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SI Experimental Procedures
Bacterial Culture and Growth Conditions. E. coli cultures were
grown in LB broth or on LB agar plates at 37 °C and Caulobacter
cultures were grown in PYE broth or on PYE agar plates at 30 °C
(1). When noted, kanamycin (Kan) was added to a final con-
centration of 30 �g/ml in broth and 50 �g/ml in agar (abbreviated
30:50) for E. coli and 25:5 for Caulobacter. Spectinomycin and
streptomycin (Spec/Strep) were used at 50:50 for Spec and 30:30
for Strep in E. coli; tetracycline (Tet) at 12:12 for E. coli and 2:1
for Caulobacter; Chloramphenical (Cm) at 20:30 for E. coli and
1:1 for Caulobacter; Rifampin (Rif) at 50:50 for E. coli; and
Nalidixic acid (Nal) at 50:50 for Caulobacter. Also when noted,
E. coli cultures were induced with 1 mM IPTG and Caulobacter
cultures were induced with 0.03% xylose.

Entry Vector Library and Gateway Destination Vector Construction.
Entry vector cloning was performed by using methods and
reagents from the Invitrogen Gateway cloning system. A total of
3,763 pairs of PCR primers (Operon Biotechnologies) were
designed to clone the ORFs of each annotated protein in
Caulobacter crescentus (CB15) (2). All primer sequences are
available on request. Each forward and reverse primer contains
a 5� attB sequence for Gateway cloning and a 3� ORF-specific
sequence, enabling amplification of specific ORFs and subse-
quent recombination into the donor vector pDONR223 (3) attP
sites. Each forward primer contained an ATG start codon. PCR
amplification was performed in a 96-well format with KOD
polymerase (Novagen) by using the manufacturer’s instructions
and CB15 chromosomal DNA as a template, and verified for
approximate length on E-Gels (Invitrogen). The PCR products
were recombined into pDONR223 by using BP Clonase II
(Invitrogen) as described in the BP reaction protocol provided
by Invitrogen. Following transformation of the BP reaction into
E. coli DH5�, colony PCR was performed by using pDONR223-
specific primers flanking the insert region to verify the correct
size of the inserted ORF. The 5� and 3� ends of each ORF in its
entry vector were sequenced by using M13 primers (Agencourt).
BLAST analysis of the resulting quality-trimmed sequences
verified that the correct and full-length ORF was present with no
detectable point mutations.

Destination Vector Construction. Two destination vectors were
engineered to allow xylose-inducible expression in Caulobacter
of each ORF-encoded protein fused to mCherry at either the C
terminus (gXRC) or N terminus (gXRN). gXRC was generated
by digesting pXGFP4 [gift of M. R. Alley (Anacor Pharmaceu-
ticals, Palo Alto, CA)] with NdeI and Asp-718 and ligated with
a similarly digested Gateway cassette PCR product amplified
from pTGW (Drosophila Genomics Resource Center). The GFP
in the resulting construct was subsequently replaced with
mCherry by digesting with NotI and Asp-718 and ligating with
a similarly digested mCherry PCR product amplified from
pmCherry (Clontech). gXRN was created by digesting
pXGFP4-C1 (gift of M. R. Alley) with BglII and Asp-718 and
ligating with a similarly digested Gateway cassette PCR product
amplified from pTGW. The GFP was replaced in the resulting
construct by digesting with BglII and NdeI and ligating with a
similarly digested mCherry PCR product.

In Vivo Left-Right (LR) Reaction Procedure. To create the inducible
N- or C-terminal fusion expression vectors containing each
Caulobacter ORF, a high-throughput ‘‘in vivo LR’’ gene-transfer

method was developed by building on previous studies with the
xis and int genes that mediate the LR recombination reaction (4,
5). First, plasmids from the entry clone library (Spec/Strep-
resistant) were isolated by using the Direct-prep 96-well mini-
prep kit (Qiagen) and transformed into an E. coli strain pos-
sessing a plasmid (pXINT129; KanR) containing IPTG-inducible
copies of the int and xis genes that mediate the LR reaction (4).
LB containing Kan, Spec, and Strep was used to select for
transformants. To perform the in vivo LR, these strains were
combined in 96-well format with a CcdBR E. coli strain contain-
ing either gXRC or gXRN, LS980 (conjugation helper strain),
and a RifR DH5� E. coli strain. In this mixture, the destination
vector is the only KanR vector that can be mobilized into the RifR

acceptor, but because the acceptor is CcdBS, this mobilization
kills the acceptor unless the destination vector’s ccdB-containing
Gateway cassette has been replaced with the entry vector’s ORF.
The mixture was pinned onto LB plates containing IPTG by
using a 48-pin frogger (Dan-Kar Corporation) and incubated at
37 °C overnight. The bacteria were then transferred, using the
frogger, to LB broth containing Kan and Rif. This strategy yields
a 99% success rate of generating transformants without the need
for purified recombination reagents.

