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Abstract – Two random regression models, where the effect of a putative QTL was regressed
on an environmental gradient, are described. The first model estimates the correlation between
intercept and slope of the random regression, while the other model restricts this correlation
to 1 or −1, which is expected under a bi-allelic QTL model. The random regression models
were compared to a model assuming no gene by environment interactions. The comparison
was done with regards to the models ability to detect QTL, to position them accurately and to
detect possible QTL by environment interactions. A simulation study based on a granddaughter
design was conducted, and QTL were assumed, either by assigning an effect independent of the
environment or as a linear function of a simulated environmental gradient. It was concluded that
the random regression models were suitable for detection of QTL effects, in the presence and
absence of interactions with environmental gradients. Fixing the correlation between intercept
and slope of the random regression had a positive effect on power when the QTL effects re-
ranked between environments.

gene by environment interaction / QTL detection / random regression / reaction norms

1. INTRODUCTION

Several studies have detected genotype by environment interactions both in
dairy cattle e.g. [5–7,13,22] and in other species e.g. [1,16,19]. It has also been
reported that single genes can show different effects when expressed in differ-
ent environments [11]. Genotype by environment interactions can be caused
either by alleles being expressed only in specific environments or by changes
in gene regulation depending on the environment [20]. To be able to quantify
differences in gene effects between environments, reaction norms have been
used [13], which describe the effect of a genotype as a function of the environ-
ment. Usually, a linear or quadratic function is used, which can be estimated
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from data by random regression models [4,13]. When genotype × environment
interactions are ignored in QTL detection, genes having a substantial average
effect across environments might still be detected. However, some genes, hav-
ing a significant effect in some environments might have a small average effect
across environments [14]. Globalisation of selective breeding, such as in dairy
cattle, makes knowledge about genotype by environment interactions increas-
ingly important [2]. Overall, selection for a trait with an interaction effect will
be less efficient if the interaction effect is not taken into account [5].

The granddaughter design is most commonly used to search for QTL in
dairy cattle. The data consists of marker information on grandsires and their
sons and phenotypic information on their granddaughters only. The use of
“daughter yield deviations” (DYD) of sires provides useful information about
each sire’s average performance over the environments, in which his daughters
can be found. A daughter yield deviation averages records over all environ-
ments and represents the average sire value. Information about the different
environments of the daughters, needed to search for environmental interac-
tions, cannot be directly implemented in the DYD-approach.

One way to include the environmental information is to handle the gene ef-
fects as different traits when measured in different environments. A multiple
trait method can then be used to estimate specific genetic effects for each en-
vironment. This method has been used to search for genotype × environment
interaction e.g. [5,7,24] and QTL × environment interaction [21,23]. A draw-
back of using this method is the loss of information about the environmental
differences within each environmental group. Furthermore, multiple trait anal-
ysis with many traits can be computationally demanding.

Reaction norm models fitted by random regression are especially useful
when the environment is measured on a continuous scale and changes gradu-
ally [12], and where the QTL-effect is assumed to be a function of the environ-
mental gradient. Furthermore, such a random regression model will have much
less parameters to be estimated compared with a multi-trait model analysing
groups of environments. Random regression models have also been used to
detect QTL for body weight in pigs at different ages [3]. Furthermore, Lund
et al. [14] showed that random regression could be used to detect a simulated
QTL where the effect changes gradually over time during lactation. In their
study, DYDs were calculated for the sires at each test-day, which made a set
of 55 DYDs for each sire, during lactation. This was made possible by test-
ing the simulated cows at 55 specific days in milk only. However, in real data,
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environments are highly variable and the observations cannot be transformed
to a limited set of DYDs without loss of information. To avoid loss of envi-
ronmental information by averaging over environments, using single daughter
records directly in the analysis is a possibility. Ideally, in an analysis of single
daughter records, the daughters’ QTL alleles should be fitted in the model, but
these are often unknown since only sires and grandsires are genotyped. How-
ever, each daughter inherits one of her father’s alleles, and there is an equal
probability of inheriting the one allele compared to the other. Hence, the sire’s
alleles can both be fitted in the model, modelling the effect on the daughter’s
production of having a father with a specific allele.

