205

PSEN2	-0.11029	-1.7258
SLC8A1	-2.6531	0.15688
SLC8A2	0.063456	0.049516
SLC8A3	-2.4966	-0.81094
TRPA1	-2.0646	-0.63463
TRPC1	0.31108	0.63618
TRPC3	-1.3776	2.274
TRPC4	0.32254	0.58842
TRPC5	-0.21547	-0.79262
TRPC6	-0.15239	-0.66884
TRPC7	-1.2503	1.7674
TRPM1	-0.55947	-2.1096
TRPM2	-1.6407	0.45256
TRPM3	-0.31696	1.0616
TRPM4	-1.0307	-0.45337
TRPM5	-0.89363	0.5181
TRPM6	-0.42829	1.6638
TRPM7	-3.5	0.67418
TRPM8	-0.19636	-0.49052
TRPV1	0.43127	-0.058567
TRPV2	-0.019	1.6494
TRPV3	-0.72963	-0.76843
TRPV4	-0.36298	0.85333
TRPV5	0.23015	2.4792
TRPV6	-0.19674	2.9569

Table S2.

Units are fold standard deviations from median Fura-2 ratio.

	low Ca ²⁺ ext	high Ca ²⁺ ext
gene	condition	condition
ACTR3	-2.6427	1.032
AKAP7	3.0534	-0.91885
CALM1	2.0908	9.6558
CLMN	-0.47456	-2.4542
FLJ45651	1.1813	-2.1474
FNBP2	-0.55684	-2.683
HAPIP	-2.9538	0.29199
KIAA0007	-1.3395	2.0522
LOC124685	0.031095	2.4768
LOC389246	2.5197	1.12
LOC55971	3.2384	0.34667
PIP5K1A	-2.0378	1.1826
PPEF1	0.87681	-2.7225
PPP1R12A	2.3008	0.33042
PRKAR1A	1.9521	-3.0284
RAC1	-3.4616	-2.6044
SEC23IP	1.3801	-2.3268
SSH1	-0.18364	-2.0778
STIM2	-6.5051	-1.8468

Single-well traces to indirectly assay ER Ca2+ concentration in Figure 2C. Addition of ionomycin and EGTA was used to rapidly release ER Ca2+ and the resulting cytosolic Ca2+ signal was measured using Fura-2. Cells were transfected with siRNA for STIM1, STIM2 or GL3 (control).

A wildtype STIM2 construct (without YFP tag) also increases R-SOC Ca^{2+} influx. Cells were transfected with YFP or co-transfected with YFP and YFP-free STIM2 for 5 hours. Cells were selected expressing 7.5 to 15 times background. N=6 sites from 3 wells. Error bars represent standard error.

Basal cytosolic Ca²⁺ measurements after 3 day transfection with siSTIM1-2 and, for comparison, siOrai1-3 and GL3 (control). N=10 sites. Error bars represent standard error.

Time-course of STIM1 and STIM2 puncta formation upon thapsigargin addition. 1 μ M thapsigargin was added to HeLa cells and imaged for 220 seconds. Images were then analyzed for puncta content as in described in Materials and Methods section. N=4 cells each. Error bars represent standard error.

Calibration of the ER Ca²⁺ content at different time-points following external addition of EGTA. (A) 3 mM EGTA was added to wells at time = 0 min. Ionomycin was added to different wells at the indicated time points. The measured Δ Ca²⁺ peak heights were fit to an exponential decay. (B) FRET measured using the D1ER cameleon probe. Average relative FRET signal for 6 cells imaged using a 40x confocal microscope. 1 μ M ionomycin was added near the end of the timecourse.

Ca²⁺ levels in cells expressing different concentrations of STIM1 and STIM2 constructs. Basal Ca²⁺ was measured for the reduced and normal ER conditions as described in the main text (reduced conditions are the low Ca2+ conditions from the siRNA screen). Both raw traces and traces normalized to constitutively active mutants are shown. EF hand switch mutant (STIM1_{EF->STIM2}) is labeled with the subscript "3pt". Error bars represent standard error.

Basal Ca²⁺ levels in cells expressing a STIM1 construct with its EF hand mutated to be similar to STIM2 (STIM1_{EF->STIM2}). Basal Ca²⁺ concentration is shown as a function of the expression level of YFP-STIM1_{EF->STIM2} and compared to that of YFP-STIM1, YFP-STIM2 and YFP control. Error bars represent standard error.

