Supporting Information:

Production, Characterization, and Determination of the Real Catalytic Properties

of the Putative 'Succinate Dehydrogenase' from Wolinella succinogenes

Hanno D. Juhnke^{1, ||}, Heiko Hiltscher^{1,†}, Hamid R. Nasiri^{2, ‡}, Harald Schwalbe²,

and C. Roy D. Lancaster^{1,3,*}

¹ Cluster of Excellence "Macromolecular Complexes", Max Planck Institute of Biophysics, Dept. of Molecular Membrane Biology, Max-von-Laue-Str. 3, D-60438 Frankfurt am Main, Germany

² Cluster of Excellence "Macromolecular Complexes", Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe University, Maxvon-Laue-Str. 7, D-60438 Frankfurt am Main, Germany

³ Department of Structural Biology, Faculty of Medicine, Saarland University, D-66421 Homburg (Saar), Germany

^{II} present address: Sanofi-Aventis Deutschland GmbH, QA Operations, Industriepark Höchst, Bldg. H500, D-65926 Frankfurt am Main, Germany

† present address: Botanisches Institut, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany

[‡] present address: Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom

* To whom correspondence should be addressed: Dept. of Structural Biology, Faculty of Medicine, Saarland University, D-66421 Homburg (Saar), Germany,

E-mail: Roy.Lancaster@structural-biology.eu, Tel.: +49 6841 1626 235, Fax.: +49 1212 616 041 965

SUPPORTING TABLE 1. Strains, plasmids and oligonucleotide primers used in the present study.

SUPPORTING FIGURE 1. SDS-PAGE for peptide mass fingerprint analysis.

SUPPORTING FIGURE 2. Determination of the molar oxidized-minus-reduced absorption difference coefficient at 270 nm of the 8-MMKH₂-6 analog 2,8-dimethyl-3-decyl-1,4-dihydroxynaphthoquinol.

SUPPORTING FIGURE 3. Sequence alignment of the amino-termini of *W. succinogenes* (*Ws*), *C. jejuni* (*Cj*), *A. ambivalens* (*Aa*) and *Synechocystis* (*Sc*) SdhA.

SUPPORTING FIGURE 4. Western blot analysis of the variant SdhABE complexes MFR-HT and MFR-AH1.

SUPPORTING FIGURE 5. Comparison of residues involved in fumarate reduction in the *W. succinogenes* quinol:fumarate reductase and the MFR.

SUPPORTING REFERENCES

SUPPORTING TABLE 1.

Strains, plasmids and oligonucleotide primers used in the present study.

Strain, plasmid or primer	Relevant properties, usage, nucleotide sequence	Reference	
Bacterial strains			
W. succinogenes DSMZ 1740	Wild-type strain	(Simon et al., 2000)	
W. succinogenes ∆frdCAB	Fumarate reductase operon (<i>frdCAB</i>) deletion mutant	(Simon et al., 1998)	
W. succinogenes fMFR	Strain expressing the <i>sdhABE</i> operon under control of the <i>frd</i> promoter	This study	
W. succinogenes fMFR-R7/8Q	=fMFR; arginines 7 and 8 in sdhA are replaced by glutamines	This study	
W. succinogenes fMFR-A86H	=fMFR; alanine 86 replaced by a histidine	This study	
W. succinogenes fMFR-HT	=fMFR; amino-terminal (<i>sdhA</i>) His6-tag plus TEV protease site	This study	
W. succinogenes fMFR-AH1	=fMFR; His6-tag introduced at amino acid position 37	This study	
E. coli XL1-blue	Strain used for cloning and plasmid propagation	Stratagene	
Plasmids			
pFrdcat2	Derivative of pSC101; E. coli low-copy vector containing the W.	(Simon et al., 1998); sequence	
	succinogenes frdCAB genes including frd promoter and terminator	determined in this study	
	sequences		
pSdhA	Derivative of pFrdcat2 containing the <i>sdhA</i> gene instead of <i>frdCAB</i>	This study	
	genes from W. succinogenes		
pR7/8Q	Derivative of pSdhA; codons for arginines 7 and 8 are replaced by codons	This study	
	for glutamines		
рА86Н	Derivative of pSdhA; codon for alanine 86 is replaced by a codon for	This study	
	histidine		
pSdhHT	Derivative of pSdhA; codons encoding for six histidines plus TEV	This study	
	protease site are inserted in <i>sdhA</i>		
pSdhAH1	Derivative of pSdhA; codons encoding for six histidines at amino acid	This study	
	position 37 are inserted in <i>sdhA</i>		
Primers			
Not_cat2_Fw	TATCAAATGCGGCCGCATCTCCTTGGAGCGGGGTCTCC Forward	This study	
	primer used for the amplification of the pFrdcat2 vector fragment; contains		
	a <i>Not</i> I restriction site (underlined)		
Sac_cat2_Rv	TCC <u>CCGCGG</u> CATCTGTTTCCCCTGTGCAGTATTG Reverse primer	This study	
	used for the amplification of the pFrdcat2 vector fragment; contains a $SacII$		
	restriction site (underlined) and the $frdC$ start codon (in boldface)		
Sac_Ws-Sdh_Fw	TCCCCCGCGGAGTGAACAATTTACCCGAAGGGAG Forward primer	This study	