If we search for QTL using reaction norm/random regression models, we are
using a variance component QTL mapping approach. In variance component
QTL mapping, no assumptions are made with respect to the numbers of alleles
in each locus [10]. In the case of a linear reaction norm, each assumed QTL
allele has an effect on the slope and on the intercept of reaction norm, and
the relations between those effects are modelled through their correlation [14].
However, if the QTL has actually only two alleles, as is often presumed, the
alleles fall into two categories, say the Q and q alleles. Let aI and aS denote
the allelic effects of the intercept and the slope, respectively, if aI and aS of
the Q-alleles are both positive, and those of the q-alleles are both negative,
the correlation between the alleles in the infinite alleles model is expected to
be 1 (Fig. 1a). Alternatively, if aI and aS have opposite signs, the correlation
is expected to be −1 (Fig. 1b). Hence, Goddard [9] suggested restricting this
correlation to 1 or −1 in variance component QTL mapping in order to reduce
the number of parameter estimates and to increase the precision of the QTL
mapping. Whether the true correlation is 1 or −1 depends only on where the
y-axis is placed relative to the crossing point between the reaction norms of
the two alleles (Fig. 1). A special case occurs if the y-axis is placed exactly in
the crossing point. Then, the true variance in intercept is 0, and the correlation
between intercept and slope is thus not defined.

The main objective of this study was to investigate the ability of random
regression models to detect gene by environment interactions. Two different
random regression models were used to analyse simulated data. One of the
random regression models estimated the correlation between the level and the
slope of the random regression, while the other fixed this correlation to 1 or
−1. The results were compared to results from analyses done with or without
interaction between QTL and environment. Different scenarios were simulated
to investigate the ability of the models to detect different possible gene by
environment interactions.
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Figure 1. The allelic effects of two alleles with a pleiotropic effect on slope and inter-
cept. The y-axes cross the x-axes in the intercepts. In Figure 1a allele Q has a positive
effect on both intercept and slope, and the correlation between intercept and slope is 1.
In Figure 1b, allele Q has a positive effect on intercept but a negative effect on slope.
The correlation between slope and intercept is −1. The figures show how shifting the
environment where the intercept is located can change the sign of the correlation be-
tween slope and intercept.

2. MATERIALS AND METHODS

2.1. Simulations

A population was simulated for 100 generations at a constant population
size of 100 (see Meuwissen and Goddard [17] for details). This created linkage
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disequilibrium between the markers and the QTL. Generation 101 consisted of
100 males and 100 females, made by random mating of the animals in gen-
eration 100. Generation 102 consisted of 500 males and 50 000 females. The
females were created by random mating of all animals in generation 101, while
the males were created by random mating of ten males in generation 101 (re-
ferred to as selected grandsires) with all of the females from generation 101.
Generation 103, consisting of 50 000 females, was created by mating each
male from generation 102 with 100 females from the same generation. This
gives a granddaughter design with 10 grandsires (generation 101), each grand-
sire with 50 sons (generation 102) and each son with a half-sib group of
100 daughters (generation 103). The population structure was chosen to reflect
a livestock population with many individuals but a low effective population
size. The pedigree used for subsequent analyses included all the animals in
generation 100 and 101 and the males of generation 102.

Additive genetic effects in the base population were sampled from a nor-
mal distribution with a mean of zero. In subsequent generations, additive ge-
netic effects of each individual were calculated as the sum of the mean ad-
ditive genetic effect of the parents and a random Mendelian sampling term
(N(0,1/2σ2

BV)). In the simulation, additive genetic values were assumed to have
an interaction with the environment. Genetic intercept and slope values were
sampled for all individuals. The genetic variances in intercept and slope values
were both set to 0.1, and the correlation between the two values was set to 0.5.
The positive correlation gave a situation with mostly scaling effects of sire ef-
fects within the environmental range when the environment was defined to be
positive [13].