STIM2 Primary accessio	on number: Q9P246
Consruct name	Description
STIM2	CMV_SP_YFP_STIM2(15-746AA)
STIM2 (no tag)	CMV_SP_STIM2(15-746AA)
STIM2 _{EF}	CMV_SP_YFP_STIM2(15-746AA)
STIM2 _{EF->STIM1}	CMV_SP_YFP_STIM2(15-746AA)
STIM1	CMV_SP_YFP_STIM1(23-685AA)
STIM1 _{EF}	CMV_SP_YFP_STIM1(23-685AA)
STIM1 _{EF->STIM2}	CMV_SP_YFP_STIM1(23-685AA)

Differences from Swiss-Prot P38L, V222I, E575V P38L, V222I, E575V P38L, V222I, E575V, D80A P38L, V222I, E575V, K83A,D84N, G86D

D76A A79K, N80D, D82G

Cloned STIM2 DNA sequence (15-746AA):

TGCGAGCTTGTGCCCCGGCACCTCCGCGGGCGGCGGCGGCGACTGGCTCTGCCGCAACTGCCGCCTCCTCTCCGCCGCGGC GGCCGGCGATAGCCCGGCGCTCATGACAGATCCCTGCATGTCACTGAGTCCACCATGCTTTACAGAAGAAGACAGATTTA GTCTGGAAGCTCTTCAAACAATACATAAACAAATGGATGATGACAAAGATGGTGGAATTGAAGTAGAGGAAAGTGATGAA TTCATCAGAGAAGATATGAAATATAAAGATGCTACTAATAAACACAGCCATCTGCACAGAGAAGATAAACATATAACGAT TGAGGATTTATGGAAACGATGGAAAACATCAGAAGTTCATAATTGGACCCTTGAAGACACTCTTCAGTGGTTGATAGAGT TTGTTGAACTACCCCAATATGAGAAGAATTTTAGAGACAACAATGTCAAAGGAACGACACTTCCCAGGATAGCAGTGCAC GAACCTTCATTTATGATCTCCCAGTTGAAAATCAGTGACCGGAGTCACAGACAAAAACTTCAGCTCAAGGCATTGGATGT GGTTTTGTTTGGACCTCTAACACGCCCACCTCATAACTGGATGAAAGATTTTATCCTCACAATTTCTATAGTAATTGGTG TTGGAGGCTGCTGGTTTGCTTATACGCAGAATAAGACATCAAAAGAACATGTTGCAAAAATGATGAAAGATTTAGAGAGAC TTACAAACTGCAGAGCAAAGTCTAATGGACTTACAAGAGAGGGCTTGAAAAGGCACAGGAAGAAAACAGAAATGTTGCTGT AGAAAAGCAAAATTTAGAGCGCAAAATGATGGATGAAATCAATTATGCAAAGGAGGAGGCTTGTCGGCTGAGAGAGCTAA GGGAGGGAGCTGAATGTGAATTGAGTAGACGTCAGTATGCAGAACAGGAATTGGAACAGGTTCGCATGGCTCTGAAAAAG GCCGAAAAAGAATTTGAACTGAGAAGCAGTTGGTCTGTTCCAGATGCACTTCAGAAATGGCTTCAGTTAACACATGAAGT AAAAGAAGAAGAAGCACAGTCTTTGGGACTCTGCACGTTGCACAGCTCCTCCCTAGATGAGGTAGACCACAAAATTCTG GAAGCAAAGAAAGCTCTCTCTGAGTTGACAACTTGTTTACGAGAACGACTTTTTCGCTGGCAACAAATTGAGAAGATCTG TGGCTTTCAGATAGCCCATAACTCAGGACTCCCCAGCCTGACCTCTTCCCTTTATTCTGATCACAGCTGGGTGGTGATGC CCAGAGTCTCCATTCCACCCTATCCAATTGCTGGAGGAGTTGATGACGACGACACACCCCCCAATAGTGTCACAA TTTCCCGGGACCATGGCTAAACCTCCTGGATCATTAGCCAGAAGCAGCAGCCTGTGCCGTTCACGCCGCAGCATTGTGCC GTCCTCGCCTCAGCCTCAGCGAGCTCAGCTTGCTCCACACGCCCCCCACCCGTCACACCCTCGGCACCCTCACCACCCGC AACACACACCACCACTCCTTGCCTTCCCCTGATCCAGATATCCTCTCAGTGTCAAGTTGCCCTGCGCTTTATCGAAATGAA GTGGAGGAAGAGGCCATTTACTTCTCTGCTGAAAAGCAATGGGAAGTGCCAGACACAGCTTCAGAATGTGACTCCTTAAA TTCTTCCATTGGAAGGAAACAGTCTCCTCCTTTAAGCCTCGAGATATACCAAACATTATCTCCGCGAAAGATATCAAGAG ATGAGGTGTCCCTAGAGGATTCCTCCCGAGGGGGATTCGCCTGTAACTGTGGATGTCTTGGGGGTTCTCCCGACTGTGTA GAACCAGCTTTCCAGTGGCATCCCGGTGCCTAAACCTCGCCACACATCATGTTCCTCAGCTGGCAACGACAGTAAACCAG TTCAGGAAGCCCCAAGTGTTGCCAGAATAAGCAGCATCCCACATGACCTTTGTCATAATGGAGAGAAAAGCAAAAAGCCA TCAAAAATCAAAAGCCTTTTTAAGAAGAAATCTAAGTGA

