Supplemental Data

Human RAD50 Deficiency in a

Nijmegen Breakage Syndrome-like Disorder

Regina Waltes, Reinhard Kalb, Magtouf Gatei, Amanda Kijas, Markus Stumm, Alexandra Sobeck, Britta Wieland, Raymonda Varon, Yaniv Lerenthal, Martin F. Lavin, Detlev Schindler, and Thilo Dörk

Figure S1. Presentation of the Patient with RAD50 Deficiency

Photograph of the patient at age 15 showing NBS-typical facies and microcephaly. For comparison, note that photographs of the patient during her first 4 years of age have been published previously¹.

AJHG, Volume 84

Extracts were prepared from wild-type and RAD50-deficient LCLs (HA239) and immunoprecipitated with anti-MRE11 antibody prior to immunoblotting with antibodies against RAD50, MRE11 and NBN as indicated.

Figure S3. Chromosomal Aberrations of RAD50-Deficient Cells without Irradiation

(A) Cytogenetic analysis of Giemsa stained metaphases from Rad50-deficient lymphocytes showed spontaneous chromatid exchanges (chte). \mathbf{qr} = asymmetrical quadriradial interchange with complete exchanges and acentric fragment (**ace**); \mathbf{tr} = symmetrical triradial interchange with incomplete exchanges. (B) An example of whole chromosome painting of chromosomes 1 (green), 2 (red) and 4 (light blue) revealing a spontaneous translocation involving one of the chromosomes 1.

Table S1. Primer Sequences and Genomic PCR Conditions to Amplify 25 Exons of the*RAD50* Gene

5'-AACAGCACCCAGCACCTAGC-3' and 5'-CCTACACCTGTGGAGCCCTA-3'	(exon 1, annealing 59°C)
5'-GGTAAACTTCTGTGGTTCTC-3' and 5'-GGTTACTACTGGGTGCTAAA-3'	(exon 2, annealing 53°C)
5'-CCAACACTGGTGCTTATTAA-3' and 5'-CAGTACTTTCTGCCCAATTT-3'	(exon 3, annealing 51°C)
5'-AACGGGATAGGTGAAGGGCC-3' and 5'-GGTTGCTGCTGGATGAGAGG-3'	(exon 4, annealing 59°C)
5'-GTGACAGCATAATATCCCAC-3' and 5'-TTTAGCCAGTCCACGATGTA-3'	(exon 5, annealing 53°C)
5'-CAGCCATGTAAGCTATAGTGAG-3' and 5'-ATGTGGATGGCAAAATGGATTC-3'	(exon 6, annealing 61°C)
5'-GATCATATTTTCTTATGTTTGTAC-3' and 5'-CATCATAGTAGGAAAAACGACC-3'	(exon 7, annealing 56°C)
5'-CTCGTGAATCTGCAGCTATCTC-3' and 5'-CAATTCAAGTAGAGAATATGATGC-3'	(exon 8, annealing 56°C)
5'-TTCTTCAGTGTACATATATTCC-3' and 5'-GAACCAAAGAGTCAGAAGATCAAG-3'	(exon 9, annealing 56°C)
5'-CCTTAGAGCATATATAGTGCC-3' and 5'-GGCTATTTTAAGTACCAGACAG-3'	(exon 10, annealing 61°C)
5'-GATATAATGTGGAGATATAGAC-3' and 5'-CAGGTAAGCATGAAATAAGAG-3'	(exon 11, annealing 56°C)
5'-GGTCATACCAAACTCTTGTC-3' and 5'-CAAAGGTGTCAAAGTATCCTG-3'	(exon 12, annealing 61°C)
5'-ACAACCGTATTCAGAATACTG-3' and 5'-CTGCTACATGTACAGTGAAGG-3'	(exon 13, annealing 61°C)
5'-GAACACAATGTCACTTCTGTGG-3' and 5'-CCTGTACCTGAATACTAGCTAC-3'	(exon 14, annealing 61°C)
5'-AAGATTTTGAATAATGCAGTAAG-3' and 5'-CATGTGCTCGCAATGTCAAAGTC-3'	(exon 15, annealing 56°C)
5'-GCATTTGTGGATTCCATAGACC-3' and 5'-CCTGGGTGACAGAACGAGACTG-3'	(exon 16, annealing 56°C)
5'-GAGCCTGGCACATAGAAAGTG-3' and 5'-GACGTGGTGCTATGAACATAAG-3'	(exon 17, annealing 61°C)
5'-CCTGTTATGTGCCCTTAAGTAC-3' and 5'-GCATTTCTATTCAATGGATCTTC-3' (ex-	ons 18-19, annealing 61°C)
5'-GTCACCAGTTGCCTGTTACAG-3' and 5'-CTTCACATTCCAGTAATAAAGAC-3'	(exon 20, annealing 56°C)
5'-TCTATGACTTTTCCACTTCAGG-3' and 5'-ACTGCAATAAGAAAATCCCCAG-3'	(exon 21, annealing 58°C)
5'- CCAAGCAGCAAAGTTTTGCTGCTG-3' and 5'- CATGATGAGAGGTCATAAGGGG -	3' (exon 22, annealing 56°C)
5'-GCTACAGAGCATAGGTTCCTC-3' and 5'-CTCTTTCAGTTACTTGGGTGAG-3'	(exon 23, annealing 56°C)
5'-CCCTGCTGAAAAGATCATGTC-3' and 5'-GTGAGATACTTACTCAACCAG-3'	(exon 24, annealing 56°C)
5'-GCACAAGTTCATGTGTCTGAC-3' and 5'-ATACACTTTCTGAGGACCTAC-3'	(exon 25, annealing 60°C).