The linkage map consisted of 20 multiallelic marker loci. It was assumed
that the region between position 40 cM and 50 cM had been identified in an
earlier QTL mapping experiment and more markers had been positioned in
this region. The markers were positioned at 0, 10, 20, 30, 40, 41, 42, 43, 44,
45, 46, 47, 48, 49, 50, 60, 70, 80, 90 and 100 cM. The biallelic QTL was posi-
tioned in the midpoint between marker 9 and 10, 44.5 cM from the first marker.
The allele frequency of QTL allele 1 was about 0.25, but varied between repli-
cates [17].

Each daughter (generation 103) was assigned to a simulated environmental
value (Env). These values were assumed to be independently and normally
distributed. The average environmental value was set to Env = 2.50, and the
environmental standard deviation was set to 1.0. Only positive environmental
values were simulated.
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Figure 2. The effect of genotype 00 and genotype 11 of the simulated QTL is shown.
In scenario “No interaction”, the QTL effect is kept constant all over the environmental
range. The substitution effect is constantly 0.16, leading to a variance due to the QTL
of 0.0096. The QTL contributes only to the variance in intercept.

Observations were simulated for each daughter. Each observation was the
sum of the additive genetic effect (as a function of the environment), the addi-
tive QTL effect and a random deviation. The random deviations were normally
distributed with mean 0 and variance 0.5. Three different kinds of QTL effects
were simulated.

In the first scenario, further referred to as scenario “No interaction”, the
QTL had a general effect on the trait, but did not interact with the environment
(Fig. 2). The substitution effect of the QTL was 0.16, giving a variance due to
the QTL of 0.01 when the QTL frequencies were 0.25 for allele 1 and 0.75 for
allele 0.

In the second scenario, “Scaling”, the QTL effect was zero in the lowest
environment (Env = 0) and increased linearly with the environmental value
(Fig. 3). The average variance due to the QTL was 0.0132, given allele fre-
quencies of 0.25 and 0.75. When splitting the variance in an intercept variance
and a slope variance, the intercept variance was 0 and the slope variance was
0.0021.

In the third scenario, “Reranking”, the QTL effect was zero in the average
environment (Env = 2.50), and the positive allele in lower environments was
the negative allele in higher environments (Fig. 4). The slope values for the
different genotypes were the same as in the scaling effect scenario, but the
crossing point was shifted from the lowest environment to the mean environ-
ment. The average effect of the QTL is 0, because the effects on each side of
the mean environment cancel each other out. When splitting the QTL variance



QTL × environment interaction 111

Figure 3. The effect of genotype 00 and genotype 11 of the simulated QTL is shown.
In scenario “Scaling”, the QTL effect is 0 when Env = 0, and it increases linearly with
an increase in environmental value. When Env = 2.5, the average environment, the
variance due to the QTL is 0.0132. The variance in slope due to this QTL is 0.0021,
while the variance in intercept is 0 when intercept is defined as Env = 0 and 0.0132
when the intercept is defined as Env = 2.50.

Figure 4. The effect of genotype 00 and genotype 11 of the simulated QTL is shown.
In scenario “Reranking”, the QTL effect is 0 when Env = 2.50. Allele 1 is the negative
allele when Env < 2.50 and the positive allele when Env > 2.50. The slope variance
due to the QTL is 0.0021 and the intercept variance due to the QTL is 0.0132, given
that the intercept is defined as Env = 0.

into slope and intercept variances, the slope variance is 0.0021, just as in the
scaling effect scenario, while the intercept variance is 0.0132, the same as the
average variance in the scaling effect scenario.

