Supplementary figure legends

Suppl. Fig. S1. ¹H-¹⁵N HSQC spectra of wild type RelE in the RelB_C-free and bound states. The wild type RelE was co-expressed with antitoxin RelB and purified under denaturing conditions. The spectra of a refolded ¹⁵N –labeled wild type RelE in free (blue) and RelB_C-bound (red) states were recorded under the same conditions as that of the RelE^{R81A/R83A} mutant (Fig. 2). Due to the spectral similarity, assignments of some wild type peaks can be transferred from the RelE^{R81A/R83A} spectrum.

Suppl. Fig. S2. RelB_C binding affinities of wild type RelE and RelE^{R81A/R83A} mutant. Intrinsic tryptophan fluorescence spectra of A, wild type RelE and B, RelE^{R81A/R83A} mutant were recorded as a function of RelB_C concentration. The fluorescence emission spectra were monitored at 20 °C in a wavelength range of 300-400 nm with a fixed excitation wavelength at 295 nm. The sample solution contains 200 nM wild type RelE or RelE^{R81A/R83A} mutant in 20 mM NaPi, 500 mM NaCl, 1 mM DTT and increasing concentration of RelB_C peptide (0-500 nM). The fluorescence emission maximum intensities were plotted against the concentration of RelB_C peptide (insert panels). The dissociation constants (K_D) were fitted using the Hill equation: $F_{obs} = F_0 + F_{max} * S^n/(K_D^n + S^n)$, where F_{obs} represents the measured intrinsic tryptophan fluorescence, F_0 and F_{max} represent the minimum and maximum fluorescence values, S represents the peptide concentration and n represents cooperativity coefficient.

Suppl. Fig. S3. Binding induced folding of RelB_{C} and unfolding of $\text{RelE}^{R81A/R83A}$. The chemical shift index (CSI) analysis of A, free (blue) and B, $\text{RelE}^{R81A/R83A}$ -bound (red) RelB_{C} reveals a disordered-to-ordered conformational transition upon binding. The CSI analysis of C, free (blue) and D, RelB_{C} -bound (red) $\text{RelE}^{R81A/R83A}$ shows the unfolding of the C-terminal helix $\alpha 4$ upon RelB_{C} binding.

Suppl. Fig. S4. Chemical shift changes mapped on the structure of RelE^{R81A/R83A}:**RelB**_C. Two views of the RelE^{R81A/R83A}:RelB_C complex rotated by 180 degrees. The solvent accessible surface of RelE^{R81A/R83A} and the ribbon representation of RelB_C are colored with a gradient corresponding to the chemical shift changes associated with their interactions.

Suppl. Fig. S5. Internal motions and dymanics of RelE^{R81A/R83A} **affected by RelB**_C. The ¹H-¹⁵N heteronuclear NOE analysis of A, free (blue) and B, RelB_C-bound (red) RelE^{R81A/R83A}. The transverse relaxation rate (R₂) analysis of C, free (blue) and D, RelB_C-bound (red) RelE^{R81A/R83A}. The relaxation data were recorded in a 800 MHz magnetic field.

Suppl. Fig. S6. Comparison of RelE, aRelE, YoeB and RNase SA structures in complex with their inhibitors. A, The *E. coli* RelE in complex with $RelB_C$ (K47-L79). B, The *P. horikoshii* aRelE with aRelB. C, The *E. coli* YoeB with YefM. D, RNase SA with barstar. The secondary structure elements are colored in navy (helices) and green (strands) for the toxins and RNase; and in magenta (helices) and yellow (strands) for the inhibitors. For clarity, only part of structure of barstar, which directly involves the interaction of YefM, is shown in the panel C and D.

	RelE ^{R81A/R83A}	RelE ^{R81A/R83A} :RelB _C
NMR distance and dihedral constraints		
Distance constraints		
Total NOE	2,440	3,341
Intra-residue	619	801
Inter-residue	1,821	2,192
Sequential $(i - j = 1)$	550	782
Medium-range $(1 \le i - j \le 4)$	481	720
Long-range $(i-j \ge 5)$	790	690
Intermolecular	0	348
Hydrogen bonds	40 x 2	51 x 2
Total dihedral angle restraints		
φ	62	77
ψ	62	77
Structure statistics		
Violations (mean and s.d.)		
Distance constraints (> 0.3 Å)	0 ± 0	1 ± 0
Dihedral angle constraints (> 5°)	0 ± 0	0 ± 0
Max. dihedral angle violation (°)	3.84	2.59
Max. distance constraint violation (Å)	0.248	0.353
Deviations from idealized geometry		
Bond lengths (Å)	0.0097 ± 0.0003	0.0099 ± 0.0003
Bond angles (°)	1.11 ± 0.03	1.18 ± 0.02
Impropers (°)	1.26 ± 0.04	1.41 ± 0.07
Ramachanfran Statistics (%)		
Most favored regions	91.6	85.9
Additionally allowed regions	7.8	13.1
Generously allowed regions	0.4	0.8
Disallowed regions	0.2	0.2
Average pairwise r.m.s. deviation [*] (Å)		
Heavy (all residues)	1.61 ± 0.16	3.37 ± 0.71
Backbone (all residues)	0.95 ± 0.17	2.73 ± 0.78
Heavy (Ordered region ^{**})	1.31 ± 0.15	1.26 ± 0.12
Backbone (Ordered region)	0.68 ± 0.16	0.54 ± 0.08

Suppl. Table 1. NMR and refinement statistics for $RelE^{R81A/R83A}$ and $RelE^{R81A/R83A}$: $RelB_{\rm C}$ structures

* Pairwise r.m.s. deviation was calculated among 20 refined structures. ** Ordered secondary structure components were defined as: F4-F7 (β 1), E9-R16 (α 1), S20-V33 (α 2), E40-N42 (α 3), C50-K54 (β 2), R61-I67 (β 3) and V71-G79 (β 4) for both free and bound RelE^{R81A/R83A}; E85-R93 (α 4) for free RelE^{R81A/R83A}; E54-R65 (α 3^{*}) and V72-V74 (β 2^{*}) for bound RelB_c.

Suppl. Fig. S1

Suppl. Fig. S3

Suppl. Fig. S4

Suppl. Fig. S5