Conjugation into Caulobacter. After overnight growth at 37 °C, the
expression vectors were conjugated into Caulobacter CB15N by
triparental mating. Briefly, strains were washed once with LB
and mixed with LS980 and CB15N at a ratio of 1:1:1, pinned onto
PYE plates, and allowed to incubate 48 h at 30 °C. Each spot was
restreaked for individual colonies on PYE plates containing Kan
and Nal and incubated for 48 h at 30 °C. This purification step
was repeated to ensure an isogenic population of Caulobacter
containing the expression vector. To verify that the Caulobacter
strains contained expression vectors with inserts in the Gateway
cassette, colonies were patched onto PYE plates containing
either Kan and Cm or Kan alone. Strains possessing expression
vectors became CmS because of replacement of the CmR gene in
the Gateway cassette with the entry vector ORF. These expres-
sion vector-containing Caulobacter strains were grown in PYE
broth containing Kan overnight and stored at �80 °C in PYE
broth containing 20% glycerol.

High-Throughput Imaging. Overnight cultures of the CB15N
strains containing expression vectors were diluted 1:15 in PYE
broth containing Kan, grown 2 h, induced with xylose, and
subsequently grown for an additional 2 h (final OD660 �
0.4–0.5). Samples were placed on 48-pedestal slides (1% aga-
rose) and fields of �50–200 cells were chosen for imaging. All
imaging was performed with a Nikon90i epif luorescent micro-
scope equipped with a 100 � 1.4 NA objective (Nikon), Rolera
XR cooled CCD camera (QImaging), and NIS Elements soft-
ware (Nikon). Phase contrast and fluorescent images were taken
of each field by using a script that automated positioning of the
microscope from one pedestal to the next, acquiring the images,
and saving them by using a standardized file naming system.

Image Scoring and Validation. Protein localization and image
quality in each fluorescent and phase contrast image were scored
by 2 individuals using a MATLAB (MathWorks) program,
‘‘Localization Scorer,’’ that is freely available on request. The
results of this scoring generated an initial set of Caulobacter
strains containing localized proteins. This set of strains was
manually re-arrayed into 96-well plates, reimaged to confirm the
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localization pattern, and sequenced by using primers directed
against gXRC/gXRN in an analysis similar to that described for
identifying the ORF identity in entry vectors. Seven different
people compared the original and rearrayed images to establish
a consensus localization pattern. Strains containing proteins
whose localization was not reproducible, whose sequence was
not correct, or that were scored as not localized by more than 2
scorers were eliminated from the localized set of proteins.

Statistical Analysis. Quantitative attributes of the localized Cau-
lobacter proteins were compared to those of all Caulobacter
proteins by using a 2-sample T test (Microsoft Excel) when
appropriate. The overlaps between protein subsets were com-
pared by using the hypergeometric distribution (MATLAB,
MathWorks). Data extraction was performed by using BioPerl
(bioperl.org) scripts. For ease of visualization in Fig. 2 A, the
P-values derived from these tests were converted to E-values by
plotting the log10 of the inverse of the P value as positive for
overrepresentation and negative for underrepresentation. To
compare GO terms, we extracted the functional subcategory
classification for each protein from NCBI and compared the
fraction of localized and all proteins represented in each class.
To compare cell-cycle-regulated proteins, we used the classifi-

cations of a previous report on cell-cycle-dependent transcrip-
tion (6) to compare the cell-cycle-regulated fraction of localized
and all proteins.

Quantitative Analysis. Cell outlines were identified, cell length was
measured, and one-dimensional intensity profiles were calcu-
lated for each cell by using the PSICIC software toolkit, as
previously described (7). Cells were considered localized if the
maximum fluorescence was a threshold value over the mean
fluorescence for that cell. The threshold used, 2 � 104, was
determined by manual inspection. Because the stalked pole
cannot be reliably identified in every cell, all distances measured
reflect the distance to the nearest pole and are thus reported on
a scale from 0–50% of cell length. The half-maximal width was
calculated by identifying the minimum continuous interval of the
intensity profile that contains both the maximum and the median
of the intensity profile, such that each endpoint has an intensity
value less than the mean of the maximum intensity. The length
of this span is divided by two to give the mean distance from the
peak to the half-maximal value on either side of the peak. If such
a span does not exist, as in cases where the peak is close to the
cell pole and is cut off in one direction before reaching its
half-maximal width, then the width in that direction is ignored
and only the complete value is used.
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