For all scenarios, a hundred replicates were simulated.
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2.2. Analyses of simulated data

For the analyses, the marker-genotypes were assumed known for the sires
and for the ten selected grandsires, but the linkage phases were assumed un-
known. Observations and environmental information were available from the
daughters only.

Combined linkage disequilibrium and linkage analysis [18] were used to
join the marker and pedigree information into renumbered haplotypes and
IBD-matrices for the haplotypes. The midpoint of each marker bracket was
regarded as a putative position for a QTL.

The covariance associated to the IBD matrices was estimated by variance
component analysis. The variance component analyses were performed using
three different models. All models analysed single daughter records instead of
daughter means. Furthermore, the QTL-effects were assumed to be either not
affected by the environment (RR-Q) or a linear function of the environment
(RR-QEe and RR-QEf).

All models had the following general characteristics:

yi j = µ +

1∑
k=0

skiEnv j +

p∑
m=0

2∑
n=1

hmniEnv j + ei j

where

yi j = the observation from daughter j of sire i,

µ = the overall mean,

ski = the kth order random regression coefficient of sire i on the environment,

Env j = the environmental value of daughter j,

hmni is the mth order random regression factor of the nth haplotype of sire i

on the environment of daughter j, and

ei j is the random residual for the record yi j.

Furthermore, s =
[
s0

s1

]
∼ N(0,A ⊗ S), where A is the additive relationship

matrix and S is the variance-covariance matrix of sire random regression co-
efficients, and h ∼ N(0,G ⊗H), where G is the IBD-matrix between the hap-
lotypes and H is the variance-covariance matrix of the haplotype coefficients.
Even though each daughter inherits only one of the sire’s alleles (either h1i

or h2i), both the alleles were included in the model and assumed to be different
classes within the same random effect.
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In the model RR-Q, the parameter p was set to 0, assuming genotype by
environment interactions on the sire effects but no gene by environment inter-
actions on the QTL effects. By setting p = 1, this model was extended to allow
for gene by environment interactions on the QTL effects (Models RR-QEe and
RR-QEf).

The correlation between the intercept and the first order regression coeffi-
cient of haplotype is estimated with RR-QEe, while when RR-QEf is applied,
the correlation between the slope and intercept of the haplotype effects is fixed
to be 0.99 (further referred to as RR-QEf+) or –0.99 (further referred to as
RR-QEf−). Although the models assume that an infinite number of haplotypes
are segregating in the population, the true (simulated) number of alleles is 2.
Assuming a biallelic QTL where each allelic effect is a linear function of the
environment, these linear functions will cross each other at one single point.
This point might be far outside the environments the animals are exposed to,
but by extrapolating the curves, such a point will always exist for two non-
parallel lines. By using RR-QEf, a linear function is still estimated for each
haplotype, but all the lines are forced to cross each other at the same point.

The (co)variance components estimates from random regressions will be
affected by shifting the environmental scale. This was done when analysing
the scenario “Scaling”. In the scaling scenario, both the alleles have a value of
zero at Env = 0. With the intercept defined in this point, the intercept variance
due to the QTL is zero. Furthermore, since there is no variance in intercept,
the true correlation between intercept and slope will not be defined. To obtain
a variance in intercept, and a true correlation of 1 between intercept and slope,
2.50 was subtracted from every environmental value before applying model
RR-QEf+ to the data simulated with a scaling effect. The environment defined
as intercept was thus shifted from Env = 0 to Env = 2.50.

For all the analyses, likelihood ratio test statistics [15] were used to test
the significance of the detected genes. The likelihood ratio was calculated as
twice the difference between the log likelihood obtained from the different
models (RR-Q, RR-QEe or RR-QEf) and the log likelihood obtained from a
model omitting the QTL effect. When using RR-QEe and RR-QEf, a second
likelihood ratio test was applied with RR-Q as the reduced model, to test for
interaction. Threshold values were obtained from the χ2-table, and a nominal
significance level of 1% was used. The ASREML package [8] was used for the
variance component analyses.