	used for the amplification of <i>sdhA</i> from <i>W. succinogenes</i> genomic DNA;						
	contains a SacII restriction site (underlined)						
Not_Ws-SdhA_Rv	TATCAAATGCGGCCGCTTAGTATTTCCTCTCTCAATTTTGAATTG This study						
	Reverse primer used for the amplification of <i>sdhA</i> from <i>W. succinogenes</i>						
	genomic DNA; contains a NotI restriction site (underlined)						
cat2_seq1	CTCTTACAGTTCCAAACTACC	This study					
	binds in the <i>frd</i> promoter on the plasmid pSdhA; a PCR product with primer						
	wssdhB1R indicates correct integration of pSdhA in the $\Delta frdCAB$ genome						
wssdhB1R	GAGCGTGATGTCTTGGGTTTGC	This study					
	binds in <i>sdhB</i> on the $\Delta frdCAB$ genome						
SdhR7/8Q1	$CGCGGAGTGAACAATTTACC\underline{CAACAG}GAGTTTCTTCAGTCTGCC$	This study					
SdhR7/8Q2	${\tt GGCAGACTGAAGAAACTC} \underline{{\tt CTGTTG}} {\tt GGTAAATTGTTCACTCCGCG}$						
	Complementary mutagenic primers used for the replacement of arginines						
	7 and 8 to in SdhA to glutamines via site-directed mutagenesis; the changed						
	codons are underlined						
A86H1	GGTTATGCCCACCCGAAGC <u>CAC</u> ACCACAATGGCTGAAGG	The present study					
A86H2	CCTTCAGCCATTGTGGT <u>GTG</u> GCTTCGGGTGGGCATAACC						
	Complementary mutagenic primers used for the replacement of alanine						
	86 to histidine in SdhA via site-directed mutagenesis; the changed codon						
	is underlined						
SacIIHis6TEV1	TCCCCCGCGGCACCATCACCATCACCATGAGAATCTCTATTTTCA This study						
	AGGA <u>CCGCGG</u> CCT Encodes for a His6-tag (in boldface) plus TEV						
	protease site; used for insertion in the SacII restriction site of pSdhA;						
	contains two SacII restriction sites (underlined)						
SacIIHis6TEV2	AGGCCGCGGTCCTTGAAAATAGAGATTCTCATGGTGATGGTGAT This study						
	GGTGCCGCGGGGA Complementary to SacIIHis6TEV1						
SdhH1_Fw	ATGGGCCCCCCATCAATACCTCTGGCATCCCC Forward primer	This study					
	used for the insertion of a His6-tag at amino acid position 37 via PCR from						
	pSdhA; contains a ApaI restriction site (underlined)						
SdhH1_Rv	TAGGGCCCGGCATGGTGATGGTGATGGTGGGAAGAGGAGGCAA This study						
	AAGCCCTATCAACCCC Reverse primer used for the insertion of a						
	His6-tag at amino acid position 37 via PCR from pSdhA; contains a ApaI						
	restriction site (underlined) and codons for 6 histidines (in boldface)						

b nr.	S	m [kDa]	pl	em	fm	SC	protein
1	78	66.5	7.29	24	12	28%	'Succinate Dehydrogenase' Flavoprotein Subunit, W. succinogenes
2	97	60	6.15	49	21	34%	Dihydroxy-Acid Dehydratase, W. succinogenes
3	76	35.7	7.53	52	11	37%	´Succinate Dehydrogenase´ Iron-Sulfur Protein, W. succinogenes
4	65	31.8	7.82	16	8	33%	Co-Chaperone-Curved DNA Binding Protein A (CBPA), W. succinogenes
5	55	29.2	5.65	25	7	41%	Septum Site-Determining Protein Mind Cell Division Inhibitor, W. succinogenes
6	111	30.7	8.21	25	11	36%	´Succinate Dehydrogenase´ Subunit C, W. succinogenes