Table S2. Clinical and Laboratory Findings of the RAD50-Deficient Patient

CLINICAL FINDINGS

Congenital abnormalities

- NBS-like facies
- Microcephaly (<3rd percentile)
- Pre- and postnatal growth retardation
- Very subtle and non-progressive ataxia
- Mild spasticity
- Skin hyper- and hypopigmentation, \emptyset 15 mm
- Hyperopia

Immunological status

- No severe or recurrent infections
- Normal Ig status (IgG,A,M,D and IgG subclasses)
- Normal lymphocyte counts
- Normal alpha-fetoprotein levels

	0 Gy		0.5 Gy		1.0 Gy	
	% ^a	b/m ^b	% ^a	b/m ^b	% ^a	b/m ^b
Patient blood	24	0.54	76	2.78	90	3.98
Patient LCL	10	0.14	62	1.12	91	2.15
NBS ^c blood		n=1		n=1		n=1
	12	0.16	60	1.16	74	2.16
NBS ^c LCL		n=24		n=11		n=11
	9± 7	0.14±0.15	55±11	1.16±0.32	70±12	2,38±0.88
AT LCL		n=8		n=6		n=6
	11±4	0.18 ±0.10	69±14	1.52±0.29	82±17	2,78±1.06
Controls blood		n=96		n=50		n=50
	1±2	0.02 ± 0.02	15±8	0.19±0.11	22±8	0,27±0.10
Control LCL		n=38		n=18		n=18
	2±3	0.03 ± 0.04	14±8	0.19±0.15	23±9	0,35±0.18

Table S3. Spontaneous and Radiation-Induced Chromosomal Breakage Rates inRAD50-Deficient, NBS, and A-T Cells

Giemsa-stained metaphases from lymphocyte cell cultures and lymphoblastoid cell lines (LCL) were analysed as indicated. n= number of patients or controls analysed in each cohort. 50 metaphases were analysed for each patient/ control. ^aPercentages of aberrant metaphases; ^bbreaks/metaphase; ^call tested NBS cells had truncating mutations in *NBN*².

Supplemental References

- Barbi, G., Scheres, J.M., Schindler, D., Taalman, R.D., Rodens, K., Mehnert, K., Müller, M., and Seyschab, H. (1991). Chromosome instability and X-ray hypersensitivity in a microcephalic and growth-retarded child. Am. J. Med. Genet. 40, 44–50.
- 2. van der Burgt, I., Chrzanowska, K.H., Smeets, D., and Weemaes, C. (1996). Nijmegen breakage syndrome. J. Med. Genet. *33*, 153–156.