For each scenario, the number of detected QTL was reported. The number of
detected QTL was split into the number detected in the exact correct position
(“Detected correct pos”), the number detected in a different bracket, but within
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the dense part of the linkage group (“Det. Dense part”) and the number of QTL
detected outside the dense part of the linkage group (“Det. Sparse part”). The
proportion of QTL detected in or close to the correct position was used as a
measurement of precision of QTL mapping.

2.3. Handling convergence problems

Convergence problems (looping) were detected in some of the random re-
gression analyses. The results from these positions were deleted before the
results were analysed. If less than 15 positions converged in one particular
replicate with one of the models, the QTL was reported as not detected due to
convergence problems (for this specific model and replicate).

3. RESULTS

3.1. Without interaction between QTL effect and environment

When the QTL was simulated with no interaction, it was detected in 67%
of the replicates with model RR-Q, 51% of the replicates with model RR-QEe
and 33% of the replicates with model RR-QEf– (Fig. 5). Applying a random
regression model to data where there was no QTL by environment interaction
thus resulted in lower power of detection. RR-QEe falsely detected interaction
in three replicates, while RR-QEf– falsely detected interaction in two repli-
cates. When applying model RR-Q, 64 of the detections were done between
40 and 50 cM, and 23 of the detections were done in the exact correct position
(between markers 9 and 10).

3.2. QTL with scaling effect

When the QTL was simulated with a scaling effect, model RR-Q detected
19% of the QTL, while the random regression models detected 36% (RR-QEe)
and 39% (RR-QEf+) (Fig. 6). When applying RR-QEf+, 20 replicates were
deleted because of less than 15 marker brackets converging. RR-QEe detected
the QTL in four of the replicates deleted from the RR-QEf+ analyses. There
were no significant differences in the number of detected QTL or in the frac-
tion of QTL detected in the correct position between the two random regres-
sion models. RR-QEe detected the interaction term in 31 replicates, while
RR-QEf+ detected the interaction term in 35 replicates.
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Figure 5. The power of each model is represented by the total height of the three bars
denoting detection. Precision is higher when the “Det. Sparse part” is smaller and the
“Detected correct pos” is higher. RR-Q had the highest power of the models in this
scenario, and precision was generally high, although a little lower for RR-QEf–, which
also had some convergence problems.

Figure 6. In the scaling scenario, the random regression models had higher power than
RR-Q, and all models had quite high precision. The random regression models differed
less from each other with regard to power or precision, but RR-QEf+ had a substantial
proportion of brackets with convergence problems, while RR-QEe converged in all
replicates.

3.3. Reranking of QTL effects between environments

In the scenario where the QTL alleles were simulated to have reranking of
effects between different environments RR-Q detected 6% of the QTL, while
RR-QEe and RR-QEf– detected 49% and 60% respectively (Fig. 7). Applying
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Figure 7. As seen from the total height of the bars denoting detection, the random
regression models had a much higher power than RR-Q, and there were differences
between the random regression models as well. RR-QEf– had a higher power and more
convergence problems, while both random regression models had high precision.

RR-QEe gave four deleted replicates due to less than 15 brackets converg-
ing, while RR-QEf– gave 19 such deleted replicates. In each replicate where
RR-QEe did not converge, RR-QEf– did not converge either. In every repli-
cate where RR-QEf– gave less than 15 converged brackets, RR-QEe did not
detect the QTL. There were still no differences between the two random regres-
sion models in the proportion of detected QTL in the correct bracket. RR-QEe
detected the interaction term in 48 replicates, while RR-QEf– detected the in-
teraction term in 58 replicates.

4. DISCUSSION

To be able to detect gene by environment interaction, there is a need for
methods with a high power of QTL detection, but without detecting a lot of
false QTL. Furthermore, the method should provide precise estimates of QTL
positions, and be able to detect not only the gene, but also its interactions with
the environment. All these issues are discussed below.