SUPPORTING FIGURE 1. SDS-PAGE for peptide mass fingerprint analysis. Lanes 1-3: fractions with highest activity after 1^{st} ion exchange chromatography, 20 µg protein per lane; lane 4: pooled and concentrated fractions after 1^{st} ion exchange chromatography ,30 µg; lanes 5 and 6: fractions of highest activity after gel filtration, 5 µg; lane 7: pooled and concentrated fractions after gel filtration, 5 µg; lane 7: pooled and concentrated fractions after gel filtration. The two prominent bands 1 and 2 and all bands between 38 kDa and 28 kDa were cut out, treated with trypsin and examined via MALDI-TOF. Assignment of the peaklists to the respective proteins was performed with the program 'Mascot'. Only assignments with a score of 54 and higher are shown (bands indicated by an arrow). Abbreviations: b nr.: band number; s: score; m: calculated mass from protein sequence; pI:

theoretical isoelectric point; em: entered mass values; fm: fitting mass values; sc: sequence coverage; protein: database output.

SUPPORTING FIGURE 2. Determination of the molar oxidized-minus-reduced absorption difference coefficient at 270 nm of the 8-methylmenaquinol-6 analog 2,8-dimethyl-3-decyl-1,4-dihydroxynaphthoquinol (the quinol form of the quinone shown in Fig 3g). The coefficient was determined from air-oxidized quinone and KBH₄-reduced quinol at a concentration of 0.1μ M.

		n	78	h	c	
Ws SdhA	1	mseqf	trreflq	sacitm	galavstsgvdrafa	ssslpintsgipscdvliigsgaaglr
Cj SdhA	1	mge-f	srrdfik	tacisv	galaasssgv-yald	dsskmdkdinlp <mark>s</mark> cdvlvigsggaglc
Aa SdhA	1			m	ek l	sydaiviggglaglm
Sc SdhA	1	mleq-				dvvivggglagcr

SUPPORTING FIGURE 3. Sequence alignment of the amino-termini of *W. succinogenes* (*Ws*), *C. jejuni* (*Cj*), *A. ambivalens* (*Aa*) and *Synechocystis* (*Sc*) SdhA. The amino-termini from the *W. succinogenes* and *C. jejuni* gene product are significantly longer than in the *A. ambivalens* and *Synechocystis* enzyme and harbour a twin-arginine motif (consensus sequence s/t-r-r-e-f-l-k/q), a signal for the export into the periplasm via the twin-arginine translocase (Tat) pathway. The amino acid composition corresponds to the generic tripartite structure (n-, h-, and c-region) of twin-arginine signal peptides (Palmer *et al.*, 2005). This signal is absent in the sequences of *A. ambivalens* and *Synechocystis* SdhA.

SUPPORTING FIGURE 4. Western blot analysis of the variant SdhABE complexes MFR-HT and MFR-AH1. The variant enzymes carry a 6xhis-tag on amino acid position 1 and 37, respectively (pooled fractions after anion exchange). However on a Western blot treated with anti-polyhistidine antibodies only the tag on amino acid position 37 is detectable.

SUPPORTING FIGURE 5. Comparison of residues involved in fumarate reduction in the *W. succinogenes* quinol:fumarate reductase a) and the MFR b) (figure modified from Lancaster *et al.*, 2001). All residues required for the proposed mechanism are conserved except for the FAD-binding histidine 43 which corresponds to alanine 86 in the MFR. c) Sequence aligment of *W. succinogenes* (*Ws*), *C. jejuni* (*Cj*), *A. ambivalens* (*Aa*), *Synechocystis* (*Sc*) SdhA and *W. succinogenes* FrdA subunits. Only the region surrounding alanine 86 is shown.

SUPPORTING REFERENCES

- Lancaster, C.R.D., Groß, R., and Simon, J. (2001) A third crystal form of *Wolinella succinogenes* quinol:fumarate reductase reveals domain closure at the site of fumarate reduction. *Eur J Biochem* **268**: 1820-1827.
- Palmer, T., Sargent, F., and Berks, B.C. (2005) Export of complex cofactor-containing proteins by the bacterial Tat pathway. *Trends Microbiol* **13**: 175-180.
- Simon, J., Groß, R., Ringel, M., Schmidt, E., and Kröger, A. (1998) Deletion and site-directed mutagenesis of the *Wolinella succinogenes* fumarate reductase operon. *Eur J Biochem* **251**: 418-426.
- Simon, J., Groß, R., Klimmek, O., and Kröger, A., (eds) (2000) *The Genus Wolinella*. New York: Springer-Verlag.