STIM1 DNA sequence (23-685AA):

TCACCTCAAGGACTTCATGCTGGTGGTGTCTATCGTTATTGGTGTGGGCGGCTGCTGGTTTGCCTATATCCAGAACCGTT ACTCCAAGGAGCACATGAAGAAGATGATGAAGGACTTGGAGGGGTTACACCGAGCTGAGCAGAGTCTGCATGACCTTCAG GAAAGGCTGCACAAGGCCCCAGGAGGAGCACCGCACAGTGGAGGAGGAGGTCCATCTGGAAAAGAAGCTGCGCGATGA GATCAACCTTGCTAAGCAGGAAGCCCAGCGGCTGAAGGAGCTGCGGGAGGGTACTGAGAATGAGCGGAGCCGCCAAAAAT ATGCTGAGGAGGAGTTGGAGCAGGTTCGGGAGGCCTTGAGGAAAGCAGAGAGGAGCTAGAATCTCACAGCTCATGGTAT GCTCCAGAGGCCCCTTCAGAAGTGGCTGCAGCTGACACATGAGGTGGAGGTGCAATATTACAACATCAAGAAGCAAAATGC TTGCGGGAGCGCCTGCACCGCTGGCAACAGATCGAGATCCTCTGTGGCTTCCAGATTGTCAACAACCCTGGCATCCACTC ACGTGGATGACATGGATGAGGAGAGATTGTGTCTCCCTTGTCCATGCAGTCCCCTAGCCTGCAGAGCAGTGTTCGGCAGCGC CCGCCAGCGTGTGGCCCCCAAACCTCCTCAGATGAGCCGTGCTGCAGACGAGGCTCTCAATGCCATGACTTCCAATGGCA GCCACCGGCTGATCGAGGGGGTCCACCCAGGGTCTCTGGTGGAGAAACTGCCTGACAGCCCTGCCCTGGCCAAGAAGGCA TTACTGGCGCTGAACCATGGGCTGGACAAGGCCCACAGCCTGATGGAGCTGAGCCCCTCAGCCCCACCTGGTGGCTCTCC ACATTTGGATTCTTCCCGTTCTCACAGCCCCAGCTCCCCAGACCCAGACACCACCATCTCCAGTTGGGGACAGCCGAGCCC GAGGAAACAGACTCCAGCCCCAGGCCGGAAGAAGTTTCCTCTCAAAATCTTTAAGAAGCCTCTTAAGAAGTAG

Signal Peptide DNA sequence from STIM1(1-22AA):

ATGGATGTATGCGTCCGTCTTGCCCTGTGGCTCCTCTGGGGACTCCTCCTGCACCAGGGCCAGAGC

Cloned STIM2 Protein sequence (15-746AA):

CELVPRHLRGRRATGSAATAASSLAAAAGDSPALMTDPCMSLSPPCFTEEDRFSLEALQT IHKQMDDDKDGGIEVEESDEFIREDMKYKDATNKHSHLHREDKHITIEDLWKRWKTSEVH NWTLEDTLQWLIEFVELPQYEKNFRDNNVKGTTLPRIAVHEPSFMISQLKISDRSHRQKL QLKALDVVLFGPLTRPPHNWMKDFILTISIVIGVGGCWFAYTQNKTSKEHVAKMMKDLES LQTAEQSLMDLQERLEKAQEENRNVAVEKQNLERKMMDEINYAKEEACRLRELREGAECE LSRRQYAEQELEQVRMALKKAEKEFELRSSWSVPDALQKWLQLTHEVEVQYYNIKRQNAE MQLAIAKDEAEKIKKKRSTVFGTLHVAHSSSLDEVDHKILEAKKALSELTTCLRERLFRW QQIEKICGFQIAHNSGLPSLTSSLYSDHSWVVMPRVSIPPYPIAGGVDDLDEDTPPIVSQ FPGTMAKPPGSLARSSSLCRSRRSIVPSSPQPQRAQLAPHAPHPSHPRHPHHPQHTPHSL PSPDPDILSVSSCPALYRNEVEEEAIYFSAEKQWEVPDTASECDSLNSSIGRKQSPPLSL EIYQTLSPRKISRDEVSLEDSSRGDSPVTVDVSWGSPDCVGLTETKSMIFSPASKVYNGI LEKSCSMNQLSSGIPVPKPRHTSCSSAGNDSKPVQEAPSVARISSIPHDLCHNGEKSKKP SKIKSLFKKKSKstop

STIM1 Protein sequence (23-685AA):