4.1. Power of QTL detection

The power of a test is defined to be the probability that the null hypothesis is
rejected when it is indeed false [15]. Considering the null-hypothesis to be that
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no QTL exists on the linkage group, power is the fraction of the 100 datasets
in which a QTL is detected.

When the QTL was simulated without environmental interaction, RR-Q had
the highest power (Fig. 5). This was expected, since the addition of another
parameter in the model increases the threshold value, without improving the fit
of the model.

When the QTL is simulated to have an interaction effect with the environ-
ment, both RR-QEe and RR-QEf give a higher power of QTL detection than
RR-Q (Figs. 6 and 7). This shows that using random regression is not only
a way to detect the interaction term of a gene, which is impossible with the
RR-Q-model; it also increases the power of detecting such genes. The relative
benefit of using random regression models, compared to RR-Q, is higher in re-
ranking scenarios than in scaling-scenarios (Figs. 6 and 7). This is both due to
random regression models detecting more Reranking-QTL than Scaling-QTL
and due to RR-Q detecting more Scaling-QTL than Reranking-QTL.

RR-Q is in theory not able to detect the simulated Reranking-QTL. The only
ways RR-Q can detect Reranking-QTL is through an uneven distribution of
the haplotypes over the environmental scale, so that some haplotypes get more
information from one side of the mean than from the other side, or through
random differences in residual values leading to a “false discovery”. RR-QEe
might detect Reranking-QTL easier than Scaling-QTL because the Reranking-
QTL have both intercept and slope effect, while Scaling-QTL contribute only
to the slope-variance. In addition, it might be harder to distinguish between
Scaling-QTL and the background genetics than between Reranking-QTL and
the background genetics, since the background genetics were scaling effects as
well.

The power is affected by a combination of the model and the QTL effect.
When the QTL is fitted as a single general effect, like in RR-Q, the modelled
effect will be the average effect over all environments. The power of detec-
tion should then depend on the QTL effect in the average environment. If so,
RR-Q should have higher power in the scaling scenario (which has the highest
average QTL effect) than in the no interaction scenario, and the lowest power
in the reranking scenario (which has an average QTL effect of 0). However,
RR-Q detects more than 3 times as many replicates in the no interaction sce-
nario than in the scaling scenario (Figs. 5 and 6). Again, the QTL in the scaling
scenario acts quite similar to the general genetic effect, which is also a scaling
effect, and that might be the reason why it is so hard to detect. When model
RR-Q was applied to the simulated scaling QTL, higher variances for error and
sire-effects were estimated than when RR-Q was applied to the simulated no
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interaction scenario. The sire term seems to be more capable of modelling the
QTL effect than the QTL term in the model, since the sire-term includes envi-
ronmental interaction. QTL with interaction are therefore hard to detect with a
model assuming interaction for the sire term but not for the QTL.

Even though using random regression increases the power of detecting QTL
from the scaling scenario, this scenario still gave the lowest power of detec-
tion. Since the additive sire effect in real data is a sum of the effect of all the
genes affecting the trait, many genes may have an interaction pattern similar to
the sire by environment interaction pattern. If so, a majority of genes will be
hard to detect due to their pattern similarity with each other, while genes with a
more extreme interaction pattern, different from the majority, will be easier to
detect. These genes might be very interesting selection candidates in order to
change the environmental sensitivity in the population. If a trait has a positive
genetic correlation between production in the average environment and envi-
ronmental sensitivity, selecting for higher production will also give increased
environmental sensitivity. A QTL with an unusual interaction pattern gives the
opportunity to select for higher production without getting the usual response
in environmental sensitivity.

Fixing the correlation between slope and intercept of the random regression
of QTL effects resulted in convergence problems. However, even though 19%
of the brackets had to be deleted due to convergence problems in the reranking
scenario, RR-QEf– had a power of 60%, which is higher than any other model
in that scenario (Fig. 7). Thus fixing the correlation between slope and intercept
increased the power of detection with more than 20% in the reranking scenario.
Fixing the correlation between slope and intercept had only a minor effect on
the power in the scaling scenario (Fig. 6).

4.2. Precision of QTL mapping

Precision can be measured by the fraction of QTL detected in the correct
marker bracket and the fraction of QTL detected within the dense part of the
linkage group (Figs. 5, 6 and 7). Goddard [9] proposed to fix the correlation be-
tween slope and intercept to 1 or −1 in order to obtain higher precision through
steeper likelihood ratio curves. This should lead to a higher proportion of de-
tected QTL to be in the correct bracket. Figures 6 and 7 do not support that
theory, since in both scenarios, the fraction of detections done in the dense
part or in the correct bracket is unaffected by the choice of random regression
model. In general, very few detections were done in the sparse part. With a
marker map as dense as a marker every 1 cM around the QTL position, very
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few detections missed the correct position with more than 5 cM. Both the ran-
dom regression models gave a high precision of QTL mapping.

4.3. Test for gene by environment interaction

Model RR-QEe falsely detected gene by environment interaction in three
replicates of the no interaction scenario, while RR-QEf– falsely detected in-
teraction in two replicates. Using a 0.01 threshold value, 1 false positive out
of 100 replicates was expected. However, even though the interaction test
was performed for only one position per chromosome, the test was done for
the position where RR-QEe or RR-QEf– gave the highest likelihood value.
The likelihood value can be higher than expected due to an overestimation
of the intercept-variance or the slope-variance. Choosing the positions with
the highest likelihood value for testing the interaction term increases the risk
of testing the positions with falsely positive interaction terms. The number of
false positives might then be higher than if a random position was tested for in-
teraction per replicate. Assuming that one of a hundred positions shows a false
interaction term, this should happen in 20 random positions from the hundred
replicates, and the interaction test could falsely detect gene by environment in-
teraction in 20% of the replicates. The dependency between the tested positions
within a replicate lowers the number of false detections, since it increases the
probability that more of the positions with a false interaction term fall into the
same replicate. The low number of false detections makes the likelihood ratio
test of RR-QEe or RR-QEf vs. RR-Q well suitable for rejecting a non-existing
gene by environment interaction.

The use of a random regression model detected the interaction term in most
cases where the gene was detected in both scenarios “Scaling” and “Rerank-
ing”. Random regression models seem to have a high power to detect an exist-
ing interaction without detecting many false interactions. Fixing the correlation
between slope and intercept to 1 or −1 did not affect the fraction of the detected
QTL that also got a detected interaction term.

4.4. More than two alleles

If the QTL is multi allelic, the true correlation between slope and intercept of
the allelic effects is no longer necessarily 1 or −1, making the RR-QEf model
less appropriate, depending on the allele frequencies. If the frequency of the
two most common alleles adds up to almost 1, the true correlation between
level and slope might be so close to one that fixing the correlation between
slope and intercept has a positive impact on the power of detection.
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5. CONCLUSIONS

The power of detecting a QTL depends not only on its average effect but also
on its interaction with the environment, also when the model does not include
an interaction term for the QTL. A QTL with an environmental interaction can
be hard to detect even though it has a large average effect.

Using random regression to detect gene by environment interaction in-
creases the power to detect QTL that interact with the environment, both when
the gene has a scaling effect or when it has reranking of allele effect between
environments. Fixing the correlation between the slope and the intercept of the
random regression to ±1 might in some cases increase the power compared to
a random regression model that estimates this correlation, but may also lead to
more convergence problems.

The random regression models had high precision in QTL mapping, and
the precision was not affected by whether the correlation between slope and
intercept of the random regression was fixed to ±1 or whether it was estimated
in the statistical analysis.
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