LSHSHSEKATGTSSGANSEESTAAEFCRIDKPLCHSEDEKLSFEAVRNIHKLMDDDANGD VDVEESDEFLREDLNYHDPTVKHSTFHGEDKLISVEDLWKAWKSSEVYNWTVDEVVQWLI TYVELPQYEETFRKLQLSGHAMPRLAVTNTTMTGTVLKMTDRSHRQKLQLKALDTVLFGP PLLTRHNHLKDFMLVVSIVIGVGGCWFAYIQNRYSKEHMKKMMKDLEGLHRAEQSLHDLQ ERLHKAQEEHRTVEVEKVHLEKKLRDEINLAKQEAQRLKELREGTENERSRQKYAEEELE QVREALRKAEKELESHSSWYAPEALQKWLQLTHEVEVQYYNIKKQNAEKQLLVAKEGAEK IKKKRNTLFGTFHVAHSSSLDDVDHKILTAKQALSEVTAALRERLHRWQQIEILCGFQIV NNPGIHSLVAALNIDPSWMGSTRPNPAHFIMTDDVDDMDEEIVSPLSMQSPSLQSSVRQR LTEPQHGLGSQRDLTHSDSESSLHMSDRQRVAPKPPQMSRAADEALNAMTSNGSHRLIEG VHPGSLVEKLPDSPALAKKALLALNHGLDKAHSLMELSPSAPPGGSPHLDSSRSHSPSSP DPDTPSPVGDSRALQASRNTRIPHLAGKKAVAEEDNGSIGEETDSSPGRKKFPLKIFKKP LKKstop

Signal Peptide from STIM1(1-22AA): MDVCVRLALWLLWGLLLHQGQS

7Dharmacon SMART STIM2 siRNA pool

1) sense sequence AGACACAGCUUCAGAAUGUUU antisense sequence 5'-PACAUUCUGAAGCUGUGUCUUU

2)

sense sequence GCUUUCAGAUAGCCCAUAAUU antisense sequence 5'-PUUAUGGGCUAUCUGAAAGCUU

3)

sense sequence CUUUAAGCCUCGAGAUAUAUU antisense sequence 5'-PUAUAUCUCGAGGCUUAAAGUU

4)

sense sequence AGAAGCAGUUGGUCUGUUCUU antisense sequence 5'-PGAACAGACCAACUGCUUCUUU

Ambion STIM1 siRNA pool

1) sense sequence GGAUGCUGUCAUUUUUUGAtt antisense sequence UCAAAAAAUGACAGCAUCCtt

2)

sense sequence GGAUGAGAAACUCAGCUUCtt antisense sequence GAAGCUGAGUUUCUCAUCCtc

3)

sense sequence GGGAAGACCUCAAUUACCAtt antisense sequence UGGUAAUUGAGGUCUUCCCtc

Dharmacon SMART ORAI1 siRNA pool

1) sense sequence GCUCACUGGUUAGCCAUAAUU antisense sequence 5'-PUUAUGGCUAACCAGUGAGCUU

2)

sense sequence GGCCUGAUCUUUAUCGUCUUU antisense sequence 5'-PAGACGAUAAAGAUCAGGCCUU

3)

sense sequence UGAGCAACGUGCACAAUCUUU antisense sequence 5'-PAGAUUGUGCACGUUGCUCAUU

4)

sense sequence GCACCUGUUUGCGCUCAUGUU antisense sequence 5'-PCAUGAGCGCAAACAGGUGCUU

Dharmacon SMART ORAI2 siRNA pool

1)

sense sequence GAGCUUAACGUGCCUAUCGUU antisense sequence 5'-PCGAUAGGCACGUUAAGCUCUU

2)

sense sequence UGGAACUGGUCACCUCUAAUU antisense sequence 5'-PUUAGAGGUGACCAGUUCCAUU

3)

sense sequence GGGCAUGGAUUACCGGGACUU antisense sequence 5'-PGUCCCGGUAAUCCAUGCCCUU

4)

sense sequence CACCGUGCUUGGCAUCCUAUU antisense sequence 5'-PUAGGAUGCCAAGCACGGUGUU

Dharmacon SMART ORAI3 siRNA pool

1) sense sequence GGAACUAGAGGAACUGAAUUU antisense sequence 5'-PAUUCAGUUCCUCUAGUUCCUU

2)

sense sequence GCACCUCUUUGCACUCAUGUU antisense sequence 5'-PCAUGAGUGCAAAGAGGUGCUU

3)

sense sequence CAAGACAGACCGCUACAAGUU antisense sequence 5'-PCUUGUAGCGGUCUGUCUUGUU

4)

sense sequence GGGUCAAGUUUGUGCCCAUUU antisense sequence 5'-PAUGGGCACAAACUUGACCCUU